УДК 547.717; 542.97

ПЕРВЫЙ ПРИМЕР СИНТЕЗА НОВОГО КЛАССА СПИРОБОРАКАРБОЦИКЛОВ РЕАКЦИЕЙ ЦИКЛОБОРИРОВАНИЯ МЕТИЛЕНЦИКЛОАЛКАНОВ С ПОМОЩЬЮ PhBCl₂, КАТАЛИЗИРУЕМОЙ Ср₂TiCl₂

© 2023 г. Л. И. Тулябаева*, Р. Р. Салахутдинов, Т. В. Тюмкина, А. Р. Тулябаев, У. М. Джемилев

Институт нефтехимии и катализа РАН– обособленное структурное подразделение ФГБНУ «Уфимского федерального исследовательского центра РАН», Россия, 450075 Уфа, просп. Октября, 141 *e-mail: khusainova ink@mail.ru

> Поступила в редакцию 13.04.2022 г. После доработки 22.04.2022 г. Принята к публикации 23.04.2022 г.

Впервые осуществлено циклоборирование метиленциклоалканов с помощью $PhBCl_2$ в присутствии катализатора Cp_2TiCl_2 с получением ранее неописанных спироборакарбоциклов с выходами 70–80%. Структура и свойства спиросочлененных бориранов изучены с помощью $SMP^{11}B$, ¹H, ¹³C спектрометрии и DOSY экспериментов. Показано, что 1-фенилзамещенные бораспираны стабильны в растворе при комнатной температуре в течение суток.

Ключевые слова: спироборакарбоциклы, циклоборирование, метиленциклоалканы, PhBCl₂, катализатор, Cp₂TiCl₂

DOI: 10.31857/S0514749223020088, EDN: QJSYEG

ВВЕДЕНИЕ

Недавно нами разработан эффективный каталитический метод синтеза трехчленных циклических борорганических соединений – 1-фенил-2-замещенных бориранов 1, основанный на реакции циклоборирования α -олефинов с PhBCl₂ под действием катализатора Cp₂TiCl₂ в присутствии Mg (акцептор галоген-ионов) [1] (схема 1).

При использовании в качестве борных реагентов галогенидов бора или алкилдихлорборанов нами осуществлен синтез малоизученных 1,2-дизамещенных бориранов 2, 3 – 1-хлор(фтор)- и 1-алкил-2-замещенных бориранов [2–4] (схема 2). Обнаруженная нами каталитическая система Cp₂TiCl₂/Mg в настоящее время является единственной системой, позволяющей осуществлять каталитический синтез трехчленных борацикланов [5].

Использование металлокомплексного катализатора Cp₂TiCl₂ позволило расширить арсенал

немногочисленных методов, позволяющих в одну препаративную стадию синтезировать малые циклы с атомом бора [5]. Опираясь на разработанную нами реакцию циклоборирования α-олефинов, катализируемую Cp₂TiCl₂, мы выдвинули идею о возможности построения спиросочлененных с циклоалканами бориранов 4 на основе метилиденциклоалканов и галогенидов бора под действием Ср₂TiCl₂ по схеме 3. Важно отметить, что разработанные для синтеза бориранов методы и подходы (метод фотоизомеризации N, C-хелатированных органоборанов [6-9], метод двойного гидроборирования ацетиленов с помощью имидазол-2-илиденборанов [10-11], [2+1]-циклоприсоединение непредельных соединений к бориленам, генерируемым из стабилизированных карбенами дихлорборанов [12-13]) не позволяют получать борацикланы спиранового строения.

Анализ литературных данных показал, что спироборакарбоциклы являются достаточно редкими соединениями. Нами обнаружено лишь несколько публикаций, касающихся синтеза спиродиборакарбоциклов **6** и спиродибораоксакарбоциклов **7** [14–17]. Известные примеры синтеза основаны на реакции [2+2]-циклоприсоединения борандиилбориранов **5** к ацетиленам [14] или ацетону [15] при низких температурах (схема 4).

