СИНТЕЗ 2-(16,17-ЭПОКСИ-3β,20-ДИГИДРОКСИПРЕГН-5-ЕН-20-ИЛ)-1,3-ДИТИАН

© 2023 г. З. Р. Валиуллина*, Л. С. Хасанова, М. С. Мифтахов

Уфимский Институт химии – обособленное структурное подразделение ФГБНУ «Уфимского федерального исследовательского центра РАН», Россия, 450054 Уфа, просп. Октября, 69 *e-mail: valiullina.zulya@mail.ru

> Поступила в редакцию 10.03.2022 г. После доработки 26.03.2022 г. Принята к публикации 28.03.2022 г.

Исходя из диосгенина, осуществлен синтез 2-(16,17-эпокси-3β,20-дигидроксипрегн-5-ен-20-ил)-1,3-дитиан, нового перспективного синтона для получения агликона OSW-1 и его аналогов. В альтернативном подходе реализован «низкотемпературный» вариант дециклизации F-кольца диосгенина действием системы Et₃SiOTf–(CF₃CO)₂O–CH₂Cl₂ с образованием бис-трифторацетата псевдодиосгенина с последующим трансформированием в ключевой блок.

Ключевые слова: OSW-1, стероиды, гликозиды, диосгенин, 1,3-дитиан, эпоксидирование

DOI: 10.31857/S0514749223010068, EDN: PFPPMC

ВВЕДЕНИЕ

Сапонины относятся к семейству стероидных или тритерпеноидных гликозидов с огромным структурным многообразием. Эти соединения привлекают интерес широтой спектра фармакологической активности, в частности иммуностимулирующей, противоопухолевой, антиоксидантной, противогрибковой и противовирусной [1–5].

Ранее сообщалось о новом типе холестанового гликозида OSW-1 (1) из луковицы Ornithogalum saundersiae, который проявил высокую цитотоксичность в испытаниях на линии клеток NCI 60 in vitro (IC_{50} 0.78 нМ) [6]. По цитотоксичности это соединение 1 превышало в 10–100 раз известные противораковые препараты, используемые в медицинской практике, включая митомицин C, адриамицин, цисплатин, камптотецин и таксол [7–9].

Содержание OSW-1 в клубнях Ornithogalum saundersiae крайне низкое, поэтому требуемое для широких биохимических и медицинских исследований количество данного стероидного гликозида может быть получено только путем химического

синтеза. Основными структурными фрагментами при формировании молекулы OSW-1 (1) химическим синтезом являются стероидный агликон 2 и дисахарид 3, состоящий из функционализированных остатков L-арабинозы и D-ксилозы (схема 1).

В настоящее время известны несколько методов синтеза OSW-1 и его аналогов [10–15]. Однако низкие общие выходы продуктов и многостадийность не позволяют использовать эти методы для крупномасштабного производства, поэтому разработка новых подходов, исходя из доступных и недорогих исходных материалов, безусловно, актуальна.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Диосгенин и родственные соединения являются важными исходными в синтезе ряда биологически активных соединений, таких как стероидные гормоны [12], полигидроксистеролы [16], стероидные гликозиды [14], брассиностероиды [17–18] и др.

В данной работе описан синтез на основе диосгенина (4) нового ключевого блока для

OSW-1-16,17-эпокси-20-гидрокси-1,3-дитиана (5) (схема 2).

Вначале кипячением диосгенина (4) в растворе Ac_2O , содержащем эквимолярные количества NH_4Cl и Ру в Ac_2O , при 135°C расщепляли Е-кольцо и затем образующийся диацетат 7 действием CrO_3 в двухфазной системе $ClCH_2CH_2Cl-AcOH-H_2O$ [19] трансформировали в кетодиацетат 8 (схема 3).

На пути к енону **6** при генерировании двойной связи кипячением кетоэфира **8** в водном метаноле с КОН, наряду с желаемым еноном **6**, образовалось

и метоксипроизводное **9** (схема 4) [20]. Замена метанола на тетрагидрофуран приводила к единственному ацетату **10** с выходом 63% на стадии 3.

