УДК 547.895

ГЕТЕРОЦИКЛИЗАЦИЯ *N*-(2-ЦИКЛОАЛК-1-ЕН-1-ИЛ-6-МЕТИЛФЕНИЛ)-*N*-(2-ГИДРОКСИЭТИЛ)-4-МЕТИЛБЕНЗОЛСУЛЬФОНАМИДОВ В БЕНЗОКСАЗОЦИНЫ

© 2023 г. Р. Р. Гатауллин*

Уфимский Институт химии – обособленное структурное подразделение ФГБНУ «Уфимского федерального исследовательского центра РАН», Россия, 450054 Уфа, просп. Октября, 71 *e-mail: gataullin@anrb.ru

> Поступила в редакцию 16.06.2022 г. После доработки 24.06.2022 г. Принята к публикации 26.06.2022 г.

Приведены результаты исследования по синтезу бензоксазоцинов, конденсированных с циклоалкенами. Взаимодействием соответствующих *N*-тозил-2-(1-циклоалкен-1-ил)анилинов с 2-бромэтиловым эфиром уксусной кислоты синтезированы продукты замещения брома на ариламидную группу. Щелочным гидролизом полученные эфиры превращены в *N*-(2-циклоалк-1-ен-1-ил-6-метилфенил)-*N*-(2-гидроксиэтил)-4-(метилбензол)сульфонамиды. При взаимодействии этих амидов с молекулярным бромом образуются *N*-тозилаты бензо[*e*]циклоалка[*g*][1,4]оксазоцинов с преимущественной а R^* , R^* -стереохимией, которые в растворе медленно превращаются в aS^* , R^* -атропоизомеры достигая соотношения 2.7:1 в случае циклогексенильного, и 1.4:1 в случае циклопентенильного гомологов.

Ключевые слова: бензоксазоцин, атропоизомерия, 2-бромэтанол, толуолсульфонамид

DOI: 10.31857/S0514749223040110, EDN: ASZTUO

ВВЕДЕНИЕ

Бензоксазогетероциклы проявляют различные виды биологической активности [1-3], используются в качестве добавок к полимерам [4] и получены их комплексы с металлами [5]. Интерес представляют также арилконденсированные оксазоцины [6-10], некоторые из которых способны ингибировать биохимические процессы в клетках [11, 12], являются антитромботическими [13], анальгетическими агентами или модуляторами процессов нервной системы [14, 15]. Из природного источника - верхней части растения Peristrophe lanceolaria изолирован алкалоид со структурой бензоксазоцин-5-она [16]. Бензоксазоцины обычно получают, используя в качестве исходных соединений фталевую кислоту [17], 2-аминофенолы [18] и метатезис их *N*,*O*-бис-аллил прекурсоров [19, 20], алкилфениловые эфиры [21], антраниловую кислоту [22], 2-аминобензиловый спирт [23]. Лактонизация *N*-(*орто*-алкенилфенил)глицинов, *N*-ацилалкениланилинов или 2-аминохалконов [24–27] также приводит к бензоксазоцинам. Применяя эти реакции можно синтезировать бензоксазоцины с различным расположением атомов азота и кислорода в гетероциклическом фрагменте.

Как известно [28], в семи- или восьмичленных арилконденсированных гетероциклах наличие элементов стереогенности способствует появлению атропоизомерии [29]. Она проявляется в виде равновесной смеси двух аксиальных диастереомеров [30–38] или же наблюдается необратимое превращение кинетического продукта реакции в термодинамически стабильный пространственный изомер [39].

Рис. 1. Необратимая изомеризация а*R**,*R**-изомера в а*S**,*R**-изомер [39]

В *N*-арилсульфонил-бензо[*e*]циклогекса[*g*]-[1,4]оксазоцин-6-онах, полученных ранее [39] взаимодействием *N*-(2-циклогекс-1-ен-1-ил-6-метилфенил)-*N*-арилсульфонилглицинов с молекулярным бромом, при растворении их в CDCl₃ мы наблюдали последующую необратимую медленную аксиальную изомеризацию кинетического продукта циклизации, имеющего aR^*, R^* -стереохимию, в термодинамически более стабильный aS^*, R^* -атропоизомер (рис. 1).

В этом же исследовании как единственный аксиальный изомер был получен также циклопента[g]-конденсированный (aS*,R*)-гомолог, который дальнейшим конформационным изменениям не подвергался. Очевидно, что в случае [39] лактонизация в восьмичленный бензоксазогетероцикл происходит за счёт образования новой HC⁴а_{*sp*}3−О−С⁶_{*sp*}2-связи. С целью выявления роли гибридизации углеродного атома С⁶ в эфирном звене оксазоцинового цикла на существование атропоизомерии и соотношение аксиальных изомеров, в представленной статье нами исследована реакция получения аналогичных бензоксазоцинов, в которых в простом HC⁴a_{sp3}-O-C⁶_{sp3}H₂ эфирном фрагменте конфигурация валентных электронов обоих углеродных атомов имеет *sp*³-гибридизацию.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для проведения этих исследований взаимодействием *N*-тозил-2-(1-циклопентен-1-ил)- **1a** [40] и *N*-тозил-2-(1-циклогексен-1-ил)-6-метиланилинов **1b** [39] с 2-хлорэтилацетатом в присутствии гидроксида калия и бромида триэтилбензиламмония (TEBAB) в тетрагидрофуране синтезировали эфиры **2a**, **b**. Гидролизом эфиров **2a**, **b** в присутствии LiOH в водном тетрагидрофуране (1:3) получали спирты **3a**, **b**. При взаимодействии с молекулярным бромом спирты **3a**, **b** подвергаются внутримолекулярной этерификации с образованием смеси бензоксазоцинов P^* -**4a**, **b** и M^* -**4a**, **b**, которым, по аналогии с ранее полученными нами данными [39] приписаны предполагаемые aR^*, R^* - и aS^*, R^* -стереохимия заместителей (схема 1).

