УДК 547.873

ХИМИЧЕСКИЕ СВОЙСТВА 3-*трет*-БУТИЛ-2-ОКСО-1,2-ДИГИДРОПИРРОЛО[1,2-*b*][1,2,4]ТРИАЗИН-6-КАРБОКСИЛАТОВ

© 2023 г. С. М. Иванов*, Д. С. Колтун, Н. Г. Колотыркина

ФГБУН Институт органической химии им. Н.Д. Зелинского, Россия, 119991 Москва, Ленинский просп., 47 *e-mail: sergey13iv1@mail.ru

> Поступила в редакцию 02.06.2022 г. После доработки 16.06.2022 г. Принята к публикации 18.06.2022 г.

Щелочной гидролиз 6-*трет*-бутил 8-этил-7-амино-3-*трет*-бутил-2-оксо-1,2-дигидропирроло[1,2-*b*]-[1,2,4]триазин-6,8-дикарбоксилата приводит к выделению соответствующей 8-карбоновой кислоты, обработка которой *n*-BuBr либо NBS/TЭА ведёт к декарбоксилированию с одновременным алкилированием атомов N¹, C²–О либо бромированию положения C⁸, соответственно. Диазотированием 7-амино-3-*трет*бутил-8-R¹-2-OR²-пирроло[1,2-*b*][1,2,4]триазин-6-карбоксилатов синтезированы 7-азидо- (R¹ = Br, CO₂Et; R¹ = H, *n*-Bu) и 7-незамещённые (R¹ = Br, CN; R² = *n*-Bu, CH₂CO₂Et, CH₂Boc) производные, а также 7-(1*H*-1,2,3-триазол-1-ил)пирроло[1,2-*b*][1,2,4]триазин-6,8-дикарбоксилат. Рассмотрены спектральные и рентгеноструктурные характеристики, а также противомикробная активность выделенных соединений.

Ключевые слова: пирроло[1,2-*b*][1,2,4]триазин, 1,2,4-триазин, алкилирование, декарбоксилирование, бромирование, диазотирование, циклоприсоединение

DOI: 10.31857/S0514749223040080, EDN: ASIKVD

ВВЕДЕНИЕ

Шестичленные гетероциклические соединения, содержащие 1 либо 2 атома азота, распространены в составе алкалоидов растений, обладающих широким спектром биологической активности [1, 2]. Производные триазинов встречаются в природе значительно реже (фервенулин, токсофлавин [3, 4] и флувиолы [5]), тем не менее они также проявляют противомикробную, фунгицидную и противораковую активность [6]. Значительный интерес представляют пирроло[1,2,4]триазины ввиду разнообразия их химических превращений [7, 8] и биоизостерной структуры [9-11]. Так, 4-аминопирроло[2,1-f][1,2,4]триазин ремдесивир активен в отношении ряда вирусов, включая вирус Эбола и коронавирусы [12]. Пирроло[1,2-*d*][1,2,4]триазины проявляли высокую активность в отношении штаммов Staphylococcus aureus и Candida tenuis, в то время как патоген Escherichia coli оказался практически устойчив к соединениям данного класса [13]. Проведена *in vitro* оценка цитотоксичности пирроло[3,2-*e*][1,2,4]триазинов на линиях клеток аденокарциномы МСF7 [14]. Таким образом, актуальной задачей остаётся синтез ранее неописанных соединений на основе пирроло[1,2-*b*]-[1,2,4]триазинов и изучение их химических и биологических свойств.

Ранее нами были получены 2-алкокси- и 2-алкилтиопирроло[1,2-*b*][1,2,4]триазины реакциями рециклизации и гетероароматического нуклеофильного замещения [15, 16]. В настоящей работе впервые изучены реакции декарбоксилирования, галогенирования и диазотирования в ряду 7-амино-3-*трет*-бутил-2-оксо-1,2-дигидропирроло[1,2-*b*][1,2,4]триазин-6-карбоксилатов, осуществлён синтез и проведено циклоприсоединение 7-азидопирроло[1,2-*b*][1,2,4]триазинов, рассмотрены спектральные и рентгеноструктурные характеристики выделенных продуктов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

6-трет-Бутил-8-этил-7-амино-3-трет-бутил-2-оксо-1,2-дигидропирроло[1,2-*b*][1,2,4]триазин-6,8-дикарбоксилат (1) [15] синтезирован обработкой *n*-BuLi функционализованного 7-бромпиразоло[5,1-с][1,2,4]триазина, который в свою очередь получен в несколько стадий, исходя из доступ-4-амино-6-трет-бутил-3-метилсульфанилного 1,2,4-триазин-5-она [17, 18]. Гидролиз сложного эфира 1 в концентрированном водно-спиртовом растворе щёлочи в присутствии межфазного катализатора протекал селективно по наименее пространственно затруднённой 8-этоксикарбонильной группе с выделением соответствующей 8-карбоновой кислоты 2 после осторожного подкисления реакционной смеси H₃PO₄ (схема 1).

Соединение **2** оказалось малорастворимо в среде кипящего EtOAc, что облегчило его выделение и очистку. В спектрах ЯМР кислоты **2** отсутствовали сигналы этильной группы, при этом пики *t*-Ви локализованы при 1.37 и 1.53 (¹H), и 37.9, 79.8 (¹³C APT, 2 <u>C</u>Me₃) м.д., что подтверждает строение. Нами установлено, что гетероцикл **2** при обработке избытком *n*-BuBr в кипящем ацетонитриле подвергается декарбоксилированию и алкилированию аминогруппы в положении C^7 , а также атома N¹ либо экзоциклического атома кислорода с выделением смеси продуктов 3 и 4 примерно в равном соотношении (схема 1). Строение последних подтверждено методами ИК, ЯМР спектроскопии и масс-спектрометрии высокого разрешения. Так, сигналы NHCH₂Pr в спектрах ЯМР ¹Н обоих соединений проявились в виде дублета триплетов при 3.18-3.20 м.д. с наблюдаемыми константами спин-спинового взаимодействия (КССВ) ³*J*_{H H} 6-7 Гц. При этом пики N¹CH₂ и OCH₂ расположены при 3.90 либо 4.37 м.д., и 44 либо 66.2 м.д. в спектрах ЯМР ¹Н и ¹³С соответственно. Сигналы С⁸-Н локализованы при 5.16-5.62 (¹Н) и 74.6-80.2 (¹³С АРТ ЯМР) м.д.. Масс-спектры высокого разрешения для изомерных продуктов алкилирования отличались незначительно: $m/z [M + H]^+$ 419.3012 (3) и 419.3013 (4).

Обработка кислоты 2 *N*-бромсукцинимидом в присутствии триэтиламина привела к декарбоксилированию, сопровождающемуся галогенированием положения C^8 . С выходом 77% получен *трет*-бутил-7-амино-8-бром-3-*трет*-бутил-2-оксо-1,2-дигидропирроло[1,2-*b*][1,2,4]триазин-6-карбоксилат (**5а**), в качестве побочного продукта реакции выделено также соединение **5b** со свободным положением при атоме C^8 (схема 2).

Действие 1-бромбутана на соединения 5а, b также ведёт к алкилированию атомов N¹ либо С²-О в зависимости от природы заместителя в положении С⁸. Так, кипячение 8-бром-7-аминопирролотриазина **5a** с *n*-BuBr даёт продукт *О*-бутилирования 6а, структуру которого удалось установить однозначно с помощью рентгеноструктурного анализа (РСА) монокристалла (рис. 1, табл. 1). В то же время соединение 5b, не содержащее атома брома, в аналогичных условиях реакции алкилируется селективно по атому N¹ с выделением соединения 6b (схема 2). ИК спектры продуктов содержали характеристические полосы поглощения NH₂ при 3367, 3483 (6а) и 3369, 3502 (6b) см⁻¹. Сигналы группы N¹–CH₂ в соединении **6b** локализованы при 2.92 (¹Н, т, ³*J*_{Н.Н} 8.0 Гц) и 36.1 (¹³С ЯМР АРТ) м.д., что подтверждает заявленное молекулярное строение.