Спиросочлененные борираны 6, 7 нестабильны и идентифицированы лишь методом ЯМР при отрицательных температурах. Например, 2,3,5,6-тетраметилфенилзамещенный бораспиран 8 в условиях данной реакции при комнатной температуре взаимодействует с избытком ацетилена с образованием 1,4-дибораспиро[2.5]окта-5,7-диена 9 в результате расширения 4-хчленного фрагмента [18] (схема 5). Наличие непрочной связи B^1-C^3 бораспирана 9 способствует его перегруппировке в растворе при комнатной температуре в изомерный 2,7-диборабицикло[4.2.0]окта-4,6-диен 10, идентифицированный методом РСА.

Позднее методом [2+2]-циклоприсоединения метиленборанов к ацетиленам [16, 17] или 1,1-диэтоксэтилену [19] получены четырехчленные бо-

Схема 3

рацикланы, спиросочлененные с флуоренильным фрагментом.

В рамках наших регулярных исследований [5] по изучению реакции циклоборирования непредельных соединений с использованием каталитической системы Cp₂TiCl₂/Mg мы расширили наше исследование до напряженных метиленциклоалканов. Мы предположили, что использование в условиях реакции каталитического циклоборирования в качестве мономеров метиленциклоалканов позволит получать спироборираны, в которых циклоалкан связан с трехчленным борирановым фрагментом через спироуглеродный атом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для разработки эффективного метода синтеза новых классов спироборакарбоциклов мы впервые исследовали взаимодействие метиленциклоалканов (метиленциклогексана, метиленциклооктана и метиленциклододекана) с PhBCl₂ под действием Cp₂TiCl₂ в условиях (мономер: PhBCl₂–Cp₂TiCl₂– Mg = 1–1–1–0.2–1, $T\Gamma\Phi$, 20–22°C, 8 ч) (схема 6).

Для получения первой информации о прохождении реакции, количестве продуктов реакции и конверсии исходного фенилдихлорборана мы первоначально анализировали реакционный раствор сразу после взаимодействия метиленциклогексана с PhBCl₂ в присутствии Cp₂TiCl₂ и Mg (после цинтрифугирования и отделения твердых частиц) методом ЯМР ¹¹В спектроскопии (рис. 1). Сигнал $\delta_{\rm B}$ 47.00 м.д. в спектре ЯМР ¹¹В (ТГФ) в области трехкоординированных соединений бора мы отнесли к продукту реакции (бораспирану **11а**) (схема 6). Наряду с ним зафиксирован сигнал при $\delta_{\rm B}$ 2.89 м.д., соответствующий комплексу соединения **11а** с молекулой ТГФ (**11а** ·**ТГФ**), который образуется за счет сольватации атома бора спироборирана с молекулой ТГФ.

Свободный 1-фенил-1-бораспиран **11а** находится в равновесии с комплексом **11а** ·**ТГФ** в растворе (схема 7). Ранее нами было установлено, что 1-фенил-2-гексилбориран (δ_B 30.29 м.д.), полученный циклоборированием окт-1-ена с помощью PhBCl₂, образует аналогичный комплекс (δ_B 2.84 м.д.) в растворе ТГФ [1].

Сигнал исходного PhBCl₂ (δ_B 55.50 м.д.) полностью исчез, а сигнал в области 28 м.д. мы отнесли к продукту разложения гигроскопичного фенилдихлорборана [20].

n = 1 (**a**, 75%), 3 (**b**, 70%), 7 (**c**, 80%).