Оба гомолога бензоксазоцинов P^*-4a , **b** при нахождении в CDCl₃ или в другом растворителе медленно превращаются в аксиальные изомеры с а S^* -стереохимией по оси Ar–N с сохранением R^* конфигурации при хиральном атоме C^{3a} в случае циколпентенильного **4a**, и C^{4a} в случае циклогексенильного **4b** производных. Ранее, на основании данных NOESY ЯМР ¹Н экспериментов [39], опираясь также на рентгеноструктурные исследования [24], стабильному 6-оксогомологу [39] бензоксазоцинов **4a** нами была приписана a S^*, R^* -стереохимия. По аналогии с этим, описываемый здесь значительно преобладающий вначале aR^*, R^* -конформер P^* -**4a** медленно превращается в aS^*, R^* -

Химические сдвиги некоторых ароматических, протонов оксазоцинового и карбоциклического фрагментов этих изомеров сильно различаются, что облегчает при таком медленном аксиальном превращении установление соотношения атропоизомеров М*-4а и Р*-4а по изменению интегралов пиков этих протонов. Измерением интегралов сигналов протонов в спектре ЯМР ¹Н полученной сырой реакционной смеси установлено, что изомеры Р*-4а и М*-4а образовались в соотношении 3:1. Построением кинетической кривой изменения концентрации веществ в смеси в растворе CDCl₂ установлено, что в её начальном участке происходит быстрое расходование изомера P^* -4а. По мере уменьшения концентрации этого изомера в смеси наблюдается замедление скорости изомеризации. Мы предполагаем, что содержание изомера Р*-4а

ГЕТЕРОЦИКЛИЗАЦИЯ

Схема 1

в смеси было намного выше, а за 6 ч реакции в хлористом метилене быстро уменьшилось из-за изомеризации в минорный аналог *М**-4а. Также было обнаружено, что, возможно, преобладающий изомер *P**-4а хуже растворяется в этаноле, чем минорный аналог *М**-4а. Это видно из рис. 2, *a*, который снят после кристаллизации реакционной смеси из EtOH, где, с учётом даже кратковременного повышения температуры почти до 80°С, способствующей увеличению скорости изомеризации P^*-4a в M^*-4a , соотношение изомеров составляет 4:1, а не исходные 3:1. После семидневного выдерживания раствора этой смеси кристаллов в CDCl₃ при комнатной температуре их соотношение становится 2:1 (рис. 2, b). По истечении 20 дней соотношение изомеров становится 1.4:1 и после этого практически не меняется. На рис. 2, с приведён этот же фрагмент спектра, снятый через 32 дня.

Измерением интегралов протонов в спектре ЯМР ¹Н неочищенной реакционной смеси, полученной при взаимодействии спирта **3b** с бромом, установлено значительное преобладание изомера *P**-**4b** (*P**-**4b**:*M**-**4b** \approx 21:1). Отнесение продуктов реакции к соответствующим аксиальным изомерам осуществлено также на основании ра-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

нее [39] полученных данных. Как в случае менее стабильных aR^* , R^* -6-оксогомологов [39] (рис. 1), так и в спектрах этих бензоксазоцинов 4b, у смеси $aR^*.R^*$ -энантиомеров протоны H¹ и H⁴a резонируют в более сильном поле, чем аналогичные сигналы aS^*, R^* -энантиомеров, изображенного на рис. 1, и *М**-4b (схема 1). На рис. 3, *а* приведен фрагмент спектра смеси изомеров P^*-4b и M^*-4b после кристаллизации из горячего этанола. Нагревание способствует повышению скорости изомеризации, и, поэтому, вероятно, при растворении в горячем спирте значительная часть аксиального изомера P^* -4b успевает превратиться в конформер M^* -4b, что приводит к изменению соотношения гетероциклов в выпавших кристаллах до 12:1. После 6 дней нахождения этой смеси кристаллов в дейтерохлороформе соотношение интегралов соответствующих пиков меняется на 5:1 (рис. 3, *b*). После 20 дней их соотношение становится \approx 2.7:1 и после этого в данных условиях не меняется. На рис. 3, *с* приведён фрагмент спектра ЯМР ¹Н этой смеси, находившейся в CDCl₃ в течение 30 дней.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты и растворители были использованы без дополнительной очистки. Препаративное хро-

Рис. 2. Спектр раствора смеси P^* -4а и M^* -4а в CDCl₃: (*a*) после кристаллизации полученной реакционной смеси из этанола (соотношение изомеров \approx 4:1); (*b*) раствор этой же смеси в CDCl₃ через 7 дней (соотношение изомеров \approx 2:1); (*c*) раствор этой же смеси в CDCl₃ через 32 дня (соотношение изомеров \approx 1.4:1)

матографическое разделение продуктов реакции проводили на силикагеле марки Kieselgel 60 (0.04-0.063 мм) (Macherey-Nagel GmBH & Co, KG) с последующим анализом методом ТСХ на пластинах Sorbfil (ЗАО «Сорбполимер», г. Краснодар, Россия), проявлением парами йода. Температуры плавления определены на столике Boetius (VEB Wägetechnik Rapido) и не исправлены. ИК спектры записаны на спектрофотометре с преобразователем Фурье IR Prestige-21 (Shimadzu). Спектры ЯМР¹Н и ¹³С записаны в CDCl₃ на приборе Bruker Avance III (Bruker) при 500.13 и 125.13 МГц соответственно. Для корректного отнесения сигналов в спектрах ЯМР использовались методы гомо- и гетероядерной корреляции COSY, HMBC, HSQC и NOESY. Химический сдвиг в м.д. указан относительно сигналов растворителя, откалиброванных для CDCl₃ следующим образом: $\delta_{\rm H}$ (CHCl₃) 7.26, $\delta_{\rm C}$ $(CDCl_3)$ 77.2 м.д. Масс-спектры получены на приборе LCMS-2010EV (Shimadzu), колонка Luna 5µC (18) 150×4.6 мм, сорбент октадецилсилан, подвижная фаза MeCN–H₂O, 95:5 или MeOH–H₂O, 95:5. Элементный анализ выполнен на приборе CHNS Elemental Analyzer EURO EA-3000 (HEKAtech GmBH). Содержание галогена определяли колбовым методом Шёнигера с последующим потенциометрическим титрованием.