Известно, что диазотирование моноциклических аминопирролов, помимо соответствующих солей диазония [19], может приводить к диазопирролам, а также к продуктам их дезаминирования, окисления и самоконденсации [20]. Нами впервые изучено диазотирование в ряду аминопирроло[1,2-*b*][1,2,4]триазинов. В частности установлено, что обработка соединения **6a**, а также 7-амино-3-*трет*-бутил-8-циано-2-пирроло[1,2-*b*][1,2,4]триазин-6-карбоксилатов **8a**, **b** [16] *трет*-бутилнитритом в кипящем 2-пропаноле ведёт к их де-

Рис. 1. Общий вид молекулы *трет*-бутил-7-амино-8бром-2-бутокси-3-*трет*-бутилпирроло[1,2-b][1,2,4]триазин-6-карбоксилата (**6a**) в кристалле в представлении атомов эллипсоидами тепловых колебаний (p = 50%). Атомы водорода алкильных групп и минорные компоненты разупорядоченных фрагментов не показаны. Водородные связи показаны пунктиром

Cogga	Длина связи, Å			
Связь	6a	11		
N ¹ -C ²	1.307(2)	1.301(2)		
C ² –C ³	1.452(2)	1.463(2)		
C^3-N^4	1.310(2)	1.304(2)		
C ⁶ –C ⁷	1.403(2)	1.376(2)		
C ⁷ –C ⁸	1.408(2)	1.413(2)		
C ² O	1.337(2)	1.333(2), 1.333(3)		
C ⁷ –N	1.361(2)	1.4211(19)		

Таблица 1. Избранные длины связей в соединениях 6а и 11

заминированию с выделением соответствующих продуктов **9а–с** со свободным положением при атоме C⁷ (схема 3). В ИК и ЯМР спектрах данных соединений отсутствовали сигналы аминогрупп, при этом новые пики C⁷–Н локализованы при 7.47–7.64 (¹H) и 122.3–122.8 (¹³С ЯМР АРТ) м.д.. Гетероциклы **9а–с** не вступали в реакции электрофильного бромирования по пиррольному циклу в различных условиях. Ожидаемых 7-бромпроизводных не зафиксировано также при диазотировании **6а** и **8а**, **b** в присутствии источников брома (HBr, TMSBr, CuBr₂).

Субстраты 1, 2, 5b со свободной группой NH цикла осмолялись при обработке диазотирующими агентами. Однако нам удалось ввести 8-бромпроизводное 5а, а также соединение 7, полученное О-бутилированием предшественника 1, в реакцию с t-BuONO в среде 2-пропанол-H₂O в присутствии фосфорной кислоты, последующее прибавление NaN₃ ведёт к образованию ожидаемых азидов 10а и b соответственно с выходами 83-87% (схема 3). Характеристическая полоса поглощения группы N₃ в ИК спектрах последних расположена при 2135 (азид **10а**) либо 2128 (азид **10b**) см⁻¹. Масс-спектр подтверждает строение: m/z (I_{0TH}) 483.2316 [азид 10b, M + Na, 100%]. В отличие от азида 10b, азид 10a оказался нестабилен и спонтанно разложился при комнатной температуре в течение нескольких часов. Нами успешно осуществлена реакция [3+2]-диполярного циклоприсоединения при нагревании смеси соединения 10b и диэтилацетилендикарбоксилата в среде толуола. С выходом 75% выделен 6-трет-бутил-8-этил-7-[4,5-бис(этоксикарбонил)-1*H*-1,2,3-триазол-1-ил]- 2-бутокси-3-*трет*-бутилпирроло[1,2-*b*][1,2,4]триазин-6,8-дикарбоксилат (**11**) (схема 3).

Строение гетероцикла 11 подтверждено методами ИК, гетероядерной ЯМР спектроскопии, масс-спектрометрии высокого разрешения, а также с помощью РСА (рис. 2, табл. 1). По данным РСА, циклы триазола и пиррола в данном соединении находятся практически в анти-перипланарной конформации [C⁶−C⁷−N⁶−N⁷, θ = 68.6(2)°], что затрудняет их взаимное сопряжение. Так, длина связи C⁷–N изменяется от 1.361(2) Å в структурно родственном 7-аминопроизводном 6а (РСА, рис. 1, табл. 1) до 1.4211(19) Å в соединении 11. Стоит отметить, что отсутствие NH либо OH протонов в триазоле 11 исключает возможность образования каких-либо водородных связей, что приводит к значительной конформационной разупорядоченности сложноэфирных группировок в кристалле.

Ряд соединений 5b, 6a, 10b, 11, а также третбутил-2-[6-трет-бутил-3-цианометил-5-оксо-1,2,4-триазин-2(5Н)-ил]ацетат (12) [15] были протестированы на способность угнетать рост штаммов грамотрицательных бактерий Escherichia coli K802 Rif (рекомбинантный, устойчивый к рифампицину), Pseudomonas fluorescens P218, а также бактерий *Staphylococcus* грамположительных aureus ATCC-25923, Bacillus subtillis BKM B3142Д в диапазоне концентраций 4-256 мкг/мл в троекратной повторности. Умеренная противомикробная активность обнаружена для гетероциклов 6а и 10b. Так, значение Минимальной ингибирующей концентрации (МИК) азида 10b на штамме Ps. fluor. Р 218 составило 8 мкг/мл, на штамме

Рис. 2. Общий вид молекулы 6-*трет*-бутил-8-этил-7-(4,5-бис(этоксикарбонил)-1*H*-1,2,3-триазол-1-ил)-2-бутокси-3-*трет*бутилпирроло[1,2-*b*][1,2,4]триазин-6,8-дикарбоксилата (11) в кристалле в представлении атомов эллипсоидами тепловых колебаний (p = 50%). Минорные компоненты разупорядоченных фрагментов не показаны

St. aur. ATCC-25923 – 16 мкг/мл, однако этот азид оказался неактивен в отношении штамма *E. coli* (табл. 2). Изомерные соединения **5b** и **12** также обладают противомикробной активностью, при этом замыкание пиррольного цикла ($12 \rightarrow 5b$) ведёт к четырёхкратному падению активности на штамме *E. coli* (табл. 2). В то же время 8-бромзамещённый аналог **6a** проявил высокую селективность в отношении *E. coli* К 802 Rif (МИК 4-8 мкг/мл).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на ИК Фурье-спектрометре Agilent Cary 660 FTIR (производитель Agilent Technologies, Santa Clara, California, United States) в тонком слое либо в таблетках КВг. Спектры ЯМР ¹H, ¹³C (АРТ, тест на связанные протоны) регистрировали на приборе Bruker AM-300 или Bruker DRX-500 (производитель Bruker Corporation, Billerica, Massachusetts, United States), рабочие частоты соответственно 300, 500 (¹H), 75 или 126 (¹³C) МГц. Внутренний стандарт – ДМСО- d_5 , CHCl₃ (¹H), ДМСО- d_6 , CDCl₃ (¹³C). Масс-спектры высокого разрешения записаны на приборе «Bruker micrOTOF II» методом электро-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

распылительной ионизации. Измерения выполнены на положительных (напряжение на капилляре – 4500 В) ионах, растворитель – ацетонитрил либо метанол. Температуру плавления определяли на приборе «STUART Melting point SMP30» (производитель Stuart Bibby Scientific, Staffordshire, UK). Для хроматографии использовали Merck Silica gel for chromatography (производитель Merck & Co., Inc., Rahway, New Jersey, United States) 60–200 мкм. Контроль чистоты продуктов производили на пластинах Merck TLC Silica gel 60 F_{254} , проявление осуществляли в свете УФ лампы при 254 или 365 нм.

Этилацетат, гексан очищали фракционной дистилляцией при атмосферном давлении. *N*-Бромсукцинимид очищали перекристаллизацией из ледяной AcOH/MeOH с дальнейшим высушиванием над KOH в вакуум-эксикаторе. Диэтил ацетилендикарбоксилат синтезирован исходя из диэтилфумарата и Br₂ с дальнейшей обработкой EtONa, и очисткой фракционной вакуумной дистилляцией с последующей кристаллизацией при -20°С по литературным методикам [21, 22] (чистота > 99%). Все остальные реагенты и растворите-

ИВАНОВ и др.