Одновременно мы разработали альтернативный подход к енону 6, который включает новый «низкотемпературный» вариант дециклизации спирокеталя диосгенина (4) под действием системы $Et_3SiOTf-(CF_3CO)_2O-CH_2Cl_2$. Реакция гладко протекала при температуре от 0 до 20°C в течение 3 ч, приводя с выходом 57% к дитрифторацетату псевдодиосгенина 11 (схема 5). Окислительное расщепление енолэфирной двойной связи соеди-

нения 11 под действием РСС (пиридиний хлорхромат) в CH_2Cl_2 и щелочной гидролиз промежуточного эфира 12 при нагревании в смеси КОН– $T\Gamma\Phi$ – H_2O привели к енону 6.

Еноны 6 и 10 удобны как для оксигенирования в циклопентеновой части, так и для формирования боковой цепи OSW-1. С этой целью обработкой 3-ацетоксиенона 10 щелочной перекисью водорода [21] получили эпоксид 13 (схема 6). Для увеличения цепи на один углеродный атом кетон 13 конденсировали с литийпроизводным 1,3-дитиана в ТГФ при –30°С [22] и с хорошим выходом получили эпоксидитианпроизводное 5. По спектральным данным полученное соединение 5 представляет один стереоизомер.

Корректное уточнение стереохимии третичного спиртового центра не имеет особого значения, поскольку в последующих трансформациях в направлении к агликону **2** этот центр будет «затрагиваться». В целом же структура блока **5** позволяет открыть новые оригинальные подходы к агликону **2**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрофотометре «IR Prestige-21 Shimadzu» (Япония) в пленке или в вазелиновом масле. Спектры ЯМР ¹Н и ¹³С записаны на спектрометре Bruker AM-300 (Германия) [рабочие частоты 300.13 (¹Н) и 75.47 (¹³С) МГц] или Bruker Avance-500 (Германия) [рабочие частоты 500.13 (¹Н) и 125.77 (¹³С) МГц]. В спектре ЯМР ¹³С за внутренний стандарт принято значение сигналов CDCl₃ (δ_C 77.00 м.д.), в спектре ЯМР ¹Н за внутренний стандарт принято значение сигналов остаточных протонов в CDCl₃ (δ_H 7.27 м.д.). Углы вращения измерены на приборе «Perkin-Elmer 341 М» (США). Элементный анализ выполнен

на CHNS-анализаторе «Euro-EA 3000» (Италия). Ход реакции контролировали методом TCX на пластинках «Сорбфил» (Россия) с обнаружением веществ смачиванием пластинок раствором анисового альдегида и серной кислоты в этаноле с последующим нагреванием при 120–150°С. Продукты синтеза выделяли методом колоночной хроматографии на силикагеле фирмы Macherey-Nagel (Германия) (30–60 г адсорбента на 1 г вещества). Очистка растворителей осуществлена по стандартным методикам [23].

Окислительное расщепление Е- и F-колец диосгенина. К суспензии 0.30 г (0.36 ммоль) диосгенина 4 в 5 мл Ac₂O добавляли смесь 0.038 г

Схема 6

(0.72 ммоль) NH₄Cl и 0.058 мл (0.72 ммоль) Ру и кипятили до полного расходования исходного соединения (ТСХ, 10 ч). Затем к реакционной смеси добавляли 2 мл СН₃СООН, 2 мл дихлорэтана и 0.5 мл воды, затем при 0°С добавляли 0.11 г (1.12 ммоль) раствора CrO₂ в 2 мл смеси СН₃СООН-Н₂О (1:2). Смесь перемешивали при комнатной температуре в течение 1 ч, затем добавляли 5 мл насыщенного раствора NaCl и 3 мл МеОН, перемешивали еще 1 ч. Продукт реакции экстрагировали CHCl₃, органический слой промывали H₂O, сушили Na₂SO₄, упаривали и получили эфир 8, который без очистки растворяли в 8 мл МеОН, добавляли 0.36 г (6.48 ммоль) КОН, растворенного в 2 мл H₂O, и перемешивали 1 ч при кипении. Реакционную массу охлаждали, МеОН упаривали, продукт экстрагировали этилацетатом, объединенные органические слои промывали насыщенными растворами NH₄Cl и NaCl, сушили Na₂SO₄. После концентрирования реакционной смеси в вакууме остаток очищали колоночной хроматографией на SiO₂ (петролейный эфир-этилацетат, 8:2), получали 0.043 г (25%) енона 6 и 0.05 г (26%) соединения 9.

