УДК 552.33:550.4.08

КАЛЬЦИЕВЫЕ ГРАНАТЫ КАК ИСТОЧНИК ИНФОРМАЦИИ О ВОЗРАСТЕ ЩЕЛОЧНО-УЛЬТРАОСНОВНЫХ ИНТРУЗИЙ КОЛЬСКОЙ МАГМАТИЧЕСКОЙ ПРОВИНЦИИ

© 2020 г. М. В. Стифеева^{*a*, *}, Е. Б. Сальникова^{*a*}, А. А. Арзамасцев^{*a*}, А. Б. Котов^{*a*, **}, В. Ю. Гроздев^{*b*}

^аИнститут геологии и геохронологии докембрия РАН, наб. Макарова, 2, Санкт-Петербург, 119034 Россия ^bГеологический институт Болгарской академии наук, ул. Академика Бончева, 24, София, 1113 Болгария

> *e-mail: stifeeva.maria@yandex.ru **e-mail: abkotov-spb@mail.ru Поступила в редакцию 12.04.2019 г. После доработки 21.05.2019 г. Принята к публикации 27.05.2019 г.

Выполнены U-Pb геохронологические (ID TIMS) исследования гранатов ряда шорломит-моримотоит-андрадит из магматических пород щелочно-ультраосновных массивов Вуориярви, Салланлатва и Салмагорского Кольской щелочной провинции. Они характеризуются сравнительно высоким содержанием U (5–9 мкг/г) и низкой долей обыкновенного свинца ($Pb_c/Pb_t = 0.2-0.7$). Присутствие в изученных гранатах урана обусловлено изоморфным вхождением в его структуру и не связано с наличием включений урансодержащих минералов. Полученные U-Pb оценки возраста гранатов из различных пород указанных массивов ($373 \pm 2-377 \pm 1$ млн лет) согласуются между собой и отвечают главному этапу проявления щелочно-ультраосновного магматизма Кольской провинции (360-380 млн лет). Результаты геохронологических исследований свидетельствуют об устойчивости U-Pb системы гранатов ряда шорломит-моримотоит-андрадит и позволяют использовать их в качестве надежных геохронометров для датирования щелочно-ультраосновных пород.

Ключевые слова: U-Pb ID-TIMS гранаты, щелочно-ультраосновные интрузии, Кольская магматическая провинция

DOI: 10.31857/S0869590320010069

введение

Определение длительности формирования крупных провинций щелочно-ультраосновных пород и абсолютного возраста входящих в их состав отдельных массивов является актуальной задачей современных геологических и геохронологических исследований. Как правило, эти массивы имеют многофазное строение. При этом интенсивное термальное и флюидное воздействие поздних фаз внедрения часто приводит к нарушению сохранности изотопных систем в минералах пород более ранних фаз. Высокая щелочность и недосыщенность исходных расплавов кремнеземом является препятствием для кристаллизации в большинстве пород шелочных серий ширкона – одного из наиболее надежных U-Pb минераловгеохронометров. Кроме того, типичные акцессорные минералы пород щелочно-ультраосновных комплексов (перовскит, титанит, циркон, монацит) часто обеднены ураном и обогащены обыкновенным свинцом (Reguir et al., 2010; Арзамасцев и др., 2007), что накладывает определенные ограничения на их использование для U-Pb геохронологических исследований. Перечисленные особенности стимулируют поиски новых минералов-геохронометров, которые могут использоваться для определения возраста сложных по строению и составу многофазных щелочно-ультраосновных интрузий.

Проведенные за последние годы исследования (Chakhmouradian et al., 2015; Salnikova et al., 2017; Seaman et al., 2017; Deng et al., 2017; Сальникова и др., 2018a, 20186; 2019; Yang et al., 2018; Zhang et al., 2017) продемонстрировали, что кальциевые гранаты являются перспективными U-Pb минералами-геохронометрами. В большинстве случаев для них удается получить конкордантные и субконкордантные оценки возраста, которые хорошо согласуются с оценками возраста, полученными другими методами (U-Pb по циркону, U-Th-Pb по перовскиту, Sm-Nd по апатиту и гранату и ⁴⁰Ar/³⁹Ar по слюдам).

В настоящей статье представлены результаты U-Pb геохронологических исследований кальци-

евых гранатов из пород ийолит-мельтейгитовой серии четырех массивов Кольской щелочной провинции, в состав которой входят крупнейшие массивы агпаитовых сиенитов Хибин и Ловозера, интрузии щелочно-ультраосновных пород с карбонатитами, рои даек щелочных пикритов, меланефелинитов, мелилититов, нефелинитов и карбонатитов, а также щелочные и субщелочные вулканиты (рис. 1). Имеющиеся геохронологические данные, полученные Rb-Sr методом по минералам, Ar-Ar методом по флогопиту либо U-Pb методом по перовскиту, титаниту, кальциртиту и цирконолиту свидетельствуют о том, что основной этап магматической активности соответствовал интервалу 380-360 млн лет (Kramm et al., 1993; Kramm, Kogarko, 1994; Amelin, Zaitsev, 2002; Баянова, 2002; Rukhlov, Bell, 2010; Wu et al., 2010; Арзамасцев, Ву, 2014).