		МИК, мкг/мл			
Coortinionitio	грамотрицательные бактерии		грамположительные бактерии		
Соединение		<i>E. coli</i> K 802 Rif	Ps. fluor. P 218	<i>St. aur.</i> ATCC-25923	<i>B. sub.</i> ВКМ В3142 Д
6a	$ \begin{array}{c} Br \\ H_2N \\ N \\ $	8	256	128	128
10b	$ \begin{array}{c} $	> 256	8	16	> 256
12	$ \begin{array}{c} $	32	64	_	_
5b	H_2N N N N N N N N N N	128	> 256	64	> 256
11	$ \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & N & N \\ 0 & N & N \\ 0 & 0 & N \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	> 256	> 256	> 256	> 256
	Пефлоксацин	≤ 8	≤ 8	≤ 8	≤ 8

Таблица 2. Противомикробная активность соединений **5b**, **6a**, **10b**, **11** и **12** (растворитель 0.5%-ный ДМСО в H₂O, температура 40°C)

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

ли приобретены в «Химмед», «ACROS Organics», либо «Sigma-Aldrich» и использованы без дальнейшей очистки (степень очистки чда, хч, осч, концентрация 30–99%).

Биологические испытания проводили на базе ФГБОУ ВО «Ярославский государственный педагогический университет им. К.Д. Ушинского» методом двойных серийных разведений с использованием турбидиметрического контроля роста микроорганизмов в троекратной повторности (растворитель 0.5% ДМСО в H_2O , температура $40^{\circ}C$), в соответствии с требованиями методических указаний «МУК 4.2.1890–04» («Определение чувствительности микроорганизмов к антибактериальным препаратам») [23] и международного стандарта «CLSI–M07–A9–2012» [24, 25]. Соединения **1**, **8**а, **b** и **12** получали по описанным методикам [15, 16].

Для РСА кристаллы 6а и 11 выращивали медленным испарением растворителя из соответствующих насыщенных растворов в этилацетате при комнатной температуре. Регистрацию отражений осуществляли на монокристальном дифрактометре Bruker Quest D8 [детектор Photon-III, графитовый монохроматор, λ (Мо K_{α}) 0.71073Å, φ - и ω-сканирования] при 150 К (соединение **6**а) либо 200 К (соединение 11). Данные по интенсивности отражений были получены с помощью программы SAINT [26] и скорректированы с учетом поглощения излучения кристаллом полуэмпирически по эквивалентным отражениям с использованием SADABS [27]. Структуры расшифрованы прямыми методами с использованием SHELXS/SHELXT [28] и уточнены методом наименьших квадратов в анизотропном (для атомов водорода – изотропном) полноматричном приближении по F² с использованием программы SHELXL-2018 [29]. Положения атомов водорода Н^{6А} и Н^{6В} в соединении **6а** были найдены из разностной карты электронной плотности. Кристаллографические данные и параметры рентгеноструктурных экспериментов для соединений 6а и 11 представлены в табл. 3.

7-Амино-6-*трет***-бутоксикарбонил-3-***трет***-бутил-2-оксо-1,2-дигидропирроло**[**1,2-***b*][**1,2,4**]**-триазин-8-карбоновая кислота (2).** Соединение **1** (0.19 г, 0.5 ммоль), NBu₄⁺Br⁻ (2 г, 6.2 ммоль) и КОН (5 г, 89.1 ммоль) прибавляли к смеси H₂O (1 мл) и 2-пропанола (10 мл). Полученную смесь кипятили

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

5 ч, после чего охлаждали до 0°С, декантировали органическую фазу, которую затем разбавляли Н₂О (100 мл). К полученному раствору медленно по каплям при перемешиваниии охлаждении до 0°С прибавляли 85%-водный раствор H₂PO₄ до pH $\leq 4.0.$ Образовавшийся осадок отфильтровывали, промывали на фильтре водой (10×10 мл), затем смесью MeOH-H₂O (1:1, 1×10 мл), далее горячим EtOAc (50°C, 3×15 мл), сушили на воздухе и получали соединение 2. Выход 0.15 г (85%). жёлтый порошок, т.пл. 189–191°С (разл.). ИК спектр (КВг), v, см⁻¹: 3480, 3362, 3182 (уш, ОН и NH), 3004, 2980, 2928 (CH), 1686, 1647 (C=O), 1611, 1584, 1546, 1514, 1474, 1460, 1425, 1393, 1367, 1351, 1327, 1314, 1273, 1234, 1162, 1090, 1049, 1035, 1022, 939, 860, 759, 731, 713, 686, 656, 587, 557, 508, 441. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), δ, м.д.: 1.37 с (9H, C³Bu^t), 1.53 с (9H, OBu^t), 6.33 с (2H, NH₂), 11.00 уш.с (~ 2H, OH + NH цикла). Спектр ЯМР 13 С (126 МГц, АРТ, ДМСО- d_6), δ , м.д.: 27.96, 28.98 [2С(<u>С</u>H₃)₃], 37.93 [С³<u>С</u>(СH₃)₃], 79.77 [OC(CH₃)₃], 83.35, 98.73, 134.72, 146.53, 150.15, 154.31, 160.73, 165.22 (C², C³, C⁶, C⁷, C⁸, C^{8a} , CO₂H и <u>C</u>O₂Bu^t). Масс-спектр, *m/z* (I_{0TH} , %): 373.1476 (100) [M + Na]⁺. Найдено, %: С 54.83; Н 6.29; N 16.02. С₁₆Н₂₂N₄O₅. Вычислено, %: С 54.85; H 6.33; N 15.99. [*M* + Na]⁺ 373.1482.

Соединения 3, 4, 6а, b, 7 (общая методика). К раствору соединения 2 (0.18 г, 0.5 ммоль, для получения соединений 3, 4), соединения 1 (0.3 г, 0.79 ммоль, для синтеза соединения 7) либо 5а, 5b (0.1 ммоль, для синтеза соединений 6a, 6b соответственно) в MeCN (30 мл) прибавляли ТЭА (1.8 мл, 12.9 ммоль) и BuⁿBr (1 мл, 9.25 ммоль). Полученную смесь кипятили в атмосфере Ar 3 ч (для получения соединений 6а, b, 7) либо 12 ч (для соединений 3, 4), затем охлаждали, прибавляли H₂O (100 мл), EtOAc (50 мл), перемешивали и отделяли органическую фазу, водный раствор экстрагировали EtOAc (2×50 мл). Объединённые органические фазы промывали H₂O (2×100 мл), сушили безводным MgSO₄, отфильтровывали и фильтрат упаривали в вакууме. Остаток очищали с помощью флеш-хроматографии (элюент EtOAcгексан, 1:20-1:3).

тиламино)пирроло[1,2-*b*][1,2,4]триазин-6-кар-

Паланата	Соединение			
Параметр	6a	11		
Брутто-формула	C ₁₉ H ₂₉ BrN ₄ O ₃	C ₃₀ H ₄₂ N ₆ O ₉		
Молекулярная масса, г·моль ⁻¹	441.37	630.69		
Сингония	Моноклинная	Моноклинная		
Пространственная группа	$P2_1/n$	$P2_1/c$		
<i>a</i> , Å	10.4778(8)	15.4244(7)		
<i>b</i> , Å	10.2247(7)	18.8867(8)		
<i>c</i> , Å	20.1308(14)	11.6949(5)		
β, град	99.476(2)	96.0707(15)		
<i>V</i> , Å ³	2127.2(3)	3387.8(3)		
Ζ	4	4		
$d_{\rm bliq}, \mathrm{f} \cdot \mathrm{cm}^{-3}$	1.378	1.237		
μ, мм ⁻¹	1.958	0.092		
Диапазон сканирования Θ, град	2.051-34.342	1.710-31.999		
Количество измеренных отражений	65877	114002		
Количество независимых отражений (R _{int})	8916 (0.0670)	11758 (0.0446)		
Количество отражений с $I \ge 2\sigma(I)$	5826	7412		
Количество уточняемых параметров	275	497		
$R_1 \left[I \ge 2\sigma(I) \right]$	0.0400	0.0718		
wR_2 (по всем отражениям)	0.1100	0.2331		
GOOF по F^2	1.057	1.038		
CCDC	2077354	2077356		

Таблица 3. Кристаллографические данные соединений ба и 11 и параметры рентгеноструктурных экспериментов