3β-Гидрокси-16,17-дегидро-5-прегнен-20-он (6). $R_{\rm f}$ 0.26 (петролейный эфир–этилацетат, 7:3), т.пл. 195°С, $[\alpha]_{\rm D}^{20}$ –35° (*c* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3210 (OH), 1718 (C=O). Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м.д.: 0.91 с (3H, CH₃), 1.04 с (3H, CH₃), 2.25 с (3H, CH₃CO), 3.40–3.60 м (1H, H³), 5.36 д (1H, H⁶, *J* 5.2 Гц), 6.71 д.д (1H, H¹⁶, *J* 1.8, 3.4 Гц). Спектр ЯМР ¹³С (75 МГц, CDCl₃), δ , м.д.: 15.72 (C¹⁸), 19.31 (C¹⁹), 20.69 (C¹¹), 27.15 (C²¹), 30.21 (C⁸), 31.56 (C⁷), 31.65 (C²), 32.26 (C¹⁵), 34.66 (C¹²), 36.71 (C¹⁰), 37.13 (C¹), 42.29 (C⁴), 46.09 (C¹³), 50.50 (C⁹), 56.46 (C¹⁴), 71.71 (C³), 121.04 (C⁶), 141.41 (C⁵), 144.44 (C¹⁶), 155.40 (C¹⁷), 196.86 (C=O). Найдено, %: C 80.29; H 9.54. C₂₁H₃₀O₂. Вычислено, %: C 80.21; H 9.62.

Зβ-Гидрокси-16-метокси-5-прегнен-20-он (9). *R*_f 0.18 (петролейный эфир–этилацетат, 7:3), т.пл. 150–151°С. ИК спектр, ν, см⁻¹: 3410 (ОН), 1720 (С=О), 1170 (С–О–С). Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.62 с (3H, CH₃), 0.99 с (3H, CH₃), 2.17 с (3H, CH₃CO), 2.53 д (1H, H¹⁷, *J* 6.1 Гц), 3.20 с (3H, OCH₃), 3.45–3.60 м (1H, H³), 4.31–4.38 м (1H, H¹⁶), 5.34 д (1H, H⁶, *J* 4.9 Гц). Спектр ЯМР

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 1 2023

¹³С (75 МГц, CDCl₃), δ , м.д.: 15.85 (C¹⁸), 20.76 (C¹⁹), 22.12 (C¹¹), 32.81 (C²¹), 32.92 (C⁷), 32.95 (C²), 33.13 (C⁸), 33.36 (C¹⁵), 37.89 (C¹²), 38.49 (C¹), 40.18 (C¹⁰), 43.58 (C⁴), 45.82 (C¹³), 51.20 (C⁹), 55.82 (C¹⁴, OCH₃), 58.56 (C¹⁷), 72.97 (C³), 82.83 (C¹⁶), 122.63 (C⁶), 142.13 (C⁵), 209.56 (C=O). Найдено, %: С 76.26; H 9.89.