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ МАССИВОВ КОЛЬСКОЙ ПРОВИНЦИИ

Щелочно-ультраосновные массивы Кольской провинции имеют многофазное концентрически-зональное строение. Последовательность внедрения пород данных массивов является типичной для большинства щелочно-ультраосновных интрузий: оливинит, пироксенит, мелилитовые породы (турьяит, мелилитолит, окаит), мельтейгит-ийолит, нефелиновый или канкринитовый сиенит, карбонатиты и фоскориты.

Массив Вуориярви

Массив Вуориярви расположен в пределах юго-западного фланга Беломорского подвижного пояса (рис. 1) и прорывает архейские породы беломорской серии. (рис. 1). Центральная часть массива сложена пироксенитами, оливинитами и оливин-пироксеновыми породами (Афанасьев, 2011), а периферическая — породами ийолит-мельтейгитовой серии. В восточной части массива закартировано сложное по строению тело карбонатитов и апатито-форстерито-магнетитовых пород.

В массиве Вуориярви обогащенные титаном гранаты входят в число породообразующих минералов ийолитов (до 25%) и ийолит-уртитов (до 8%), а также встречаются в качестве акцессорных минералов в пегматоидных пироксенитах (Кухаренко и др., 1965). Последние распространены в западной части массива вблизи контакта массивных пироксенитов с ийолитами. Пегматоидные пироксениты также образуют серии жильных тел субширотного простирания в породах ультраосновной серии (Афанасьев, 2011). Пироксениты сложены преимущественно диопсидом, амфиболом и апатитом, акцессорные минералы представлены перовскитом и гранатом.

ПЕТРОЛОГИЯ том 28 № 1 2020

Массив Салланлатва

Салланлатвинский массив нахолится в зоне сочленения Беломорского пояса и Карельского кратона, где прорывает толщу раннепротерозойских метадиабазов Куолаярвинской структуры (рис. 1). Преобладающим типом пород массива являются мельтейгиты, слагающие его периферическую часть (Кухаренко и др., 1965; Афанасьев, 2011). По направлению к центру они сменяются уртит-ийолитами. Самые поздние породы массива представлены карбонатитами, локализованными в центральной части массива. Как в ийолитах, так и в карбонатитах встречаются ксенолиты пироксенитов, относящихся к наиболее ранней фазе. Гранат в ийолитах и пегматоидных породах фоидолитовой серии присутствует в качестве породообразующего или акцессорного минерала.

Салмагорский массив

Салмагорский массив расположен на восточном фланге Беломорского подвижного пояса (рис. 1). В отличие от других массивов провинции, периферическая зона этого массива сложена ультраосновными породами (оливинитами и пироксенитами), а его центральная часть – породами фоидолитовой серии. Еще одной особенностью данного массива является присутствие в его центральной части мелилитолитов и монтичеллитовых пород, а также жильных тел карбонатитов, представленных преимущественно сёвитами. Гранат является одним из акцессорных минералов ийолитов, мельтейгитов и турьяитов.

МЕТОДИКА ИССЛЕДОВАНИЙ

Определение содержаний главных элементов в гранатах выполнено в ресурсном центре СПбГУ "Геомодель" с помощью сканирующего электронного микроскопа Hitachi S-3400N с энергодисперсионным спектрометром Oxford Instruments X-Max20. Содержания малых элементов в гранатах определены на ICP-MS масс-спектрометре ELAN DRC Quadrupole, оснащенным системой лазерной абляции UP193FX New Wave в Геологическом институте Болгарской академии наук. Для калибровки использовались стандарты NIST 612, NIST 610, гранаты Мали (Seaman et al., 2017) и Дашкесана (Stifeeva et al., 2018; Стифеева и др., 2019). Обработка полученных данных осуществлялась с использованием программ "Iolite" и "VizualAge". Расчет концентраций малых элементов в гранатах выполнен с учетом содержаний SiO_2 .