боксилат (3). Выход 75 мг (35%). Бесцветная жидкость, т.пл. < 0°С. ИК спектр (КВг), v, см⁻¹: 3361 (NH), 2957, 2930, 2872 (CH), 1642 (С=О), 1601, 1571, 1540, 1477, 1494, 1456, 1413, 1364, 1342, 1314, 1283, 1259, 1212, 1168, 1142, 1094, 1060, 1017, 976, 905, 860, 823, 800, 762, 747, 726, 665, 557, 514, 460, 421. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м.д.: 0.94 т [3H, N(CH₂)₃CH₃, ³J_{H,H} 7.4 Гц], 0.99 т [3H, O(CH₂)₃CH₃, ³J_{H,H} 7.4 Гц], 1.39–1.46, 1.47–1.54, 1.59–1.67, 1.78–1.83 все м (2H + 2H + 2H + 2H, NCH₂CH₂CH₂CH₃ и OCH₂CH₂CH₂CH₃), 1.42 с (9H, C³Bu^{*t*}), 1.62 с (9H, OBu^{*t*}), 3.20 д.т (2H, NHCH₂CH₂CH₂CH₂CH₃, ³J_{H,H}

7.0, ${}^{3}J_{\text{H,H}}$ 6.0 Гц), 4.37 т [2H, OC<u>H</u>₂(CH₂)₂CH₃, ${}^{3}J_{\text{H,H}}$ 6.5 Гц], 5.62 с (1H, C⁸H), 6.39 уш.с (1H, NH). Спектр ЯМР ¹³C (126 МГц, APT, CDCl₃), δ , м.д.: 13.75, 13.87 [2(CH₂)₃CH₃], 19.49, 20.23 [2(CH₂)₂CH₂CH₃], 28.35, 29.05 [2C(CH₃)₃], 30.70, 31.79 (2CH₂CH₂CH₂CH₃), 37.00 [C³C(CH₃)₃], 44.18 (NCH₂), 66.19 (OCH₂), 79.84 [OC(CH₃)₃], 80.21 (C⁸H), 99.88, 137.65, 144.01, 149.65, 152.77, 161.97 (C², C³, C⁶, C⁷, C^{8a} и CO₂Bu^{*I*}). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 419.3012 (100) [*M* + H]⁺. Найдено, %: C 65.96; H 9.18; N 13.41. C₂₃H₃₈N₄O₃. Вычислено, %: C 66.00; H 9.15; N 13.39. [*M* + H]⁺ 419.3017.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

трет-Бутил-3-*трет*-бутил-1-бутил-7-бутиламино-2-оксо-1,2-дигидропирроло[1,2-b][1,2,4]триазин-6-карбоксилат (4). Выход 90 мг (42%). Бесцветная жидкость, т.пл. < 0°С. ИК спектр (KBr), v, cm⁻¹: 3360 (NH), 2961, 2930, 2870 (CH), 1750, 1721, 1655, 1638 (C=O), 1608, 1565, 1546, 1525, 1494, 1478, 1459, 1440, 1387, 1364, 1320, 1281, 1246, 1210, 1175, 1152, 1058, 1025, 975, 943, 899, 852, 809, 786, 763, 722, 698, 659, 574, 538, 461, 425. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ, м.д.: 0.95 т [3H, N(CH₂)₃C<u>H₃</u>, ³*J*_{H H} 7.4 Гц], 0.96 т [3H, N(CH₂)₃C<u>H₃</u>, ³J_{H,H} 7.3 Гц], 1.36–1.49, 1.56– 1.73, 1.78–1.93 все м (8H, 2NCH₂CH₂CH₂CH₂), 1.42 с (9H, C³Bu^t), 1.59 с (9H, OBu^t), 3.18 д.т (2H, NHC<u>H</u>₂CH₂CH₂CH₃, ${}^{3}J_{H,H}$ 6.9, ${}^{3}J_{H,H}$ 6.0 Гц), 3.90 т [2H, $N^1 C \underline{H}_2 (C H_2)_2 C H_3$, ${}^3 J_{H,H}$ 7.5 Гц], 5.16 с (1H, C⁸H), 6.42 уш.с (1H, NH). Спектр ЯМР¹³С (126 МГц, АРТ, CDCl₃), δ, м.д.: 13.69, 13.85 [2N(CH₂)₃<u>C</u>H₃], 20.17, 20.21 [2N(CH₂)₂CH₂CH₃], 28.14, 29.06 [2C(CH₃)₃], 28.47, 31.93 (2NCH₂CH₂CH₂CH₃), $37.91 \ [C^{3}C(CH_{3})_{3}], \ 43.38, \ 44.15 \ (2NCH_{2}), \ 74.61$ $(C^{8}H)$, 79.87 $[OC(CH_{3})_{3}]$, 99.47, 133.38, 148.57, 149.91, 150.57, 161.68 (C^2 , C^3 , C^6 , C^7 , C^{8a} μ $\underline{C}O_2Bu^t$). Масс-спектр, m/z (I_{0TH} , %): 419.3013 (100) [M + H]⁺. Найдено, %: С 66.03; Н 9.17; N 13.37. С₂₃Н₃₈N₄O₃. Вычислено, %: С 66.00; Н 9.15; N 13.39. [*M* + H]⁺ 419.3017.

трет-Бутил-7-амино-8-бром-2-бутокси-3трет-бутилпирроло[1,2-b][1,2,4]триазин-6-карбоксилат (6а). Выход 35 мг (79%). Жёлтые кристаллы, т.пл. 121–122°С. ИК спектр (КВг), v, см⁻¹: 3483, 3367 (NH₂), 2960, 2931, 2871 (CH), 1647, 1600 (C=O), 1581, 1551, 1500, 1483, 1459, 1415, 1393, 1366, 1324, 1276, 1254, 1212, 1166, 1137, 1123, 1094, 1049, 1034, 1021, 995, 976, 889, 856, 836, 822, 762, 738, 692, 660, 588, 568, 507, 479, 420. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 1.00 т $[3H, O(CH_2)_2 CH_3, {}^3J_{HH}, 7.5 \Gamma \mu], 1.42 c (9H, C^3Bu^t),$ 1.49–1.56 м [2H, O(CH₂)₂CH₂CH₃], 1.62 с (9H, OBu^t), 1.80-1.86 м (2H, OCH₂CH₂CH₂CH₃), 4.48 т (2H, OCH₂, ³J_{H H} 6.5 Гц), 5.20 с (2H, NH₂). Спектр ЯМР ¹³С (126 МГц, АРТ, CDCl₃), б, м.д.: 13.76 [O(CH₂)₂<u>C</u>H₃], 19.52 [O(CH₂)₂<u>C</u>H₂CH₃], 28.22, 28.92 [2C(CH₃)₃], 30.62 (OCH₂CH₂CH₂CH₂CH₃), 37.12 $[C_{3}C(CH_{3})_{3}], 66.73 (OCH_{2}), 80.62 [OC(CH_{3})_{3}],$ 71.44 (C⁸Br), 100.86, 133.59, 144.24, 145.67, 153.31, 161.01 (C^2 , C^3 , C^6 , C^7 , C^{8a} и <u>С</u>О₂Ви^{*t*}). Масс-спектр, *m/z* (*I*_{отн}, %): 441.1487 (100) [*M*+H]⁺. Найдено, %: С

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

51.67; H 6.64; N 12.65. C₁₉H₂₉BrN₄O₃. Вычислено, %: C 51.70; H 6.62; N 12.69. [*M* + H]⁺ 441.1496.

трет-Бутил-7-амино-3-трет-бутил-1-бутил-2-оксо-1,2-дигидропирроло[1,2-b][1,2,4]триазин-6-карбоксилат (6b). Выход 27 мг (74%). Бесцветная жидкость, т.пл. < 0°С. ИК спектр (КВr), v, cm⁻¹: 3502, 3369 (NH₂), 2989, 2954, 2930, 2870 (CH), 1658 (C=O), 1597, 1529, 1483, 1459, 1442, 1392, 1364, 1321, 1308, 1254, 1227, 1204, 1160, 1115, 1090, 1052, 976, 928, 904, 846, 823, 767, 718, 658, 626, 516, 459, 431. Спектр ЯМР ¹Н (300 МГц, CDCl₂), б, м.д.: 0.99 т [3H, N(CH₂)₂CH₃, ³J_{H H} 7.3 Гц], 1.42–1.55 м [2H, N(CH₂)₂CH₂CH₃, частичное перекрывание с пиком Bu^{t}], 1.50 с (9H, $C^{3}Bu^{t}$), 1.66 с (9H, OBu^t), 1.69–1.82 м (2H, NCH₂CH₂CH₂· СН₃), 2.92 т (2H, NCH₂, ³J_{H H} 8.0 Гц), 5.20 уш. с (2H, NH₂), 5.88 с (1H, C⁸<u>H</u>). Спектр ЯМР ¹³С (75 МГц, АРТ, CDCl₃), б, м.д. (сигнал одного из четвертичных атомов углерода цикла не наблюдался из-за уширения): 14.06 [N(CH₂)₂CH₃], 22.99 [N(CH₂)₂CH₂CH₃], 29.04, 30.03 [2C(CH₃)₃], 31.61 (NCH₂CH₂CH₂CH₃), 36.13 (NCH₂), 37.79 $[C^{3}C(CH_{3})_{3}]$, 80.82 $[OC(CH_{3})_{3}]$, 84.30 $(C^{8}H)$, 136.78, 147.53, 150.81, 151.44, 161.87 (C², C³, C⁶, C⁷, C^{8a} и <u>CO</u>₂Bu^t). Масс-спектр, *m/z* (*I*_{0TH}, %): 363.2381 (100) [M + H]⁺. Найдено, %: С 63.02; Н 8.27; N 15.48. С₁₉Н₃₀N₄O₃. Вычислено, %: С 62.96; Н 8.34; N 15.46. $[M + H]^+$ 363.2391.