3β-Ацетокси-16-дегидро-5-прегнен-20-он (10). Получен аналогично предыдущей методике [из суспензии 2.00 г (4.8 ммоль) диосгенина (4), 15 мл Ac₂O, 0.25 г (4.8 ммоль) NH₄Cl и 0.38 мл (4.8 ммоль) Ру] сырой эфир 8 растворяли в 35 мл ТГФ-H₂O (5:1), добавляли 2.15 г (38.4 ммоль) раствора КОН в 5 мл воды и кипятили 1 ч. ТГФ упаривали, продукт экстрагировали этилацетатом, промывали насыщенными растворами NH₄Cl и NaCl, сушили Na₂SO₄. После упаривания растворителя в вакууме и очистки остатка с помощью колоночной хроматографии на SiO₂ (петролейный эфир-этилацетат, 9:1) выделяли енон 10. Выход 1.08 г (63%). R_f 0.28 (петролейный эфир-этилацетат, 9:1, 2 прогона), т.пл. 172°С, [а]_D²⁰ –37.5° (с 1.0, CHCl₃). Cπектр ЯМР ¹H (500 MΓц, CDCl₃), δ, м.д.: 0.90 с (3H, CH₃), 1.04 с (3H, CH₃), 2.02 с (3H, CH₃CO), 2.25 с (3H, CH₃), 4.55–4.63 м (1H, H³), 5.38 д (1Н, Н⁶, *J* 4.8 Гц), 6.70 д (1Н, Н¹⁶, *J* 1.0 Гц). Спектр ЯМР ¹³С (75 МГц, CDCl₃), б, м.д.: 15.71 (C¹⁸), 19.22 (C¹⁹), 20.62 (C¹¹), 21.43 (<u>C</u>H₃CO), 27.15 $(C^{21}), 27.72 (C^2), 30.15 (C^8), 31.53 (C^7), 32.24 (C^{15}),$ 34.58 (C¹²), 36.77 (C¹), 36.86 (C¹⁰), 38.12 (C⁴), 46.05 $(C^{13}), 50.37 (C^9), 56.33 (C^{14}), 73.85 (C^3), 121.99$ $(C^{6}), 140.26 (C^{5}), 144.42 (C^{16}), 155.33 (C^{17}), 170.51$ (CH₃CO), 196.81 (С²⁰=О). Найдено, %: С 77.53; Н 9.10. C₂₃H₃₂O₃. Вычислено, %: С 77.49; Н 9.05.

3,26-Бис-трифторацетоксифуроста-5,20-диен (11). К перемешиваемому раствору 0.3 г (0.72 ммоль) соединения **4** в 10 мл CH₂Cl₂ в атмосфере аргона при 0°С добавляли 0.96 мл (4.23 ммоль) Et₃SiOTf, затем 1.2 мл (7.14 ммоль) (CF₃CO)₂O при -10°C. Реакционную смесь перемешивали 15 мин при 0°С, далее температуру довели до комнатной и перемешивали 3 ч. Затем добавляли 3 мл ледяной H₂O и 10 мл CH₂Cl₂, из водного слоя продукт экстрагировали CH₂Cl₂, органический слой промывали последовательно насыщенными растворами NaHCO₃ и NaCl, сушили MgSO₄. Полученный после концентрирования раствора остаток хроматографировали на колонке с SiO₂ (петролейный эфир-этилацетат, 10:1). Выход 0.24 г (54%) соединения 11. [α]_D²⁰ −38.8° (с 0.98, CHCl₃). Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.67 с (3H, CH₂), 0.98 д (3H, CH₂, J 6.8 Гц), 1.07 с (3H, CH₃), 1.57 с (3H, CH₃), 2.50–2.54 м (3H, СН, СН₂), 4.15 д.д (1Н, СН₂О, *J* 6.6, 10.5 Гц.), 4.22 д.д (1H, CH₂O, J 5.7, 10.5 Гц), 4.73–4.79 м (1H, H³), 4.81 д.д (1Н, Н¹⁶, Ј 5.1, 6.1 Гц), 5.43 д (1Н, Н⁶, Ј 5.0 Гц). Спектр ЯМР ¹³С (75 МГц, CDCl₃), δ, м.д.: 11.63 (CH₂), 13.91 (CH₂), 16.38 (CH₂), 19.28 (CH₂), 20.98 (C¹¹), 23.00 (C²³), 27.24 (C²), 30.32 (C²⁴), 31.18 (C^8) , 31.89 (C^{25}) , 32.17 (C^7) , 34.11 (C^{15}) , 36.66 (C^{10}) , 36.75 (C¹), 37.44 (C⁴), 39.42 (C¹²), 43.26 (C¹³), 49.90 (C⁹), 54.93 (C¹⁴), 64.15 (C¹⁷), 72.58 (C²⁶), 78.62 (C³), 84.35 (C¹⁶), 103.55 (CF₃), 104.25 (C²⁰), 123.53 (C⁶), 138.54 (C⁵), 150.97 (C²²), 157.14 (OCOCF₃).