Для проведения U-Pb геохронологических исследований были выделены монофракции граната, из которых под бинокуляром отбирались визуально чистые фрагменты кристаллов размером не

Рис. 1. Схема расположения палеозойских щелочно-ультраосновных массивов в северо-восточной части Фенноскандинавского щита (а) и схемы геологического строения массивов Вуориярви, Салланлатва и Салмагорского по данным (Афанасьев, 2011) (б). (а): 1 – палеозойские агпаитовые комплексы, 2 – интрузии щелочно-ультраосновных пород и карбонатитов, 3 – осадочные породы рифея, 4 – раннепротерозойские мобильные зоны, 5 – пологие (а) и крутые (б) границы террейнов, 6 – пологие (а) и крутые (б) разломы. (б): 1 – карбонатиты и фоскориты, 2 – апатит-амфиболовые породы с шорломитом, перовскитом, 3 – нефелиновые сиениты, 4 – фоидолиты: а – мельтейгит, б – ийолит, 5 – флогопит-диопсид-оливиновые породы; 6 –мелилит-монтичеллит-оливиновые породы, 7 – мелилитолиты, 8 – пироксениты, 9 – дуниты, 10 – фениты: а – по гнейсам, 6 – по метабазитам, 11 – разломы. На схемах массивов показаны точки отбора для U-Pb геохронологических исследований.

более 200 мкм. Гранат подвергался предварительной кислотной обработке 6 N HCl, согласно модифицированной методике (DeWolf et al., 1996). Разложение граната, последующее химическое выделение U и Pb осуществлялось в соответствии с модифицированными методиками (Krogh, 1973; Horwitz et al., 1992; Corfu et al., 2002). Определение изотопного состава Pb и U выполнено на

Рис. 2. Состав гранатов из щелочно-ультраосновных пород массивов Вуориярви, Салмагорского и Салланлатва. 1 — Салмагорский массив (731b); 2 — массив Вуориярви (96/57); 3 — массив Салланлатва (25/50); 4 — массив Салланлатва (32/130).

многоколлекторном масс-спектрометре Triton TI в статическом или динамическом режимах (при помощи счетчика ионов). Использовался изотопный индикатор $^{235}U-^{202}$ Pb. Точность определения U/Pb отношений и содержаний U и Pb составила 0.5%. Холостое загрязнение не превышало 10 пг для Pb и 1 пг для U. Обработка экспериментальных данных осуществлялась в программах "PbDat" (Ludwig., 1991) и "ISOPLOT" (Ludwig, 2012). При расчете возрастов использованы общепринятые значения констант распада урана (Steiger et al., 1977). Поправки на обычный Pb приведены в соответствии с модельными величинами (Stacey et al., 1975). Все ошибки приведены на уровне 2 σ .

СОСТАВ ГРАНАТОВ

Гранаты из изученных массивов Кольской щелочной провинции представляют собой сложные серии твердых растворов с различной долей

ПЕТРОЛОГИЯ том 28 № 1 2020

андрадитового (Adr, $Ca_3Fe_2^{3+}Si_3O_{12}$), моримотоитового (Mrt, $Ca_3Fe^{2+}TiSi_3O_{12}$) и шорломитового (Sch, $Ca_3Ti_2SiFe_2^{3+}O_{12}$) миналов.

Данные о составе гранатов и распределении в них малых и редкоземельных элементов приведены в табл. 1, 2 и на рис. 2. Кристаллохимические формулы гранатов рассчитаны по сумме катионов (Булах и др., 2014) (табл. 1). Результаты представлены в процентном содержании главных миналов на тройной диаграмме (рис. 2), где поле A – андрадит (Ca₃Fe₂³⁺Si₃O₁₂); поле B – шорломит (Ca₃Ti₂(SiFe³⁺)₂O₁₂) и его Al-аналог – хатчеонит (Ca₃Ti₂(Al₂Si)O₁₂); поле C – моримотоит (Ca₃(TiFe²⁺)Si₃O₁₂) и его разновидность – Mg-моримотоит (Ca₃(TiMg)Si₃O₁₂). В значительно меньшем количестве присутствуют такие компонен-

в гранатов из пегматоидного пироксенита массива Вуориярви, мелкозернистого ийолита и пегматоидного ийолита мас-	истого ийолита Салмагорского массива
1. Химический состав гранатов из пегматоид	лланлатва, крупнозернистого ийолита Салмаг
Таблица	сива Сај