2-{(2-Циклопент-1-ен-1-ил-6-метилфенил)-[(4-метилфенил)сульфонил]амино}этилацетат (2а). К раствору 0.98 г (3 ммоль) тозилата **1а** [40] в 10 мл тетрагидрофурана добавили 0.34 г (6 ммоль) тонкоизмельченного КОН и 0.81 г (3 ммоль) бромида триэтилбензиламмония. Суспензию перемешивали 5 мин и добавили 1.00 г (6 ммоль) 2-бромэтилового эфира уксусной кислоты. Перемешивание продолжили 72 ч. В течение этого времени наблю-

Рис. 3. Спектр раствора смеси P^* -4b и M^* -4b в CDCl₃: (*a*) после кристаллизации полученной реакционной смеси из этанола (соотношение изомеров \approx 12:1); (*b*) раствор этой же смеси в CDCl₃ через 6 дней (соотношение изомеров \approx 5:1); (*c*) через 30 дней (соотношение изомеров \approx 2.7:1)

дается постепенное выделение белого осадка. К реакционной смеси добавили 50 мл хлористого метилена и 15 мл воды, перемешивали 1 мин, переносили в делительную воронку. Органический слой отделяли, промывали водой (10 мл), сушили MgSO₄. После удаления растворителя и хроматографирования остатка на силикагеле для удаления смолистых веществ (элюент C₆H₆), получили 1.03 г (81%) эфира 2а в виде вязкой прозрачной бесцветной массы. Rf 0.2 (C6H6). ИК спектр (KBr), v, cm⁻¹: 1735, 1597, 1442, 1344, 1234, 1161, 1107, 1089, 1049, 977, 908, 815, 785, 715, 680, 659, 582, 570, 543. Спектр ЯМР ¹Н, б, м.д.: 1.83–1.94 м, 2.36-2.41 м, 2.46-2.54 м, 2.65-2.71 м (6Н, $C^{3'''}H_2C^{4'''}H_2C^{5'''}H_2$, 1.87 c (3H, CH₃), 2.05 c (3H, CH₃), 2.45 с (3H, CH₃), 3.67 д.т (1H, H^{2A}, J 5.8, 14.6 Гц), 3.85 д.т (1Н, Н^{2В}, *J* 6.4, 14.6 Гц), 4.02 д.т (1Н, Н^{1А}, *J* 6.4, 11.3 Гц), 4.10 д.т (1Н, Н^{1В}, *J* 5.8, 11.3 Гц), 5.77 с (1H, H²"), 7.07 д (2H, H³", H⁵", J 7.0 Гц), 7.15 т (1Н, Н⁴", *J* 7.0 Гц), 7.27 д (2Н, Н^{3',5'}, J 8.2 Гц), 7.70 д (2H, H^{2',6'}, J 8.2 Гц). Спектр ЯМР ¹³С, δ , м.д.: 19.62, 20.55, 21.53 (3CH₃), 23.59, 33.65, 37.61 (С^{3'''}, C^{4'''}, C^{5'''}), 49.49 (С²), 61.74 (С¹), 127.85, 129.25 (С^{2',6'}, С^{3',5'}), 128.00, 128.25, 130.01, 131.17 (С^{3''}, С^{4''}, С^{5'''}, С^{2'''}), 135.31, 138.66, 139.31, 140.61, 141.02, 142.74 (С^{1'}, С^{4'}, С^{1''}, С^{2''}, С^{6''}, С^{1'''}), 169.84 (С=О). Масс-спектр, *m/z* (I_{0TH} , %): 414.1 (100) [*M* + H]⁺. C₂₃H₂₇NO₄S.

2-{(2-Циклогекс-1-ен-1-ил-6-метилфенил)-[(4-метилфенил)сульфонил]амино}этилацетат (2b). Получали аналогично вышеописанному из 1.02 г (3 ммоль) тозилата **1b** [39]. Экстрагировали 60 мл диэтилового эфира, органический слой отделили, водный слой экстрагировали 10 мл эфира. Объединённые эфирные фракции промывали водой (15 мл), сушили MgSO₄. Растворитель упаривали в вакууме, остаток хроматографировали на колонке с силикагелем (30 г, элюент C₆H₆). Выделили 1.01 г (79%) соединения **2b** в виде про-