Методом ЯМР ¹¹В, ¹³С и ¹Н спектроскопии мы анализировали 1-фенил-1-бораспиро[2.5]октан 11а после центрифугирования реакционного раствора, отделения твердых частиц и упаривания растворителя. Спектр ЯМР ¹¹В соединения 11а содержит уширенный сигнал при б_В 45.17 м.д. (*W*^{1/2} 360 Гц, CDCl₃). В спектре ЯМР ¹³С выделенного соединения содержится всего три сигнала в низкочастотной области, характерных для циклогексанового кольца (б_С 25.86, 26.71 и 29.70 м.д.) и сигналы Ph-В фрагмента (б_с 127.98, 132.70, 135.64 м.д.). Сигналы атомов углерода и водорода в спектрах ЯМР ¹³С и ¹Н группы CH₂-B-C(CH₂) (CH₂), а также B-C^{Ph} непосредственно связанных с квадрупольным атомом бора или удаленных от него на 2-3 химические связи, не могут быть зафиксированы в шкале времени ЯМР, что обусловлено спин-спиновым взаимодействием углерод-бор, величиной этого спин-спинового взаимодействия и скоростью квадрупольной релаксации ядер бора ¹¹В при комнатной температуре [20]. При более низких температурах спектры ЯМР ¹Н и ¹³С еще менее информативны из-за сильного уширения всех сигналов. В двумерных экспериментах (HSQC, НМВС) эти сигналы также не детектируются (схема 1).

90 80 70 60 50 40 30 20 10 0-10-20-30-40 м.д.

Рис. 1. Спектр ЯМР ¹¹В реакционной массы после взаимодействия метиленциклогексана с PhBCl₂ в присутствии Cp₂TiCl₂/Mg (128.33 МГц, TГФ- d_8 , 298 K)

Для доказательства структуры бораспирана **11а** мы использовали методику [1] окисления с помощью NaOH/H₂O₂ с целью получения спиртов (схема 8). Образование в результате окисления спироборирана **11а** щелочной перекисью водорода соответствующего диола **12** и моноола **13** дополнительно подтверждало образование новых В–С связей. Для идентифицкации спиртов **12** и **13** методом масс-спектрометрии мы превращали их в триметилсилильные эфиры **14** и **15** обработкой бис(триметилсилил)ацетамидом (BSA) [21, 22]. Для диэфира **14** обнаружен характерный пик фрагментарного иона m/z 274, а для эфира **15** – m/z 171,

Рис. 2. ЯМР ¹¹В спектроскопия 1-фенил-1-бораспирана **11а** в процессе его деструкции в течение 3 дней (128.33МГц, ТГФ-*d*₈, 298 K)

образующиеся при отрыве метильной группы от соответствующих молекул эфиров.

Полученные спектральные данные ЯМР ¹H, 13 C, ¹¹B соединения **11а**, а также продуктов окисления позволили сделать вывод, что при взаимодействии метиленциклогексана с PhBCl₂ в тетрагидрофуране под действием катализатора Cp₂TiCl₂ образуется 1-фенил-1-бораспиро[2.5]октан **11а**. Образование спироборакарбоциклов **11b**, **с** (схема 6) с использованием в качестве мономеров метиленциклооктана и метиленциклододекана подтверждало общий характер реакции.

Эксперименты показали, что бораспирокарбоциклы **11а**–с термически неустойчивы, поскольку во время выделения методом вакуумной перегонки при нагревании мы идентифицировали наряду с целевым бораспиранов смесь борорганических продуктов. Последние, вероятно, образуются в результате раскрытия напряженного бориранового цикла, а также процесса деборирования, характерных для трехчленных борсодержащих циклических систем [6, 7, 23].

Также нами обнаружено, что при стоянии **11а–с** в течение нескольких дней спектральные характеристики изменяются. Действительно, мониторинг спироборакарбоцикла **11а** методом ЯМР ¹¹В (рис. 2) показал появление новых сигналов при δ_B 49.60, 28.27 м.д., которые мы отнесли к продуктам деструкции. Согласно литературным данным соединения бора в результате процессов автоокисления [24] за счет следов кислорода инертного газа или молекулы тетрагидрофурана [25–27] трансформируются.