6-трет-Бутил-8-этил-7-амино-2-бутокси-3-трет-бутилпирроло[1,2-b][1,2,4]триазин-**6,8-дикарбоксилат (7).** Выход 0.29 г (84%). Светло-жёлтые кристаллы, т.пл. 109-110°С. ИК спектр (КВг), v, см⁻¹: 3480, 3367 (NH₂), 2981, 2931, 2872 (CH), 1680 (C=O), 1639, 1602, 1546, 1506, 1481, 1454, 1413, 1391, 1364, 1344, 1321, 1242, 1209, 1198, 1162, 1110, 1054, 1021, 967, 945, 904, 850, 815, 791, 760, 742, 709, 672, 569, 588, 517, 470, 431. Спектр ЯМР ¹Н (300 МГц, CDCl₃), δ, м.д.: 1.01 т [3H, O(CH₂)₃C<u>H₃</u>, ³J_{H,H} 7.4 Гц], 1.42 т (3H, ОСН₂С<u>Н</u>₃, ³*J*_{Н.Н} 7.1 Гц), 1.45 с (9H, C³Bu^t), 1.47–1.59 м (2H, OCH₂CH₂CH₂CH₃), 1.63 с (9H, OBu^t), 1.82–1.91 м (2H, OCH₂CH₂CH₂CH₂CH₃), 4.37 к (2H, OC<u>H</u>₂CH₃, ³J_{H,H} 7.1 Гц), 4.55 т [2H, $OCH_2(CH_2)_2CH_3$, ${}^{3}J_{HH}$ 6.5 Γ u], 6.56 c (2H, NH₂). Спектр ЯМР ¹³С (126 МГц, АРТ, CDCl₃), δ, м.д.: 13.72, 14.45 [O(CH₂)₃<u>C</u>H₃ и OCH₂<u>C</u>H₃], 19.46 (OCH₂CH₂CH₂CH₃), 28.04, 28.92 [2C(<u>C</u>H₃)₃], 30.58

(ОСН₂<u>С</u>H₂CH₂CH₃), 37.20 [C³<u>С</u>(CH₃)₃], 59.49, 66.88 (2ОСН₂), 80.58 [O<u>С</u>(CH₃)₃], 87.01, 100.36, 137.64, 146.57, 149.15, 154.18 (C², C³, C⁶, C⁷, C⁸, C^{8a}), 161.27, 165.04 (<u>CO₂Et и <u>CO</u>₂Bu^t). Масс-спектр, m/z ($I_{\text{отн}}$, %): 435.2603 (100) [M + H]⁺. Найдено, %: C 60.84; H 7.94; N 12.86. C₂₂H₃₄N₄O₅. Вычислено, %: C 60.81; H 7.89; N 12.89. [M + H]⁺ 435.2602.</u>

Соединения 5а и b (общая методика). К суспензии соединения 2 (0.1 г, 0.29 ммоль) в безводном CH₂Cl₂ (10 мл) прибавляли ТЭА (0.3 мл, 2.15 ммоль). Полученный раствор охлаждали до 0°С, затем прибавляли NBS (70 мг, 0.39 ммоль) в одну порцию при перемешивании. Реакционную смесь перемешивали 10 мин при той же температуре, затем прибавляли H₂O (50 мл) и EtOAc (50 мл). Органическую фазу отделяли, промывали охлаждённым до 0°С раствором Na₂SO₃ (1 г, 7.93 ммоль) в H₂O (50 мл), водой (50 мл), сушили безводным MgSO₄, отфильтровывали и фильтрат упаривали в вакууме. Остаток очищали с помощью флеш-хроматографии (элюент EtOAc–гептан, 1:3–1:1).

трет-Бутил-7-амино-8-бром-3-трет-бутил-2-оксо-1,2-дигидропирроло[1,2-b][1,2,4]триазин-6-карбоксилат (5а). Выход 85 мг (77%). Жёлтые кристаллы, т.пл. 168–176°С (разл.). ИК спектр (KBr), v, см⁻¹: 3480, 3462, 3362 (NH₂), 2966, 2930, 2868, 2772 (CH), 1664, 1650, 1636 (C=O), 1590, 1508, 1463, 1407, 1386, 1363, 1325, 1248, 1221, 1198, 1172, 1129, 1086, 1016, 937, 890, 860, 829, 784, 761, 712, 640, 583, 560, 498, 464, 437. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), δ, м.д.: 1.36 с (9Н, С³Ви^{*t*}), 1.53 c (9H, OBu^t), 5.84 c, 5.86 c (2H, NH₂), 12.83 ym. с (1Н. NH цикла). Спектр ЯМР ¹³С (126 МГц, АРТ, ДМСО-*d*₆), δ, м.д. (сигналы для 3 четвертичных атомов углерода цикла не наблюдались из-за уширения): 28.15, 28.97 [2С(CH₂)₂], 37.58 [C³C(CH₂)₂], 79.78 [OC(CH₃)₃], 98.92, 144.61, 160.48, 162.11 (C², C^{3} , C^{6} , C^{7} , C^{8} , C^{8a} и $CO_{2}Bu^{t}$). Масс-спектр, m/z(*I*_{отн}, %): 385.0860 (100) [*M* + H]⁺. Найдено, %: С 46.73; Н 5.45; N 14.59. С₁₅Н₂₁ВгN₄O₃. Вычислено, %: C 46.76; H 5.49; N 14.54. [*M* + H]⁺ 385.0870.

трет-Бутил-7-амино-3-*трет*-бутил-2-оксо-1,2-дигидропирроло[1,2-*b*][1,2,4]триазин-6-карбоксилат (5b). Выход 12 мг (14%). Светло-жёлтый порошок, т.пл. 188–189°С. ИК спектр (КВг), v, см⁻¹: 3464, 3431, 3393, 3356, 3334 (NH), 2968, 2931, 2870, 2777 (CH), 1674, 1648, 1628 (С=О), 1598, 1507, 1481, 1456, 1388, 1363, 1326, 1304, 1250, 1219, 1200, 1164, 1130, 1092, 1055, 1023, 995, 905, 860, 822, 790, 770, 751, 710, 685, 664, 625, 555, 521, 491, 457, 433. Спектр ЯМР ¹Н (300 МГц, CDCl₃), δ , м.д.: 1.47 с (9H, C³Bu^t), 1.63 с (9H, OBu^t), 5.11 уш.с (2H, NH₂), 5.33 с (1H, C⁸H), 12.26 с (1H, NH цикла). Спектр ЯМР ¹³С (75 МГц, АРТ, CDCl₃), δ , м.д.: 28.10, 29.05 [2C(CH₃)₃], 37.89 [C³C(CH₃)₃], 77.97 (C⁸H), 80.40 [OC(CH₃)₃], 100.89, 130.52, 146.33, 151.04, 152.61, 161.39 (C², C³, C⁶, C⁷, C^{8a} и CO₂Bu^t). Масс-спектр, *m/z* (I_{0TH} , %): 307.1766 (100) [M + H]⁺. Найдено, %: C 58.78; H 7.28; N 18.34. C₁₅H₂₂N₄O₃. Вычислено, %: C 58.81; H 7.24; N 18.29. [M + H]⁺ 307.1765.

Соединения 9а-с и 10а, b (общая методика). К охлаждённому до 0°С раствору соединения 5а, 7, 6а, 8а либо b (0.5 ммоль, для синтеза 10а, b, либо 9а, b, c, соответственно) в 2-пропаноле (50 мл) прибавляли последовательно *трет*-бутилнитрит (1 мл, 8.41 ммоль) и 85%-ный водный раствор H₃PO₄ (5 мл).