зрачной стекловидной массы. Rf 0.2 (C₆H₆). ИК спектр, v, см⁻¹ (КВг): 1747, 1734, 1598, 1494, 1456, 1436, 1388, 1367, 1338, 1305, 1286, 1238, 1211, 1155, 1138, 1107, 1089, 1051, 968, 910, 815, 788, 761, 742, 709, 696, 659, 601, 586, 574, 545. Спектр ЯМР ¹Н, δ, м.д.: 1.58–1.70 м, 1.92–2.09 м, 2.36–2.40 м (8Н, $C^{3'''}H_2C^{4'''}H_2C^{5'''}H_2C^{6'''}H_2)$, 1.82 c (3H, CH₃), 2.14 c (3H, CH₂), 2.45 с (3H, CH₂), 3.59–3.65 м. 3.85–3.94 м, 4.04–4.09 м (4Н, Н^{1А}, Н^{1В}, Н^{2А}, Н^{2В}), 5.57–5.59 м (1H, H^{2^{III}}), 6.96 д (1H, ArH, *J* 7.3 Гц), 7.08 д (1H, АгН. Ј 7.3 Ги), 7.14 т (1Н. Н⁴", Ј 7.3 Ги), 7.29 д (2Н. Н^{3',5'}, *J* 8.2 Гц), 7.75 д (2Н, Н^{2',6'}, *J* 8.2 Гц). Спектр ЯМР ¹³С, б, м.д.: 19.98, 20.47, 21.51 (3CH₃), 21.83, 23.12, 25.21, 30.63 ($C^{3'''}$, $C^{4'''}$, $C^{5'''}$, $C^{6'''}$), 49.23 (C^{2}), 61.60 (C^{1}), 127.87, 129.23 ($C^{2',6'}$, $C^{3',5'}$), 128.00, 128.01, 128.19, 129.62 ($C^{3"}$, $C^{4"}$, $C^{5"}$, $C^{2"}$), 135.65, 135.97, 138.52, 139.38, 142.69, 145.87 (C^{1'}, C^{4'}, C^{1"}, С^{2"}, С^{6"}, С^{1""}), 169.80 (С=О). Масс-спектр, *m/z* (*I*_{отн}, %): 428.3 (100) $[M + H]^+$, 273.2 (40). $C_{24}H_{29}NO_4S$.

N-(2-Циклопент-1-ен-1-ил-6-метилфенил)-N-(2-гидроксиэтил)-4-метилбензолсульфонамид (За). К раствору 0.83 г (2 ммоль) эфира 2а в 30 мл ТГФ добавляли раствор 0.42 г (10 ммоль) LiOH·H₂O в 10 мл воды и реакционную смесь интенсивно перемешивали 3 ч на магнитной мешалке. Добавляли 10 мл воды, 70 мл хлористого метилена, перемешивали, органический слой отделяли, промывали водой (10 мл), сушили MgSO₄. Растворитель упаривали в вакууме, продукт очищали хроматографированием остатка на силикагеле (3 г, элюент C₆H₆). Выход 0.62 г (83%). Вязкая бесцветная прозрачная масса. $R_{\rm f}0.1$ (C₆H₆). Спектр ЯМР ¹Н, б, м.д.: 1.84–1.90 м, 2.36–2.40 м, 2.46–2.53 м, 2.63–2.69 м (6H, C³"'H₂C⁴"'H₂C⁵"'H₂), 2.01 с (3H, CH₃), 2.45 с (3H, CH₃), 3.50–3.72 м (4H, H^{1'A}, H^{1'B}, H^{2'A}, H^{2'B}), 5.86 с (1H, H^{2'''}), 7.07 т (2H, H^{3''}, H^{5''}, J 7.0 Гц), 7.14 т (1Н, Н^{4"}, *J* 7.0 Гц), 7.27 д (2Н, Н^{3',5'}, *J* 8.2 Гц), 7.71 д (2H, H^{2',6'}, J 8.2 Гц). Спектр ЯМР ¹³С, δ, м.д.: 19.55, 21.56 (2СН₃), 23.47, 33.69, 37.90 (С^{3""}. C⁴^{'''}, C⁵^{'''}), 54.19 (C^{1'}), 60.31 (C^{2'}), 127.91, 128.07, 130.23, 131.46 (C^{3"}, C^{4"}, C^{5"}, C^{2""}), 128.07, 129.33 (C^{2,6}, C^{3,5}), 135.96, 138.16, 138.92, 140.89, 141.18, 143.05 (C¹, C⁴, C¹", C²", C⁶", C¹"). Масс-спектр, *m/z* $(I_{\text{отн}}, \%)$: 372.1 (100) $[M + H]^+$. C₂₁H₂₅NO₃S.

N-(2-Циклогекс-1-ен-1-ил-6-метилфенил)-*N*-(2-гидроксиэтил)-4-метилбензолсульфонамид (3b). Получали аналогично спирту **3a** из 0.86 г (3 ммоль) эфира **2b**. Выход 0.62 г (80%). В виде

вязкой бесцветной прозрачной стекловидной массы. R_f 0.1 (C₆H₆). При медленном улетучивании хлористого метилена из раствора соединения 3b образовались кристаллы на стенках колбы. Т.пл. 137–139°С. Спектр ЯМР ¹Н. б. м.д.: 1.54–1.65 м, 1.89–1.93 м, 2.04–2.08 м, 2.34–2.40 м (8Н, C³"'H₂C⁴"'H₂C⁵"'H₂C⁶"'H₂), 2.12 c (3H, CH₃), 2.46 c (3H, CH₃), 3.56–3.64 м (4H, H^{1'A}, H^{1'B}, H^{2'A}, H^{2'B}), 5.60 с (1H, H²"), 6.97 д (1H, ArH, J 7.3 Гц), 7.07 д (1Н, АгН, Ј 7.3 Гц), 7.14 т (1Н, АгН, Ј 7.3 Гц), 7.29 д (2Н, Н^{3',5'}, *J* 8.2 Гц), 7.76 д (2Н, Н^{2',6'}, *J* 8.2 Гц). Спектр ЯМР ¹³С, δ, м.д.: 19.95, 21.56 (2СН₃), 21.77, 23.08, 25.23, 30.90 (C³", C⁴", C⁵", C⁴"), 53.98 (C¹), 60.22 (C²), 127.92, 127.95, 128.15, 129.91 (C^{3"}, C^{4"}, C^{5"}, C^{2""}), 128.21, 129.31 (C^{2,6}, C^{3,5}), 136.13, 136.30, 137.83, 138.81, 142.95, 146.22 (C¹, C⁴, C^{1"}, C^{2"}, C^{6"}, $C^{1'''}$). Масс-спектр, *m/z* (I_{0TH} , %): 386.1 (100) [*M* + $H^{+}_{.} C_{22}H_{27}NO_{3}S$