Соответствующую картину деструкции соединения **11а** мы наблюдали во время мониторинга методом ЯМР ¹³С. Так, в спектре ЯМР ¹³С появляются новые сигналы углеродных атомов [δ_C 33.3 (уш., CH₂B), 35.1 (<u>C</u>HCH₂B) м.д.] и [δ_C 68.53 (CH₂OB), 39.40 (<u>C</u>HCH₂OB) м.д.], соответствующие продуктам деструкции бораспирана **11а**, предполагаемые структуры которых изображены на схеме 9.

И, действительно, после обработки реакционной массы, содержащей смесь продуктов деструкции 16 и 17, перекисью водорода в щелочной среде мы получали спирт 13 (схема 9).

Для дополнительного подтверждения структуры бораспирана мы провели DOSY эксперимент для свежеприготовленного образца **11b** (рис. 3). DOSY эксперимент показал, что сигналы прото-

Схема 9

При стоянии в реакционном растворе

Х = ОН, С1 или Н.

нов циклооктильного и ароматического фрагментов принадлежат одному соединению.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все реакции проводили в атмосфере сухого аргона. Использовали коммерческие метиленциклогексан, PhBCl₂ и Cp₂TiCl₂. Тетрагидрофуран абсолютизировали кипячением над металлическим натрием и использовали свежеперегнанным. Одномерные (¹H, ¹³C, ¹¹B) и двумерные (COSY, DOSY, HSQC, HMBC) спектры ЯМР записаны на спектрометре Bruker Avance 400 с рабочими частотами 400.13 (¹H), 100.62 (¹³C), 128.33 (¹¹B) МГц, растворитель – CDCl₃. При регистрации спектров ЯМР ¹H и ¹³C в качестве внутреннего стандарта использовали Me₄Si, для спектров ¹¹B – BF₃·Et₂O. Окисление бориранов проводили перекисью водорода в щелочной среде по методикам [1–3, 21]. Хроматомасс-спектральный анализ триметилсилильных эфиров проводили на приборе Shimadzu GCMS QP2010 Ultra, капиллярная колонка Supelco PTE-5 (60 м×0.25 мм, газ-носитель – гелий, программируемая температура от 40 до 280°C со скоростью 8 град/мин, энергия ионизации 70 эВ, тем-

пература инжектора 260°С, температура ионного источника 200°С).

Метиленциклооктан (метиленциклододекан) были синтезированы по реакции циклооктанона (циклододеканона) с реагентом Виттига (метилентрифенилфосфоран CH₂PPh₃), полученным взаимодействием бромида (или йодида) трифенилметилфосфония с BuLi (или *t*-BuOK) в Et₂O по методикам [28, 29].Спектральные отнесения полученных метиленциклоалканов соответствовали ранее полученным [30, 31].

Реакции метиленциклоалканов с PhBCl₂ в присутствии катализатора Cp_2TiCl_2 (общая методика). В стеклянный реактор (20 мл) в атмосфере аргона при перемешивании последователь но загружали при 0°С 10 мл ТГФ, 0.04 г (1.6 ммоль) Mg (порошок), 2 ммоль метиленциклоалкана, 0.1 г (0.4 ммоль) Cp₂TiCl₂, 0.32 г (2 ммоль) PhBCl₂. Смесь перемешивали при 0°С 1 ч, затем при комнатной температуре (~ 20–22°С) 6–8 ч. Избыток магния отфильтровывали, растворитель выпаривали и спиробориран анализировали методом ЯМР. Выход бораспирана **11а** рассчитан на основе суммарного выхода продуктов окисления **12**, **13**.

1-Фенил-1-бораспиро[2.5]октан (11а). Выход 75%. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.14–1.50 м (2H, CH₂), 1.60–1.90 м (4H, 2CH₂), 7.64 т (2H, 2CH_{аром}, *J* 7.5 Гц), 7.76 т (1H, CH_{аром}, *J* 6.2 Гц), 8.28 д (2H, 2CH_{аром}, *J* 6.8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 25.86, 26.56, 29.58, 127.98, 132.70, 135.64. Спектр ¹¹В, δ, м.д.: 45.16 (*W*_{1/2} 360 Гц). В спектрах ЯМР ¹Н и ¹³С сигналы группы CH₂–В–С(CH₂) (CH₂) не обнаружены.