Для получения соединений **9а–с** реакционную смесь перемешивали 1 ч при 40–45°С, затем охлаждали до 20°С, прибавляли H₂O (100 мл), EtOAc (30 мл), перемешивали и отделяли органическую фазу, которую промывали водой (1×100 мл), сушили безводным MgSO₄, отфильтровывали и фильтрат упаривали в вакууме. Остаток очищали с помощью флеш-хроматографии (элюент EtOAc–гексан, 1:25).

Для синтеза соединений **10а**, **b** реакционную смесь перемешивали 15 мин при 20°С, затем прибавляли охлаждённую воду (0°С, 100 мл). Полученный раствор перемешивали 5 мин при 0°С, далее небольшими порциями при перемешивании в течение 10 мин прибавляли кристаллический NaN₃ (0.4 г, 6.15 ммоль). Перемешивали ещё 30 мин при 20°С, затем прибавляли охлаждённую воду (0°С, 100 мл), отфильтровывали образовавшийся осадок, который промывали на фильтре водой (3×20 мл) и сушили на воздухе. Очищали перекристаллизацией из 100%-ного *н*-пентана.

тилпирроло[1,2-*b*][1,2,4]триазин-6-карбоксилат (9а). Выход 0.14 г (66%). Жёлтые кристаллы, т.пл. 103–104°С. ИК спектр (КВг), v, см⁻¹: ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023 2986, 2960, 2931, 2874 (CH), 1684 (C=O), 1597, 1559, 1499, 1466, 1416, 1393, 1377, 1362, 1335, 1280, 1250, 1216, 1197, 1165, 1126, 1069, 1092, 1036, 1022, 995, 966, 948, 901, 848, 814, 775, 751, 695, 674, 585, 543, 509, 463, 424. Спектр ЯМР ¹Н (300 МГц, CDCl₂), б, м.д.: 1.03 т [3H, O(CH₂)₂CH₂, ³*J*_{H H} 7.3 Гц], 1.49 с (9H, C³Bu^t), 1.52–1.59 м [2H, O(CH₂)₂CH₂CH₃], 1.62 c (9H, OBu^t), 1.82–1.92 м (2H, OCH₂CH₂CH₂CH₃), 4.53 т (2H, OCH₂, ${}^{3}J_{\rm H,H}$ 6.5 Гц), 7.47 с (1H, C⁷H). Спектр ЯМР 13 С (126 МГц, АРТ, CDCl₃), б, м.д.: 13.76 [O(CH₂)₂CH₃], 19.53 [O(CH₂)₂CH₂CH₃], 28.00, 28.55 [2C(CH₃)₃], 30.54 (OCH₂CH₂CH₂CH₃), 37.51 $[C^{3}C(CH_{3})_{3}]$, 67.03 (OCH₂), 80.98 [OC(CH₃)₃], 82.38 (C⁸Br), 122.25 (C⁷H), 116.10, 133.06, 149.66, 152.26, 158.38 $(C^2, C^3, C^6, C^{8a}$ и <u>C</u>O₂Bu^t). Масс-спектр, *m/z* (I_{0TH} , %): 448.1194 (100) [*M* + Na]⁺. Найдено, %: С 53.57; Н 6.64; N 9.84. С₁₉Н₂₈BrN₃O₃. Вычислено, %: С 53.53; H 6.62; N 9.86. [*M* + Na]⁺ 448.1206.

трет-Бутил-2-(2-трет-бутокси-2-оксоэтокси)-3-трет-бутил-8-цианопирроло[1,2-b][1,2,4]триазин-6-карбоксилат (9b). Выход 0.18 г (84%). Бесцветные кристаллы, т.пл. 162–163°С (разл.). ИК спектр (KBr), v, см⁻¹: 3130, 2978, 2940, 2879 (CH), 2230 (CN), 1737, 1687 (C=O), 1600, 1566, 1511, 1489, 1457, 1418, 1397, 1368, 1350, 1299, 1282, 1258, 1222, 1202, 1163, 1094, 1034, 964, 924, 885, 860, 844, 824, 783, 759, 745, 714, 695, 639, 614, 577, 508, 463, 450, 422. Спектр ЯМР ¹Н (300 МГц, CDCl₃), δ, м.д.: 1.52 с, 1.54 с, 1.62 с (9H + 9H + 9H, 3Bu^t), 4.99 с (2H, OCH₂), 7.64 с (1H, C⁷H). Спектр ЯМР ¹³С (75 МГц, АРТ, CDCl₃), *б*, м.д.: 27.92, 28.12, 28.52 [3C(<u>C</u>H₃)₃], 37.89 [C³<u>C</u>(CH₃)₃], 63.95 (OCH₂), 79.98 (C⁸), 82.12, 83.24 [2O<u>C</u>(CH₃)₃], 114.12 (CN), 122.76 (C⁷H), 118.11, 139.04, 151.30, 152.92, 157.78, 165.90 (C^2 , C^3 , C^6 , C^{8a} , и 2<u>С</u>О₂Ви^t). Масс-спектр, m/z (I_{0TH} , %): 453.2101 (100) [M + Na]⁺. Найдено, %: С 61.36; Н 6.98; N 13.05. С₂₂Н₃₀N₄O₅. Вычислено, %: C 61.38; H 7.02; N 13.01. [*M* + Na]⁺ 453.2108.

Этил-3-*трет*-бутил-8-циано-2-(2-этокси-2оксоэтокси)пирроло[1,2-*b*][1,2,4]триазин-6-карбоксилат (9с). Выход 0.15 г (80%). Бесцветные кристаллы, т.пл. 75–76°С. ИК спектр (КВг), v, см⁻¹: 3144, 2987, 2941, 2911, 2874 (СН), 2225 (СN), 1761, 1683 (С=О), 1646, 1603, 1565, 1513, 1487, 1439, 1406, 1389, 1368, 1349, 1311, 1281, 1246, 1205, 1158, 1143, 1131, 1114, 1093, 1047, 1014, 944,

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

854, 810, 787, 755, 716, 700, 614, 586, 548, 516, 459, 440, 424. Спектр ЯМР ¹Н (300 МГц, CDCl₃), δ , м.д.: 1.30 т (3H, OCH₂C<u>H</u>₃, ³J_{H,H} 7.1 Гц), 1.37 т (3H, OCH₂C<u>H</u>₃, ³J_{H,H} 7.1 Гц), 1.50 с (9H, Bu^{*I*}), 4.25 к (2H, OC<u>H</u>₂CH₃, ³J_{H,H} 7.1 Гц), 4.36 к (2H, OC<u>H</u>₂CH₃, ³J_{H,H} 7.1 Гц), 5.11 с (2H, OC<u>H</u>₂CO₂Et), 7.64 с (1H, C⁷H). Спектр ЯМР ¹³С (75 МГц, APT, CDCl₃), δ , м.д.: 14.04, 14.24 (2OCH₂CH₃), 27.59 [C(<u>C</u>H₃)₃], 37.76 [<u>C</u>(CH₃)₃], 60.73, 61.73, 63.17 (3OCH₂), 80.20 (C⁸), 113.71 (CN), 122.71 (C⁷H). 116.51, 138.98, 151.34, 152.90, 158.18, 166.70 (C², C³, C⁶, C^{8a}, и 2<u>CO</u>₂Et). Масс-спектр, *m*/*z* (*I*_{отн}, %): 375.1657 (100) [*M* + H]⁺. Найдено, %: C 57.72; H 5.90; N 14.97. C₁₈H₂₂N₄O₅. Вычислено, %: C 57.75; H 5.92; N 14.96. [*M* + H]⁺ 375.1663.