Синтез енона 6 из эфира 11. К суспензии 0.17 г (0.79 ммоль) РСС в 7 мл CH₂Cl₂ при перемешивании добавляли 0.24 г (0.39 ммоль) диэфира 11 в 3 мл CH₂Cl₂, через 4 ч (контроль по TCX) реакционную массу отфильтровывали от неорганического осадка, промывали CH₂Cl₂, фильтрат концентрировали. Сырой диэфир 12 растворяли в 10 мл ТГФ-H₂O (5:1), добавляли 0.13 г (2.34 ммоль) раствора КОН в 1 мл воды и кипятили 1 ч. ТГФ упаривали, продукт экстрагировали этилацетатом, промывали насыщенными растворами NH₄Cl и NaCl, сушили Na₂SO₄. После упаривания растворителя в вакууме и очистки остатка с помощью колоночной хроматографии на SiO₂ (петролейный эфир-этилацетат, 9:1) выделяли 0.075 г (60%) енона 6.

3β-Гидрокси-16,17-эпокси-5-прегнен-20-он (13). К суспензии 0.40 г (1.12 ммоль) енона 10 в 15 мл МеОН добавляли 0.84 мл (3.36 ммоль) 4 н раствора NaOH, затем при 0°С добавляли 1.72 мл (16.83 ммоль) 30%-ного раствора H_2O_2 и перемешивали при этой температуре 15 мин, затем выдерживали при комнатной температуре в течение ночи. К реакционной смеси добавляли насыщенный раствор Na₂SO₃, MeOH упаривали. Продукт экстрагировали этилацетатом, органический слой промывали последовательно насыщенными растворами NH₄Cl и NaCl, сушили Na₂SO₄. После концентрирования реакционной смеси в вакууме остаток очищали колоночной хроматографией на SiO₂ (петролейный эфир-этилацетат, 8:2). Выход 0.36 г (86%). R_f 0.26 (петролейный эфир-этилацетат, 7:3), т.пл. 188°С, $[\alpha]_D^{20} + 1.5^\circ$ (*c* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3415 (ОН), 1724 (С=О). Спектр ЯМР ¹Н (500 МГц, CDCl₂), δ, м.д.: 1.01 с (3H, CH₂), 1.03 с (3H, CH₃), 2.02 с (3H, CH₃CO), 3.45–3.55 м (1H, H³), 3.67 с (1H, H¹⁶), 5.32 д (1H, H⁶, J 4.8 Гц). Спектр ЯМР ¹³С (75 МГц, CDCl₂), б, м.д.: 15.08 (C^{18}) , 19.22 (C^{19}) , 20.33 (C^{11}) , 25.06 (C^{21}) , 25.89 (C^2) , 29.61 (C^8) , 31.26 (C^7) , 31.33 (C^{15}) , 31.43 (C^{12}) , 36.57 (C¹), 37.03 (C¹⁰), 41.41 (C⁴), 42.09 (C¹³), 45.43 (C^9) , 50.19 (C^{14}) , 60.43 (C^{16}) , 70.92 (C^{17}) , 71.43 (C^3) , 141.41 (С⁵), 120.83 (С⁶), 204.92 (С=О). Найдено, %: С 76.19; Н 9.27. С₂₁Н₃₀О₃. Вычислено, %: С 76.33; H 9.15.