1-Фенил-1-бораспиро[2.7]декан (11b). Выход 70%. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.20–1.85 м (10H, 5CH₂), 7.62–7.68 м (3H, 3CH_{аром}), 8.30 д (2H, 2CH_{аром}, *J* 7.4 Гц). Спектр ЯМР ¹³С, δ, м.д.: 25.58, 26.50, 26.95, 27.42, 29.32, 128.39, 132.74, 135.70. Спектр ЯМР ¹¹В, δ, м.д.: 45.81 (*W*_{1/2} 340 Гц). В спектрах ЯМР ¹Н и ¹³С сигналы группы CH₂–В– C(CH₂)(CH₂) не обнаружены.

1-Фенил-1-бораспиро[2.11]тетрадекан (11с). Выход 80%. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.21– 1.90 м (18Н, 9CH₂), 7.60–7.70 м (3Н, 3CH_{аром}), 8.26 д (2Н, 2CH_{аром}, *J* 7.4 Гц). Спектр ЯМР ¹³С, δ, м.д.: 22.65, 23.55, 24.67, 24.78, 25.84, 26.05, 26.15, 26.71, 27.02, 127.22, 132.74, 135.70. Спектр ЯМР ¹¹В, δ , м.д.: 45.05 ($W_{1/2}$ 330 Гц). В спектрах ЯМР ¹Н и ¹³С сигналы группы CH₂–B–C(CH₂)(CH₂) не обнаружены.

Окисление 1-фенил-1-бораспиро[2.5]октана (11а) перекисью водорода в щелочной среде. К свежеприготовленному раствору бораспирана 11а, полученному из 2 ммоль метиленциклогексана, в 10 мл ТГФ добавляли при 0°С 3 мл 20%-ного водного раствора NaOH и затем медленно прикапывали 1 мл 30%-ного раствора H₂O₂. Реакционную смесь перемешивали 5-6 ч. После отделения органического слоя водный слой экстрагировали диэтиловым эфиром (2×15 мл). Эфирные экстракты объединяли с органическим слоем, сушили CaCl₂ и концентрировали в вакууме. Индивидуальные продукты выделяли методом колоночной хроматографии на силикагеле (40-100 меш, 30 см×12 мм, элюент – этилацетат-гексан, 2:50). Спектральные данные и физические характеристики спиртов (12, 13) соответствовали известным [32, 33].

(1-Гидроксициклогексил)метанол (12). Гелеобразное твердое вещество. Выход 0.09 г, 0.7 ммоль (35%). Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.10–1.80 м (10H, 5CH₂), 3.44 с (2H, CH₂–OH). Спектр ЯМР ¹³С, δ, м.д.: 22.04, 25.81, 35.10, 69.6, 71.04.

Циклогексилметанол (13). Бесцветное масло. Выход 0.09 г, 0.8 ммоль (40%). Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.87–1.00 м (2H), 1.10–1.34 м (3H), 1.43–1.56 м (2H), 1.65–1.85 м (5H), 3.45 д (2H, CH₂–OH, *J* 6.4 Гц). Спектр ЯМР ¹³С, δ, м.д.: 25.84, 26.59, 29.57, 40.49, 68.74.

ЗАКЛЮЧЕНИЕ

Впервые осуществлено циклоборирование метиленциклоалканов с помощью PhBCl₂, катализируемое Cp₂TiCl₂, в тетрагидрофуране с получением ранее неописанных спироборакарбоциклов с выходом 70–80%. Показано, что полученные спироборакарбоциклы стабильны в растворе в течение суток, но далее трансформируются в борорганические «ring-opening» продукты.