трет-Бутил-7-азидо-8-бром-3-трет-бутил-2-оксо-1,2-дигидропирроло[1,2-b][1,2,4]триазин-6-карбоксилат (10а). Жёлтые кристаллы, спонтанно осмолились при хранении в течение нескольких часов при комнатной температуре. Выход 0.17 г (83%). ИК спектр (КВг), v, см⁻¹: 3466 (уш, NH), 2969, 2928, 2871 (CH), 2135 (N₃), 1667, 1629 (C=O), 1547, 1515, 1455, 1423, 1404, 1390, 1363, 1348, 1323, 1300, 1248, 1217, 1165, 1101, 1086, 1024, 976, 937, 894, 854, 820, 788, 759, 723, 674, 633, 616, 570, 518, 451, 433. Спектр ЯМР ¹Н (300 МГц, CDCl₃), б, м.д.: 1.50 с (9H, C³Bu^t), 1.64 с (9H, OBu^t), 11.83 уш.с (1Н, NH цикла). Спектр ЯМР ¹³С (126 МГц, АРТ, CDCl₃), б, м.д.: 27.88, 28.56 $[2C(CH_3)_3]$, 38.40 $[C^3C(CH_3)_3]$, 70.81 (C^8Br) , 82.52 [OC(CH₃)₃], 109.11, 126.44, 131.22, 151.52, 156.09, 157.82 (C², C³, C⁶, C⁷, C^{8a} и CO₂Bu^t). Масс-спектр, *m/z* (*I*_{отн}, %): 433.0589 (100) [*M* + Na]⁺. Найдено, %: С 43.75; Н 4.69; N 20.40. С₁₅Н₁₉ВrN₆O₃. Вычислено, %: С 43.81; Н 4.66; N 20.44. [M + Na]⁺ 433.0594.

6-*трет***-Бутил-8-этил-7-азидо-2-бутокси-3-***трет***-бутилпирроло[1,2-***b***][1,2,4]триазин-6,8-дикарбоксилат (10b).** Выход 0.20 г (87%). Бесцветные кристаллы, т.пл. 68–69°С. ИК спектр (КВг), v, см⁻¹: 2978, 2933, 2872 (СН), 2128 (N₃), 1709, 1692 (С=О), 1595, 1554, 1499, 1481, 1450, 1410, 1394, 1367, 1334, 1275, 1245, 1194, 1160, 1117, 1094, 1057, 1025, 991, 938, 890, 856, 842, 785, 763, 751, 707, 658, 608, 565, 514, 465, 432. Спектр ЯМР ¹Н (300 МГц, CDCl₃), δ, м.д.: 1.02 т [3H, O(CH₂)₃C<u>H₃</u>, ³*J*_{H H} 7.3 Гц], 1.43 т (3H, OCH₂C<u>H₃</u>, ³ $J_{\rm H,H}$ 7.3 Гц), 1.47 с (9H, C³Bu^t), 1.50–1.61 м (2H, OCH₂CH₂CH₂CH₃), 1.65 с (9H, OBu^t), 1.84–1.93 м (2H, OCH₂C<u>H</u>₂CH₂CH₃), 4.42 к (2H, OC<u>H</u>₂CH₃, ³ $J_{\rm H,H}$ 7.2 Гц), 4.58 т [2H, OC<u>H</u>₂(CH₂)₂CH₃, ³ $J_{\rm H,H}$ 6.5 Гц]. Спектр ЯМР ¹³С (126 МГц, APT, CDCl₃), δ , м.д.: 13.71, 14.41 [O(CH₂)₃<u>C</u>H₃ и OCH₂<u>C</u>H₃], 19.47 (OCH₂CH₂CH₂CH₃), 27.90, 28.54 [2C(<u>C</u>H₃)₃], 30.47 (OCH₂<u>C</u>H₂CH₂CH₃), 37.64 [C³<u>C</u>(CH₃)₃], 60.21, 67.51 (2OCH₂), 82.25 [O<u>C</u>(CH₃)₃], 94.64, 109.55, 134.50, 136.01, 150.07, 154.12 (C², C³, C⁶, C⁷, C⁸, C⁸a), 158.17, 162.34 (<u>CO₂Et и CO₂Bu^t)</u>. Macc-спектр, *m/z* ($I_{\rm OTH}$, %): 483.2316 (100) [*M* + Na]⁺. Найдено, %: C 57.35; H 7.04; N 18.28. C₂₂H₃₂N₆O₅. Вычислено, %: C 57.38; H 7.00; N 18.25. [*M* + Na]⁺ 483.2326.

6-трет-Бутил-8-этил-7-(4.5-бис(этоксикарбонил)-1*H*-1,2,3-триазол-1-ил)-2-бутокси-3*трет*-бутилпирроло[1,2-*b*][1,2,4]триазин-6,8-дикарбоксилат (11). К раствору соединения 10b (0.3 г. 0.65 ммоль) в безводном толуоле (5 мл) прибавляли диэтилацетилендикарбоксилат (0.8 мл, 5.0 ммоль). Реакционную смесь кипятили в атмосфере Ar 48 ч, затем охлаждали до комнатной температуры, растворитель упаривали в вакууме. Остаток очищали с помощью флеш-хроматографии (элюент EtOAc-гексан, 1:20-1:5). Выход 0.31 г (75%). Бесцветные кристаллы, т.пл. 111–113°С. ИК спектр (КВг), v, см⁻¹: 2978, 2936, 2875 (CH), 1737, 1700 (C=O), 1599, 1558, 1499, 1463, 1413, 1394, 1369, 1344, 1307, 1251, 1197, 1160, 1096, 1057, 1021, 949, 918, 854, 829, 790, 729, 702, 676, 640, 617, 563, 521, 483, 458, 419. Спектр ЯМР ¹Н (300 МГц, CDCl₃), б, м.д.: 0.97 т [3Н, О(СН₂)₃С<u>Н</u>₃, ³*J*_{H H} 7.3 Гц], 1.04 т (3H, ОСН₂С<u>Н</u>₃, ³*J*_{H,H} 7.0 Гц), 1.21 т (3H, OCH₂C<u>H₃</u>, ³*J*_{H,H} 7.0 Гц), 1.28 c (9H, C³Bu^t), 1.38 T (3H, OCH₂CH₃, ${}^{3}J_{HH}$ 7.1 Гц), 1.43–1.53 м (2H, OCH₂CH₂CH₂CH₃, частичное перекрывание с сигналом Bu^{t}), 1.46 с (9H, OBu^t), 1.80–1.89 м (2H, OCH₂CH₂CH₂CH₂), 4.03– 4.11 м (2H, C⁸CO₂CH₂CH₃), 4.24 к (2H, OCH₂CH₃) триазола, ³*J*_{H H} 7.0 Гц), 4.43 к (2H, OC<u>H</u>₂CH₃ триазола, ³*J*_{H,H} 7.2 Гц), 4.59 т [2H, OC<u>H</u>₂(CH₂)₂CH₃, ³*J*_{H H} 6.5 Гц]. Спектр ЯМР ¹³С (75 МГц, АРТ, СDСl₃), б, м.д.: 13.64, 13.77, 14.16 [O(CH₂)₃<u>C</u>H₃ и ЗОСН₂СН₃, наблюдалось слияние 2 сигналов], 19.41 (OCH₂CH₂CH₂CH₃), 27.72, 27.90 [2C(CH₃)₃], 30.37 $[C^{3}C(CH_{3})_{3}]$, 37.96 $(OCH_{2}CH_{2}CH_{2}CH_{3})$, 60.12, 61.65, 62.41, 68.00 (4OCH₂), 82.49 [О<u>С</u>(CH₃)₃], 98.15, 113.84, 126.69, 133.31, 135.90, 138.81, 152.45, 154.53, 155.98, 157.70, 160.03, 160.78 (C², C³, C⁶, C⁷, C⁸, C^{8a}, <u>3</u><u>С</u>О₂Et, <u>С</u>О₂Bu^{*t*} и 2 четвертичн. С триазола). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 631.3081 (100) [M + H]⁺. Найдено, %: С 57.16; H 6.68; N 13.35. C₃₀H₄₂N₆O₉. Вычислено, %: С 57.13; H 6.71; N 13.33. [M + H]⁺ 631.3086.

ЗАКЛЮЧЕНИЕ

Впервые исследованы реакции декарбоксилирования, галогенирования и диазотирования в ряду пирроло[1,2-*b*][1,2,4]триазинов, осуществлён синтез ранее неизвестных 8-бром- и 7-азидопроизводных, проведено термическое [3+2]-циклоприсоединение с выделением 7-(1*H*-1,2,3-триазол-1-ил)пирроло[1,2-*b*][1,2,4]триазин-6,8-дикарбоксилата. Строение синтезированных соединений изучено с помощью спектральных методов исследования и РСА монокристаллов. Ряд испытанных гетероциклов проявил умеренную бактериостатическую активность на штаммах *Ps. fluor., St. aur., E. coli* и может быть рекомендован для испытаний на расширенной панели патогенных микроорганизмов и для дальнейшего изучения.