2-(16,17-Эпокси-36,20-дигидроксипрегн-5-ен-20-ил)-1,3-дитиан (5). К раствору 0.15 г (1.25 ммоль) 1,3-дитиана в 7 мл ТГФ добавляли 1.41 мл (1.41 ммоль) 1.02 н раствора BuLi при -40°С в атмосфере аргона. Реакционную смесь перемешивали при -30°С 2 ч, затем при той же температуре добавляли 0.13 г (0.39 ммоль) раствора эпоксида 13 в 2 мл ТГФ. Реакционную смесь перемешивали 30 мин при -30°С, затем 20 мин при 0°С, массу разлагали добавлением насыщенного раствора NH₄Cl, $T\Gamma\Phi$ упаривали, продукт экстрагировали этилацетатом, органический слой промывали насыщенными растворами NH₄Cl и NaCl, сушили Na₂SO₄. После упаривания растворителя в вакууме очищали остаток с помощью колоночной хроматографии на SiO₂ (петролейный эфир-этилацетат, 4:1). Выход 0.12 г (70%). R_f 0.20 (петролейный эфир–этилацетат, 7:3). $[\alpha]_D^{20}$ –14.8° (*c* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3445 (ОН). Спектр ЯМР ¹Н (500 МГц, CDCl₃), б, м.д.: 0.98 с (3H, CH₃), 1.01 с (3H, CH₃), 1.52 с (3H, CH₃), 2.50–3.00 м (4H, CH₂S), 3.40 с (1H, H¹⁶), 3.45–3.60 м (1H, H³), 4.25 с (1H, H²²), 5.35 д (1H, H⁶, J 4.3 Гц). Спектр ЯМР ¹³С (75 МГц, CDCl₃), δ, м.д.: 16.92 (С¹⁸), 19.19 (C¹⁹), 20.66 (C¹¹), 25.62 (CH₂), 26.64 (CH₂S), 26.76 (C²¹), 29.97 (C⁸), 30.16 (C⁷), 30.24 (C²), 31.35 (C¹²), 31.44 (C¹⁵), 33.33 (C¹⁰), 36.50 (C¹), 37.01 (C⁴), 42.49 (C¹³), 46.59 (C¹⁴), 49.95 (C⁹), 57.77 (C¹⁶), 58.37 $(C^{22}), 60.32 (C^{17}), 71.44 (C^3), 75.17 (C^{20}), 121.09$ (C⁶), 140.87 (C⁵). Найдено, %: С 66.67; Н 8.59; S 14.14. С₂₅Н₃₈О₃Ѕ₂. Вычислено, %: С 66.62; Н 8.50; S 14.23.

ЗАКЛЮЧЕНИЕ

Исходя из диосгенина 4, осуществлен синтез 16,17-эпокси-20-дитиана 5, перспективного синтона для получения агликона OSW-1 и его аналогов.

БЛАГОДАРНОСТИ

Анализы выполнены на оборудовании ЦКП «Химия» УфИХ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена по теме «Дизайн и синтез биоактивных природных и неприродных циклопентаноидов, гетероциклов, эпотилонов и аналогов», № 122031400261-4 госзадания.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Валиуллина Зулейха Рахимьяновна, ORCID: https://orcid.org/0000-0002-6868-4870

Хасанова Лидия Семеновна, ORCID: https:// orcid.org/0000-0002-7183-4200

Мифтахов Мансур Сагарьярович, ORCID: https://orcid.org/0000-0002-0269-7484

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Marciani D., Press J.B., Reynolds R.C., Pathak A.K., Pathak V., Gundy L.E., Farmer J.T., Koratich M.S., May R.D. *Vaccines*. 2000, *18*, 3141–3151. doi 10.1016/ S0264-410X(00)00118-3
- Marciani D., Reynolds R.C, Pathak A.K., Pathak V., Finley-Woodman K., May R.D. *Vaccines*. 2003, 21, 3961–3971. doi 10.1016/s0264-410x(03)00298-6
- Al-Habori M., Raman A. *Phytother. Res.* 1998, 12, 233–242. doi 10.1002/(SICI)1099-1573(199806)12:4< 233::AID-PTR294>3.0.CO;2-V
- Jayatilake G.S., Freeberg D.R., Liu Z., Richheimer S.L., Blake M.E., Bailey D.T., Haridas V., Gutterman J.U. *J. Nat. Prod.* 2003, 66, 779–783. doi 10.1021/np020400v
- 5. Hostettmann K., Marston A. *Saponins*. New York: Cambridge University, **1995**, 76–96.
- Kubo S., Mimaki Y., Terao M., Sashida Y., Nikaida T., Ohmato T. *Phytochemistry*. **1992**, *31*, 3969–3973. doi 10.1016/S0031-9422(00)97565-4