БЛАГОДАРНОСТИ

Структурные исследования проведены в Региональном Центре коллективного пользования ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 2 2023

ПЕРВЫЙ ПРИМЕР СИНТЕЗА НОВОГО КЛАССА СПИРОБОРАКАРБОЦИКЛОВ

«Агидель» УФИЦ РАН, Отделение – Институт нефтехимии и катализа УФИЦ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена по теме государственного задания (FMRS-2022-0075).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Тулябаева Лилия Инверовна, ORCID: https:// orcid.org/0000-0002-3159-2868

Салахутдинов Рустам Ринатович, ORCID: https://orcid.org/0000-0003-3631-0708

Тюмкина Татьяна Викторовна, ORCID: https:// orcid.org/0000-0001-8127-9135

Тулябаев Артур Радисович, ORCID: https:// orcid.org/0000-0002-6566-4794

Джемилев Усеин Меметович, ORCID: https:// orcid.org/0000-0002-7992-6337

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Dzhemilev U.M. J. Organomet. Chem. 2017, 832, 12–17. doi 10.1016/ j.jorganchem.2017.01.009
- Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. *ЖОрХ*. 2015, 51, 1551–1557. [Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. *Russ. J. Org. Chem.* 2015, *51*, 1517–1523.] doi 10.1134/S1070428015110019
- Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. *ЖОХ*. 2016, *86*, 1046–1049. [Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. *Russ. J. Gen. Chem.* 2016, *86*, 1038–1041.] doi 10.1134/S1070363216060335
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Popodko N.R., Dzhemilev U.M. J. Organomet. Chem. 2018, 873, 73–77. doi 10.1016/ j.jorganchem.2018.08.005
- Джемилев У.М., Хусаинова Л.И., Рязанов К.С., Хафизова Л.О. *Изв. АН. Сер. хим.* **2021**, *70*, 1851–1892.
 [Dzhemilev U.M., Khusainova L.I., Ryazanov K.S., Khafizova L.O. *Russ. Chem. Bull. Int. Ed.* **2021**, *70*, 1851–1892.] doi 10.1007/s11172-021-3292-2
- Rao Y.-L., Amarne H., Zhao S.-B., McCormick T.M., Martić S., Sun Y., Wang R.-Y., Wang S. J. Am. Chem. Soc. 2008, 130, 12898–12900. doi 10.1021/ja8052046

- Baik C., Hudson Z.M., Amarne H., Wang S. J. Am. Chem. Soc. 2009, 131, 14549–14559. doi 10.1021/ ja906430s
- Rao Y.-L., Amarne H., Wang S. Coord. Chem. Rev. 2012, 256, 759–770. doi 10.1016/j.ccr.2011.11.009
- 9. Mellerup S.K., Wang S. *Sci. China Mater.* **2018**, *61*, 1249–1256. doi 10.1007/s40843-018-9306-8
- McFadden T.R., Fang Ch., Geib S.J., Merling E., Liu P., Curran D.P. J. Am. Chem. Soc. 2017, 139, 1726–1729. doi 10.1021/jacs.6b09873
- Dai W., McFadden T.R., Curran D.P., Früchtl H.A., Walton J.C. J. Am. Chem. Soc. 2018, 140, 15868– 15875. doi 10.1021/jacs.8b09288
- Bissinger P., Braunschweig H., Kraft K., Kupfer T. Angew. Chem. Int. Ed. 2011, 50, 4704–4707. doi 10.1002/anie.201007543
- Braunschweig H., Claes C., Damme A., Deißenberger A., Dewhurst R.D., Hörl C., Kramer T. *Chem. Comm.* 2015, *51*, 1627–1630. doi 10.1039/c4cc09036e
- Wehrmann R., Klusik H., Berndt A. Angew. Chem. Int. Ed. 1984, 23, 369–370. doi 10.1002/anie.198403691
- Klusik H., Berndt A. Angew. Chem. Int. Ed. 1983, 22, 877–878. doi 10.1002/anie.198308771
- Pues C., Baum G., Massa W., Berndt A., Z. Naturforsch. B. 1988, 43, 275–279. doi 10.1515/znb-1988-0307
- Glaser B., Mayer E.P., Nöth H., Rattay W., Wietelmann U. Z. Naturforsch. B. 1988, 43, 449–456. doi 10.1515/znb-1988-0411
- Balzereit C., Kybart C., Winkler H.-J., Massa W., Berndt A. *Angew. Chem. Int. Ed.* **1994**, *33*, 1487–1489. doi 10.1002/anie.199414871
- Mayer P., Noth H. Chem. Ber. 1993, 126, 1551–1557. doi 10.1002/cber.19931260708
- 20. Wrackmeyer B. Annu. Rep. NMR Spectrosc. **1988**, 20, 61–203. doi 10.1016/s0066-4103(08)60170-2
- 21. Brown H.C., Zaidlewicz M. J. Am. Chem. Soc. 1976, 98, 4917–4925. doi 10.1021/ja00432a037
- 22. Klebe J.F., Finkbeiner H., White D.M. J. Am. Chem. Soc. **1966**, 88, 3390–3395. doi 10.1021/ja00966a038
- 23. Wilkey J.D., Schuster G.B. J. Am. Chem. Soc. 1991, 113, 2149–2155. doi 10.1021/ja00006a037
- 24. Midland M.M., Brown H.C. J. Am. Chem. Soc. 1973, 95, 4069–4070. doi 10.1021/ja00793a052
- Sobota P., Pluzinski T., Jezowska-Trzebiatowska B., Rummel S. J. Organomet. Chem. 1980, 185, 69–74. doi 10.1016/s0022-328x(00)94401-2
- Eisch J.J., Boleslawski M.P., Tamao K. J. Org. Chem. 1989, 54, 1627–1634. doi 10.1021/jo00268a025