8-Метил-7-[(4-метилфенил)сульфонил]-2,3,3а,5,6,7-гексагидробензо[e]циклопента[g]-[1,4]оксазоцин в виде смеси а*R**,*R**- и а*S**,*R**-диастереомеров Р*-4а и М*-4а в соотношении 4:1. К раствору 0.37 г (1 ммоль) спирта За в 5 мл хлористого метилена прибавили 0.82 г (10 ммоль) гидрокарбоната натрия и при перемешивании на магнитной мешалке в течение 1 мин прибавляли 0.16 г (1 ммоль) Br₂ в 1 мл CCl₄. Каждая прибавленная капля мгновенно обесцвечивается. Перемешивание продолжили ешё 6 ч. После этого к реакционной смеси при перемешивании добавляли воду (10 мл). продукт экстрагировали хлористым метиленом (40 мл). Органический слой промывали водой (10 мл), сушили MgSO₄. После удаления растворителя в вакууме получили 0.37 г (100%) сырой, по спектральным данным практически чистой смеси продуктов Р*-4а и М*-4а в соотношении 3:1 в виде пены. Кристаллизация этой пены из горячего этанола (2 мл) дает смесь продуктов Р*-4а и М*-4а с выходом 0.28 г (76%) в соотношении 4:1 в виде бесцветных кристаллов с т.пл. 135-138°С (ЕtOH). Спектр ЯМР ¹H (CDCl₃), δ_{H} и $\delta_{H'}$ (0.8H:0.2H'), м.д.: 1.22-1.35 м, 1.61-1.70 м, 2.01-2.09 м, 2.11-2.21 м, 2.32–2.36 м (4H, H^{2A}, H^{2A}, H^{2B}, H^{2B}, H^{3A}, H'^{3A}, H^{3B}, H'^{3B}), 1.79 c (2.4H, CH₂), 2.42 c (0.6H, CH₃), 2.43 c (0.6H, CH₃), 2.45 c (2.4H, CH₃), 3.23-3.29 м (1.2Н, Н^{6А}, Н'^{6А}, Н'^{6В}), 3.81–3.87 м (1Н, Н^{6В}, Н'^{5А}), 4.03 д.т (0.8Н, Н^{5А}, *J* 3.0, 12.3 Гц), 4.24–4.23 м (1Н, Н^{5В}, Н^{5В}), 4.49–4.52 м (0.2Н,

9-Метил-8-[(4-метилфенил)сульфонил]-,4a,6,7,8-гексагидро-3*Н*-дибензо[*e*,g][1,4]ок-

Н'^{3a}), 5.04–5.07 м (0.8Н, Н^{3a}), 5.60 с (0.2Н, Н'¹), 6.27 с (0.8H, H¹), 6.93 д (0.2H, ArH', J 7.0 Гц), 7.08 д (0.8H, ArH, J7.3 Гц), 7.19–7.26 м (2H, ArH, ArH'), 7.42 д (0.8H, ArH, J 7.6 Гц), 7.60 д (1.6H, ArH, J 8.2 Гц), 7.74 д (0.4H, ArH', J 8.0 Гц). Спектр ЯМР ¹³С (CDCl₃), б_С и б_{С'} (0.8С:0.2 С'), м.д.: 17.78, 21.52 (2CH₃), 18.72, 21.49 (2C'H₃), 28.58, 34.08 (C², C³), 30.26, 30.29 (C², C³), 52.04 (C⁶), 54.53 (C⁶), 63.13 (C^{5}) , 70.27 (C^{5}) , 88.63 (C^{3a}) , 89.58 (C^{3a}) , 127.34, 129.54 (C^{2',6'}, C^{3',5'}), 127.86, 127.99 (C^{2',6'}, C^{3',5'}), 127.82, 128.58, 130.37, 130.58 (C¹, C⁹, C¹⁰, C¹¹). 128.41, 128.81, 131.04, 134.94 (C^{'1}, C^{'9}, C^{'10}, C^{'11}), 134.81, 138.97, 140.14, 141.23, 142.61, 143.51 (C'^{7a}) C'⁸, C'^{11a}, C'^{11b}, C'^{1'}, C'^{4'}), 135.83, 137.44, 138.26, 138.29, 143.34, 146.16 (C^{7a}, C⁸, C^{11a}, C^{11b}, C^{1'}, C^{4'}). Масс-спектр, m/z (I_{0TH} , %): 370.1 (100) [M + H]⁺, 214.4 (45). C₂₁H₂₃NO₃S.

9-Метил-8-[(4-метилфенил)сульфонил]-2,4,4a,6,7,8-гексагидро-3*H*-дибензо[*e*,*g*][1,4]оксазоцин (*P**-4b). Получали аналогично смеси изомеров *P**-4а и *M**-4а из 0.39 г (1 ммоль) спирта 3b в виде белой пены. Выход 0.38 г (100%) практически чистой сырой смеси изомеров P^*-4b и M^*-4b в соотношении 21:1. Полученную пенообразную массу растворяли в 1 мл горячего этанола, выпавшие после охлаждения кристаллы отфильтровывали. Выход 0.33 г (85%). После кристаллизации соотношение изомеров P^* -4b и M^* -4b изменилось на 12:1. Бесцветные кристаллы с т.пл. 158-160°С (EtOH). ИК спектр (КВг, вазелиновое масло), v, cm⁻¹: 1597, 1336, 1219, 1155, 1101, 1083, 1066, 1051, 970, 958, 896, 873, 815, 783, 748, 713, 665, 651, 594, 563, 542, 501. Спектр ЯМР ¹Н, δ, м.д.: 1.23-1.29 м, 1.41-1.47 м, 1.58-1.66 м, 1.76-1.84 м, 1.89–1.94 м (6Н, СН₂СН₂СН₂), 2.33 с (3Н, СН₃), 2.41 с (3H, CH₃), 3.18–3.22 м (2H, H^{6A}, H^{7A}), 3.68 т (1Н, Н⁴а, *J* 4.0 Гц), 3.90 д.т (1Н, Н^{7В}, *J* 4.0, 13.8 Гц), 4.03 д.д.д (1Н, Н^{6В}, *J* 4.0, 10.0, 14.0 Гц), 5.65 т (1H, H¹, J 3.5 Гц), 6.91 т (1H, ArH, J 4.5 Гц), 7.21 д (2H, ArH, J4.5 Гц), 7.26 д (2H, ArH, J7.9 Гц), 7.74 д (2H, ArH, J 7.9 Гц). Спектр ЯМР ¹³С, б. м.д.: 18.02, 25.77, 30.16 (C², C³, C⁴), 18.97 (CH₃), 21.48 (CH₂), 51.66 (C⁷), 66.64 (C⁶), 77.96 (C^{4a}), 127.68, 129.16 (C^{2',6'}, C^{3',5'}), 128.20, 128.99, 130.59 (C¹⁰, C¹¹, C¹²), 131.70 (C¹), 135.16, 137.85, 138.87, 139.52, 142.71, 146.09 (C^{8a}, C⁹, C^{12a}, C^{12b}, C^{1'}, C^{4'}). Maccспектр, m/z (I_{0TH} , %): 384.1 (100) [M + H]⁺, 228.1 $(95) [M - H_3CC_6H_4SO_2]^+$. C₂₂H₂₅NO₃S.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2023