БЛАГОДАРНОСТИ

РСА осуществляли в отделе структурных исследований Института органической химии им. Н.Д. Зелинского РАН, Москва.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Иванов Сергей Максимович, ORCID: https:// orcid.org/ 0000-0003-1233-4430

Колтун Денис Сергеевич, ORCID: https:// orcid.org/0000-0002-4199-2646

Колотыркина Наталья Георгиевна, ORCID: https://orcid.org/0000-0003-0887-686X

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Debnatha B., Singh W.S., Das M., Goswami S., Singh M.K., Maiti D., Manna K. *Mater. Today Chem.* 2018, *9*, 56–72. doi 10.1016/j.mtchem.2018.05.001
- Ain Q.-U., Khan H., Mubarak M.S., Pervaiz A. Front Pharmacol. 2016, 7, 292. doi 10.3389/fphar.2016.00292

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

- Su C., Yan Y., Guo X., Luo J., Liu C., Zhang Z., Xiang W.-S., Huang S.-X. Org. Biomol. Chem. 2019, 17, 477–481. doi 10.1039/C8OB02847H
- Ruanpanun P., Laatsch H., Tangchitsomkid N., Lumyong S. World J. Microbiol. Biotechnol. 2011, 27, 1373–1380. doi 10.1007/s11274-010-0588-z
- Smirnov V.V., Kiprianova E.A., Garagulya A.D., Esipov S.E., Dovjenko S.A. *FEMS Microbiol. Lett.* 1997, 153, 357–361. doi 10.1111/j.1574-6968.1997. tb12596.x
- Ivanov S.M. Comprehensive Heterocyclic Chemistry IV. Eds. D.S. Black, J. Cossy, C.V. Stevens, S.J. Gharpure. 2022, 9, 29–180. doi 10.1016/B978-0-12-818655-8.00062-7
- Ott G.R., Favor D.A. Bioorg. Med. Chem. Lett. 2017, 27, 4238–4246. doi 10.1016/j.bmcl.2017.07.073
- Воинков Е.К., Дрокин Р.А., Уломский Е.Н., Чупахин О.Н., Чарушин В.Н., Русинов В.Л. *XTC*. 2020, 56, 1254–1273. [Voinkov E.K., Drokin R.A., Ulomsky E.N., Chupakhin O.N., Charushin V.N., Rusinov V.L. *Chem. Heterocycl. Compd.* 2020, 56, 1254– 1273.] doi 10.1007/s10593-020-02808-z
- Voinkov E.K., Drokin R.A., Fedotov V.V., Butorin I.I., Savateev K.V., Lyapustin D.N., Gazizov D.A., Gorbunov E.B., Slepukhin P.A., Gerasimova N.A., Evstigneeva N.P., Zilberberg N.V., Kungurov N.V., Ulomsky E.N., Rusinov V.L. *ChemistrySelect.* 2022, 7, e202104253. doi 10.1002/slct.202104253
- Ke Z., Lu T., Liu H., Yuan H., Ran T., Zhang Y., Yao S., Xiong X., Xu J., Xu A., Chen Y. J. Mol. Struct. 2014, 1067, 127–137. doi 10.1016/j.molstruc.2014.03.036
- Shi W., Qiang H., Huang D., Bi X., Huang W., Qian H. *Eur. J. Med. Chem.* 2018, *158*, 814–831. doi 10.1016/ j.ejmech.2018.09.050
- Paymode D.J., Cardoso F.S.P., Agrawal T., Tomlin J.W., Cook D.W., Burns J.M., Stringham R.W., Sieber J.D., Gupton B.F., Snead D.R. *Org. Lett.* **2020**, *22*, 7656– 7661. doi 10.1021/acs.orglett.0c02848
- Astakhina V., Voievudskyi M., Kharchenko O., Novikov V., Komarovska-Porohnyavets E., Petukhova O. *J. Heterocycl. Chem.* 2016, *53*, 421–428. doi 10.1002/ jhet.2204
- Styskala J., Slouka J., Cankar P. *Heterocycles*. 2008, 75, 1087–1095. doi 10.3987/COM-07-11267
- 15. Ivanov S.M. *Tetrahedron Lett.* **2020**, *61*, 152404. doi 10.1016/j.tetlet.2020.152404

- Иванов С.М., Тужаров Е.И., Колотыркина Н.Г. *ЖОХ*. 2021, 91, 1944–1953. [Ivanov S.M., Tuzharov E.I., Kolotyrkina N.G. Russ. J. Gen. Chem. 2021, 91, 2453–2461.] doi 10.1134/S1070363221120148
- Миронович Л.М., Костина М.В. *XTC*. 2011, 47, 1555–1559. [Mironovich L.M., Kostina M.V. *Chem. Heterocycl. Compd.* 2012, 47, 1286–1289.] doi 10.1007/s10593-012-0904-7
- Иванов С.М., Миронович Л.М., Родиновская Л.А., Шестопалов А.М. Изв. АН. Сер. Хим. 2017, 66, 727–731. [Ivanov S.M., Mironovich L.M., Rodinovskaya L.A., Shestopalov A.M. Russ. Chem. Bull. 2017, 66, 727–731.] doi 10.1007/s11172-017-1801-0
- Parrino B., Spano V., Carbone A., Montalbano A., Barraja P., Matyus P., Cirrincione G., Diana P. *Tetrahedron* 2014, 70, 7318–7321. doi 10.1016/ j.tet.2014.07.051
- Cirrincione G., Almerico A.M., Aiello E., Dattolo G. Chem. Heterocycl. Compd. Eds. E.C. Taylor, A. Weissberger. 1992, 48, 299–523. doi 10.1002/ 9780470187340.ch3
- 21. Ho Z.-C., Livant P., Lott W.B., Webb T.R. J. Org. Chem. 1999, 64, 8226–8235. doi 10.1021/jo9909608
- 22. Truce W.E., Kruse R.B. J. Am. Chem. Soc. 1959, 81, 5372–5374. doi 10.1021/ja01529a030
- Методические указания МУК 4.2.1890-04. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. 91.
- CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9, Clinical and Laboratory Standards Institute, USA, 2012.
- CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing Filamentous Fungi, Approved Standard, 2nd ed., CLSI document M38-A2, USA, 2008.
- 26. Bruker. APEX-III. Bruker AXS Inc., Madison, 2018.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. J. Appl. Crystallogr. 2015, 48, 3–10. doi 10.1107/ S1600576714022985
- Sheldrick G.M. Acta Crystallogr., Sect. A. 2015, 71, 3–8. doi 10.1107/S2053273314026370
- 29. Sheldrick G.M. Acta Crystallogr., Sect. C. 2015, 71, 3–8. doi 10.1107/S2053229614024218

ИВАНОВ и др.

Chemical Properties of 3-*tert*-Butyl-2-oxo-1,2-dihydropyrrolo[1,2-*b*][1,2,4]triazin-6-carboxylates

S. M. Ivanov*, D. S. Koltun, and N. G. Kolotyrkina

N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991 Russia *e-mail: sergey13iv1@mail.ru

Received June 2, 2022; revised June 16, 2022; accepted June 18, 2022

Alkaline hydrolysis of 6-*tert*-butyl-8-ethyl-7-amino-3-*tert*-butyl-2-oxo-1,2-dihydropyrrolo[1,2-*b*][1,2,4]triazin-6,8-dicarboxylate gave the corresponding 8-carboxylic acid, treatment of which with *n*-BuBr or NBS/TEA led to the decarboxylation and alkylation of N¹, C²O or bromination of the C8 ring position, respectively. Diazotization of 7-amino-3-*tert*-butyl-8-R¹-2-OR²-pyrrolo[1,2-*b*][1,2,4]triazin-6-carboxylates furnished 7-azido (R¹ = Br, CO₂Et; R¹ = H, *n*-Bu) and 7-unsubstituted (R¹ = Br, CN; R² = *n*-Bu, CH₂CO₂Et, CH₂Boc) derivatives, and also 7-(1*H*-1,2,3-triazol-1-yl)pyrrolo[1,2-*b*][1,2,4]triazin-6,8-dicarboxylate. The spectral and X-Ray structural features, as well as antimicrobial activity of the synthesized compounds are considered.

Keywords: pyrrolo[1,2-*b*][1,2,4]triazine, 1,2,4-triazine, alkylation, decarboxylation, bromination, diazotization, cycloaddition