- Mimaki Y., Kuroda M., Kameyama, A., Sashida Y., Hirano T., Maekawa R., Wada T., Sugita K., Beutler A.J. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 633–636. doi 10.1016/S0960-894X(97)00071-1
- Zhang Y., Fang F., Fan K., Zhang Y., Zhang J., Guo H., Yu P., Ma J. Oncol. Rep. 2017, 37, 3509–3519. doi 10.3892/or.2017.5582
- Kongkathip B., Kongkathip N., Rujirawanich J. Synth. Commun. 2014, 44, 2248–2255. doi 10.1080/ 00397911.2014.891747
- 10. Guo C.X., Fuchs P.L. *Tetrahedron Lett.* **1998**, *39*, 1099–1102. doi 10.1016/S0040-4039(97)10814-0
- Yu W.S., Jin Z.D. J. Am. Chem. Soc. 2001, 123, 3369– 3370. doi 10.1021/ja004098t
- Fernandez-Herrera M.A., Sandoval-Ramires J., Meza-Reyes S., Montiel-Smith S. *J. Mex. Chem. Soc.* 2009, 53, 126–130. doi 10.29356/jmcs.v53i3.993
- Xue J., Liu P., Pan Y., Guo Z. J. Org. Chem. 2008, 73, 157–161. doi 10.1021/jo7018812
- Tang Y., Li N., Duan J., Weiwei T. Chem. Rev. 2013, 113, 5480–5514. doi 10.1021/cr300072s
- Kaori S., Tomoya T., Masato H., Rika Y. Org. Lett. 2014, 16, 6318–6321. doi 10.1021/ol503044j
- Jiang B., Shi H., Tian W., Zhou W. *Tetrahedron*. 2008, 64, 469–476. doi 10.1016/j.tet.2007.11.028
- Rincon S., Rosa E.R., Sandoval-Ramirez S., Meza-Reyes S., Montiel-Smith S., Fernandez M.A., Farfan N., Santillan R. *Tetrahedron*. 2006, *62*, 2594–2602. doi 10.1016/j.tet.2005.12.036
- Rosado-Abon A., de Dios-Bravo G., Rodriguez-Sotres R., Iglesias-Arteaga M.A. J. Steroid Biochem. Mol. Biol. 2013, 134, 45–50. doi 10.1016/ j.jsbmb.2012.10.007
- Mićović I.V., Ivanović M.D., Piatak D.M. Synthesis. 1990, 7, 591–592. doi 10.1055/s-1990-26951
- Singh R.P., Kant R., Singh K., Sharma S., Sethi A. J. Mol. Struct. 2015, 1095, 125–134. doi 10.1016/ j.molstruc.2015.04.018
- Xu F.F., Li H.P., Wang M.Ch., Ma H.Y., Zhao M.X., Ding K. *Tetrahedron Lett.* 2019, 60, 1710–1714.
- Shingate B.B., Hazra B.G., Pore V.S., Gonnade R.G., Bhadbhade M.M. *Tetrahedron Lett.* 2007, 63, 5622– 5635. doi 10.1016/j.tet.2007.04.014
- Гордон А., Форд Р. Спутник химика. М.: Мир, 1976, 542.

ВАЛИУЛЛИНА и др.

Synthesis of 2-(16,17-Epoxy-3β,20-dihydroxypregn-5-en-20-yl)-1,3-dithiane

Z. R. Valiullina*, L. S. Khasanova, and M. S. Miftakhov

Ufa Institute of Chemistry UFRC RAS, prosp. Oktyabrya 69, Ufa, 450054 Russia *e-mail: valiullina.zulya@mail.ru

Received March 10, 2022; revised March 26, 2022; accepted March 28, 2022

The synthesis of 3β ,20-dihydroxy-5-pregnene-16,17-epoxy-20-dithian, a new promising synthon for obtaining of OSW-1 aglycone and its analogues, was carried out from diosgenin. In an alternative approach, a "low-temperature" version of the decyclization of the F-ring of diosgenin by the action of the Et₃SiOTf–(CF₃CO)₂O–CH₂Cl₂ system was implemented to form pseudodiosgenin bis-trifluoroacetate, followed by transformation into a key block.

Keywords: OSW-1, steroids, glycosides, diosgenin, 1,3-dithiane, epoxidation