2,4,4а,6,7,8-гексагидро-3*H*-дибензо[*e*,*g*][1,4]ок**сазоцин (***M**-**4b**). Смесь изомеров *M**-**4b** и *P**-**4b** (50 мг) в CDCl₂, в котором преобладает а R^*, R^* -стереоизомер *Р**-4b, выдерживали при комнатной температуре 45 сут или нагревали при температуре 60°С 30 ч. Затем в этом же растворителе снимали спектры ЯМР. Растворитель упаривали в вакууме. Аморфная масса в виде белой пены. R_f 0.2 (С₆Н₆). Спектр ЯМР выписан из смеси стереоизомеров *M**-**4b**:*P**-**4b** в соотношении \approx 2.6:1 вычитанием сигналов изомера *Р**-4b. Спектр ЯМР ¹Н, δ, м.д.: 1.74–1.78 м, 1.90–1.95 м, 2.10–2.15 м, (6H, CH₂CH₂CH₂), 1.97 c (3H, CH₃), 2.43 c (3H, СН₃), 3.24 д.т (1Н, Н^{7А}, *J* 8.5, 14.6 Гц), 3.79–3.81 м (2Н, Н^{6A}, Н^{7B}), 4.22 д.т (1Н, Н^{6B}, *J* 1.5, 14.6 Гц), 4.26–4.30 м (1Н, Н⁴а), 5.89 к (1Н, Н¹, *J* 2.2 Гц), 7.10 д.д (1H, ArH, J 2.0, 7.4 Гц), 7.25 д (2H, ArH, J 8.2 Гц), 7.65 д (2H, ArH, J 8.2 Гц). Спектр ЯМР ¹³С, δ, м.д.: 18.28, 25.54, 30.90 (С², С³, С⁴), 20.99, 21.52 (2CH₃), 53.09 (C⁷), 70.57 (C⁶), 81.27 (C^{4a}), 127.42, $129.44 (C^{2',6'}, C^{3',5'}), 128.12, 128.41, 128.63, 130.22,$ (C¹, C¹⁰, C¹¹, C¹²), 137.05, 137.93, 138.71, 141.97, 142.12, 143.26 (C^{8a}, C⁹, C^{12a}, C^{12b}, C^{1'}, C^{4'}). Maccспектр, m/z (I_{0TH} , %): 384.1 (75) [M + H]⁺, 228.1 $(100) [M - H_3CC_6H_4SO_2]^+$. C₂₂H₂₅NO₃S.

ЗАКЛЮЧЕНИЕ

При взаимодействии N-(2-циклоалк-1-ен-1-ил-6-метилфенил)-*N*-(2-гидроксиэтил)-4-метилбензолсульфонамидов с молекулярным бромом как и в случае ранее описанных [39] *N*-арилсульфонил-N-[6-(1-циклоалкен-1-ил)-2-метилфенил]глицинов, образуются *N*-тозилаты гексагидробензо[*e*]циклоалка[g][1,4]оксазоцинов. Первоначально, как и в ранее описанном [39] случае образуется aR*, R*-конформер в качестве преобладающего продукта реакции, который частично медленно трансформируется в аксиальный изомер с aS*, R*-стереохимией. Отмечается влияние на соотношение aR*,R*- и aS*,R*-аксиальных изомеров вида гибридизации валентных орбиталей углеродного атома C⁵ в случае конденсированного с циклопентеном и C⁶ в случае конденсированного с циклогексеном оксазоцинового цикла молекулы. Равновесные соотношения синтезированных в настоящей статье бензоксазоцинов, где эти атомы *sp*³-гибридизованы, и описанных ранее [39] гексагидробензоксазоцинонов с *sp*²-гибридизованными атомами С⁵ (или С⁶) углеродными атомами отличаются. В случае, синтезированных в данной статье, конденсированных с циклопентеном бензоксазоцинов в реакционной смеси обнаруживаются как aR*,R*-, так и aS*,R*-аксиальный изомер, тогда как в случае [39] бензоксазоцин-5-онового аналога был представлен единственный aS*, R*-конформер. В ранее [39] синтезированных конденсированных с циклогексеном бензоксазоцин-6-онах, где углеродный атом C⁶ sp²-гибридизован, наблюдается необратимая полная изомеризация а*R**,*R**-конформера в а*S**,*R**-аналог независимо от природы алкил- или арилсульфонильной группы при атоме азота. Электронная конфигурация при атоме С⁶ в синтезированных в данной статье аналогичных бензоксазоцинах имеет *sp*³-гибридизацию. Эти гетероциклы в растворе существуют в виде равновесной смеси изомеров (соотношение aR^*, R^* - и aS^*, R^* -конформеров $\approx 2.7:1$).