- Tomboulian P., Amick D., Beare S., Dumke K., Hart D., Hites R., Metzger A., Nowak R. J. Org. Chem. 1973, 38, 322–325. doi 10.1021/jo00942a026
- Fitjer L., Quabeck U. Synth. Commun. 1985, 15, 855– 864. doi 10.1080/00397918508063883
- 29. Wittig G., Schoellkopf U. Org. Synth., Coll. **1960**, 40, 66. doi 10.15227/orgsyn.040.0066
- Barluenga J., Fernandez-Simon J.L., Concellon J.M., Yus M. J. Chem. Soc. Perkin Trans. 1. 1988, 1, 3339– 3343. doi 10.1039/p19880003339
- Lebel H., Davi M., Díez-González S., Nolan S.P. J. Org. Chem. 2007, 72, 144–149. doi 10.1021/ jo061781a
- Masuda Y., Ikeshita D., Murakami M. *Helv. Chim. Acta.* 2021, 104, e2000228. doi 10.1002/ hlca.202000228
- Kobayashi S., Kawamoto T., Uehara S., Fukuyama T., Ryu I. Org. Lett. 2010, 12, 1548–1551. doi 10.1021/ ol1002847

The First Example of Synthesis of a New Class of Spiroboracarbocycles *via* Cycloboration of Methylenecycloalkanes with PhBCl₂ Catalyzed by Cp₂TiCl₂

L. I. Tulyabaeva*, R. R. Salakhutdinov, T. V. Tyumkina, A. R. Tulyabaev, and U. M. Dzhemilev

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences, prosp. Oktyabrya, 141, Ufa, 450074 Russia *e-mail: khusainova ink@mail.ru

Received April 13, 2022; revised April 22, 2022; accepted April 23, 2022

Cp₂TiCl₂-catalyzed cycloboration of methylenecycloalkanes with PhBCl₂ in the presence of metallic Mg to obtain a novel spiroboracarbocycles in good yields (70–80%) is reported for the first time. The structure and properties of spiro-fused boriranes were studied using ¹¹B, ¹H, ¹³C NMR spectroscopy and DOSY experiments. 1-Phenyl-substituted boraspiranes are stable in solution at room temperature for a day.

Keywords: spiroboracarbocycles, cycloboration, methylenecycloalkanes, PhBCl₂, catalyst, Cp₂TiCl₂

236