БЛАГОДАРНОСТИ

Спектральные анализы выполнены на оборудовании ЦКП «Химия» Уфимского института химии РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках программы «Новые подходы и усовершенствование известных стратегий направленного синтеза поли-, би- и моноциклических *N*,*N*-, *N*,*O*-, *S*,*O*-содержащих гетероциклов с выявлением их биологической, антикоррозионной активностей и разработкой технологии практической реализации полученных соединений с соответствующими свойствами», государственное задание (номер госрегистрации темы в ЕГИСУ 122031400274-4).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Гатауллин Раил Рафкатович, ORCID: https:// orcid.org/0000-0003-3269-2729

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Hanessian S., Jennequin T., Boyer N., Babonneau V., Soma U., la Cour C.M., Millan M.J., De Nanteuil G. ACS Med. Chem. Lett. 2014, 5, 550–555. doi 10.1021/ ml400528y

- Colarusso S., Conte I., Di Filippo M., Ercolani C., Mackay A.C., Palumbi M.C., Rico Ferreira M.R., Stansfield I., Zaramella S., Narjes F., Habermann J. Synlett. 2011, 1527–1532. doi 10.1055/s-0030-1260790
- Mitra S., Banerjee T.S., Hota S.K., Bhattacharya D., Das S., Chattopadhyay P. *Eur. J. Med. Chem.* 2011, 46, 1713–1720. doi 10.1016/j.ejmech.2011.02.024
- Liu J., Agag T., Ishida H. Polymer. 2010, 51, 5688– 5694. doi 10.1016/j.polymer.2010.08.059
- Попов Л.Д., Зайченко Н.Л., Венидиктова О.В., Валова Т.М., Барачевский В.А., Шиенок А.И., Кольцова Л.С., Левченков С.И., Коган В.А. *ЖОХ*. 2014. 84, 843–847. [Popov L.D., Zaichenko N.L., Venidiktova O.V., Valova T.M., Barachevskii V.A., Shienok A.I., Kol'tsova L.S., Levchenkov S.I., Kogan V.A. Russ. J. Gen. Chem. 2014. 84, 934–938.] doi 10.1134/S1070363214050259
- Moghaddam F.M., Taheri S., Mirjafary Z., Saeidian H., Kiamehr M., Tafazzoli M. *Helv. Chim. Acta.* 2011, 94, 142–147. doi 10.1002/hlca.201000144
- Шинкевич Е.Ю., Новиков М.С., Хлебников А.Ф., Костиков Р.Р., Корf J., Magull J. *ЖОрХ*. 2007, 43, 1071–1084. [Shinkevich E.Yu., Novikov, M.S., Khlebnikov A.F., Kostikov R.R., Kopf J., Magull J. *Russ. J. Org. Chem.* 2007, 43, 1065–1079.] doi 10.1134/ S1070428007070214
- Girgis A.S., Hosni H.M. J. Chem. Res. 2006, 274–276. doi 10.3184/030823406776894274
- Bremner J.B., Browne E.J., Gunawardana I.W.K. Austral. J. Chem. 1984, 37, 129–141. doi 10.1071/ CH9840129
- Berg S.S., Toft M.P. Synth. Commun. 1976, 6, 175–183. doi 10.1080/00397917608072628
- Dockendorff C., Faloon P.W., Pu J., Yu M., Johnston S., Bennion M., Penman M., Nieland T.J.F., Dandapani S., Perez J.R., Munoz B., Palmer M.A., Schreiber S.L., Krieger M. *Bioorg. Med. Chem. Lett.* 2015, *25*, 2100–2105. doi 10.1016/j.bmcl.2015.03.073
- Miki T., Kori M., Fujishima A., Mabuchi H., Tozawa R., Nakamura M., Sugiyama Y., Yukimasa H. *Bioorg. Med. Chem.* 2002, 10, 385–400. doi 10.1016/ S0968-0896(01)00289-9
- Mishra J.K., Samanta K., Jain M., Dikshit M., Panda G. *Bioorg Med. Chem. Lett.* 2010, 20, 244–247. doi 10.1016/j.bmcl.2009.10.126
- Sanga M., Banach J., Ledvina A., Modi N.B., Mittur A. *Xenobiotica*. 2016, 46, 1001–1016. doi 10.3109/00498254.2015.1136989

- Schaefer G.I., Perez J.R., Duvall J.R., Shamji A.F., Schreiber S.L. J. Am. Chem. Soc. 2013, 135, 9675– 9680. doi 10.1021/ja400034k
- Prapalert W., Santiarworn D., Liawruangrath S., Liawruangrath B., Pyne S. G. *Nat. Prod. Commun.* 2014, 9, 1433–1435. doi 10.1177/1934578X1400901008
- Jangili P., Das B. Synlett. 2016, 27, 924–928. doi 10.1055/s-0035-1561203
- Baimuratov M. R., Leonova M.V., Klimochkin Y.N. Chem. Heterocycl. Compd. 2021, 57, 298–304. doi 10.1007/s10593-021-02907-5
- Taher A., Aderibigbe B.A., Morgans G.L., Madeley L.G., Khanye S.D., der Westhuizen L., Fernandes M.A., Smith V.J., Michael J.P., Green I.R., van Otterlo W.A.L. *Tetrahedron*. 2013, 69, 2038–2047. doi 10.1016/j.tet.2012.12.043
- van Otterlo W.A.L., Morgans G.L., Khanye S.D., Aderibigbe B.A.A., Michael J.P., Billing D.G. *Tetrahedron Lett.* 2004, 45, 9171–9175. doi 10.1016/ j.tetlet.2004.10.108
- Lakshmi Ch.S., Rehaman H., Rao A.B. Monatsh. Chem. 2009, 140, 611–613. doi 10.1007/s00706-008-0101-7
- 22. Ibrahim N.M., Yosef H.A.A., Yakout E.-S.M.A., MahranM.R.H.*Phosphorus, Sulfur Silicon Relat. Elem.* **2009**, *184*, 1124–1138. doi 10.1080/10426500902855133
- 23. Rujirawanich J., Gallagher T. Org. Lett. 2009, 11, 5494–5496. doi 10.1021/019023453
- Gataullin R.R., Mescheryakova E.S., Sultanov R.M., Fatykhov A.A., Khalilov L.M. Synthesis. 2019, 51, 3485–3490. doi 10.1055/s-0039-1689971
- 25. Гатауллин Р.Р. *ЖОХ*. **2021**, *91*, 1213–1224. [Gataullin R.R. *Russ. J. Gen. Chem.* **2021**, *91*, 1484–1493.] doi 10.1134/S1070363221080090
- Agejas J., Delgado F., Vaquero J.J., García-Navio J.L., Lamas C. *Tetrahedron Lett.* 2002, 43, 8025–8027. doi 10.1016/S0040-4039(02)01974-3
- Gao Y.-Q., Hou Y., Zhu L., Chen J., Li R., Zhang S.-Y., He Y.-P., Xie W. *Chem. Commun.* 2020, *56*, 6739–6742. doi 10.1039/D0CC02416C
- 28. Гатауллина А.Р., Гатауллин Р.Р. ЖОХ. 2020, 90, 1070–1101. [Gataullina A.R., Gataullin R.R. Russ.

J. Gen. Chem. 2020, 90, 1255–1284.] doi 10.1134/ S1070363220070130

- Siegel J.S. Synlett. 2018, 29, 2122–2125. doi 10.1055/ s-0037-1610998
- Tanaka R., Makino K., Tabata H., Oshitari T., Natsugari H., Takahashi H. *Synthesis*. 2021, *53*, 4682–4688. doi 10.1055/s-0040-1720865
- Tabata H., Tsuji Y., Yoneda T., Tasaka T., Oshitari T., Takahashi H., Natsugari H. *Synlett.* 2018, 29, 2141-2146. doi 10.1055/s-0037-1609868
- Tabata H., Yoneda T., Oshitari T., Takahashi H., Natsugari H. J. Org. Chem. 2013, 78, 6264–6270. doi 10.1021/jo401020y
- Burke E.W.D., Morris G.A., Vincent M.A., Hilliera I.H., Clayden J. Org. Biomol. Chem. 2012, 10, 716– 719. doi 10.1039/C1OB06490H
- Tabata H., Wada N., Takada Y., Oshitari T., Takahashi H., Natsugari H. J. Org. Chem. 2011, 76, 5123– 5131. doi 10.1021/jo2008725
- Ishichi Y., Ikeura Y., Natsugari H. *Tetrahedron*. 2004, 60, 4481–4490. doi 10.1016/j.tet.2004.01.097
- Albert J.S., Ohnmacht C., Bernstein P.R., Rumsey W.L., Aharony D., Masek B.B., Dembofsky B.T., Koether G.M., Potts W., Evenden J.L. *Tetrahedron*. 2004, 60, 4337–4347. doi 10.1016/j.tet.2004.03.054
- Natsugari H., Ikeura Y., Kamo I., Ishimaru T., Ishichi Y., Fujishima A., Tanaka T., Kasahara F., Kawada M., Doi T. J. Med. Chem. 1999, 42, 3982–3993. doi 10.1021/jm990220r
- Tabata H., Akiba K., Lee S., Takahashi H., Natsugari H. Org. Lett. 2008, 10, 4871–4874. doi 10.1021/ol801968b
- Gataullin, R.R. *Tetrahedron*. 2021, 96, 132388. doi 10.1016/j.tet.2021.132388
- Кириллова И.А., Залимова М.А., Мулюкова Р.В., Вахитова Ю.В., Хуснитдинов Р.Н., Гатауллин Р.Р. *ЖОХ*. 2018, 88, 390–396. [Kirillova I.A., Zalimova М.М., Mulyukova R.V., Vakhitova Yu.V., Khusnitdinov R.N., Gataullin R.R. *Rus. J. Gen. Chem.* 2018, 88, 418–424.] doi 10.1134/S1070363218030076

Heterocyclisation of N-(2-Cycloalk-1-en-1-yl-6-methylphenyl)-N-(2-hydroxyethyl)-4-methylbenzenesulfonamides to Benzoxazocines

R. R. Gataullin*

*Ufa Institute of Chemistry of Russian Academy of Sciences, prosp. Oktyabrya, 71, Ufa, 450054 Russia *e-mail: gataullin@anrb.ru*

Received June 16, 2022; revised June 24, 2022; accepted June 26, 2022

The article cover the results of a study on the synthesis of benzoxazocines condensed with cycloalkenes. By reacting the corresponding *N*-tosyl-2-(1-cycloalken-1-yl)anilines with 2-bromoethyl ester of acetic acid, the products of substitution of bromine for the arylamide group were synthesized. The resulting esters were converted by alkaline hydrolysis into *N*-(2-cycloalk-1-en-1-yl-6-methylphenyl)-*N*-(2-hydroxyethyl)-4-(methylbenzene)-sulfonamides. The interaction of these amides with molecular bromine gives benzo[e]cycloalka[g][1,4]oxazocine*N* $-tosylates with predominant <math>aR^*, R^*$ -stereochemistry, which in solution slowly turn into aS^*, R^* -atropisomers reaching a ratio of 2.7:1 in the case of cyclohexenyl and 1.4:1 in the case of cyclopentenyl homologues.

Keywords: benzoxazocine, atropisomerism, 2-bromoethanol, toluenesulfonamide