76

Комп	-	Macc	ив Вуор	иадви					Maco	сив Сал	гланлат	ва					алмаго	рский 1	массив	
нент	10		96/57					32/130					25/50					731b		
SiO_2	25.1	1 26.23	3 26.79	27.63	28.61	24.88	25.58	26.61	26.96	27.45	26.27	28.15	29.76	30.53	31.09	27.25	28.18	28.73	29.56	30.17
TiO_2	16.3	5 15.47	15.76	14.64	13.46	16.30	16.14	15.18	15.06	15.09	11.52	12.05	12.05	10.01	5.67	17.15	16.12	15.58	14.41	16.69
ZrO_2	1.2	9 1.27	1.18	0.86	n.d.	1.22	1.38	0.87	1.42	n.d.	0.35	0.32	0.44	n.d.	n.d.	0.26	0.71	0.65	n.d.	n.d.
Al_2O_3	2.2	7 2.05	2.34	2.25	0.78	2.20	2.17	1.47	2.13	1.49	0.85	0.89	1.07	1.12	1.33	1.05	1.05	0.68	0.89	0.26
$\mathrm{FeO}_{\mathrm{t}}$	17.8	0 18.18	18.44	18.75	21.20	17.62	17.65	18.53	18.38	18.67	28.01	22.07	22.12	23.02	23.30	20.13	20.13	21.05	20.44	19.32
MnO	0.3	3 0.35	3 n.d.	0.31	0.42	n.d.	0.30	0.30	0.27	0.47	0.27	0.33	0.36	0.33	n.d.	0.34	0.50	0.29	0.29	0.39
MgO	1.18	8 1.08	1.36	1.20	0.58	1.15	1.24	1.06	1.12	0.97	0.62	0.63	0.58	0.60	0.40	1.07	1.20	0.97	1.10	0.61
CaO	31.4	0 31.56	31.97	31.94	31.25	30.89	31.25	31.14	31.91	31.47	28.51	30.95	32.15	31.94	31.63	32.14	32.39	32.58	32.96	31.62
V_2O_3	n.d.	. n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.56	n.d.	n.d.
Na_2O	n.d.	. n.d.	n.d.	n.d.	0.34	n.d.	n.d.	n.d.	n.d.	n.d.	0.63	n.d.	0.29	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.83
Сумма	95.7	3 96.22	97.84	97.58	96.64	94.26	95.71	95.16	97.25	95.61	96.48	95.39	98.53	97.55	93.42	99.39	100.28	101.09	99.65	90.06
X Ca	2.9	5 2.95	5 2.93	2.92	2.89	2.95	2.93	2.94	2.94	2.94	2.88	2.91	2.92	2.91	2.98	2.91	2.89	2.92	2.95	2.87
Mn	0.0	5 0.03		0.02	0.03	I	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.02	I	0.07	0.07	0.07	0.03	0.10
Mg	0.0	3 0.05	0.07	0.05	0.02	0.05	0.04	0.04	0.04	0.02	0.08	0.08	0.07	0.08	0.05	I	I	I	I	Ι
Fe ^{2.}	+	Ι	Ι	Ι	Ι	Ι	Ι	I	I	I	I	I	I	I	Ι	Ι	Ι	Ι	I	0.02
Y Fe ³	+ 0.5	3 0.58	0.59	0.69	0.84	0.5	0.51	0.57	0.61	0.63	1.15	0.92	0.91	1.12	1.51	0.50	0.57	0.51	0.72	0.31
Ţi	1.0	8 1.01	1.01	0.94	0.87	1.09	1.06	1	0.97	0.99	0.76	0.79	0.77	0.64	0.38	1.09	1.01	0.97	0.91	1.06
Mg	0.1	3 0.11	0.10	0.10	0.05	0.1	0.12	0.1	0.11	0.1	I	ļ	I	I	I	0.07	0.08	0.05	0.11	0.05
Fe ²	+ 0.2	1 0.24	t 0.25	0.24	0.23	0.26	0.25	0.29	0.25	0.28	0.08	0.28	0.31	0.24	0.11	0.33	0.31	I	0.27	0.36
Zr	0.0	6 0.05	0.05	0.04	I	0.05	0.06	0.04	0.06		0.01	0.01	0.02		I	0.01	0.03	0.03	I	0.02
>		I	I	Ι	Ι	I	I	I	I	I	I	I	I	I	I	I	I	0.03	I	I
Z Si	2.2	0 2.28	2.29	2.36	2.47	2.21	2.24	2.34	2.32	2.39	2.30	2.47	2.52	2.60	2.74	2.30	2.35	2.39	2.47	2.39
AI	0.2	3 0.21	0.24	0.23	0.08	0.23	0.22	0.15	0.22	0.15	0.09	0.09	0.11	0.11	0.14	0.10	0.08	0.07	0.09	0.08
Fe ³	+ 0.5	6 0.51	0.48	0.41	0.45	0.55	0.53	0.51	0.46	0.45	0.61	0.44	0.37	0.29	0.13	0.59	0.57	0.54	0.44	0.53
Примеча обнаруже	ние. Расчет но здесь и	г минерал в табл. 2 .	њных фс	ав пумдо	нэниош	по обще	алу числ	у катио	нов (Σ (+) = 8),	расчет	баланса	Fe ²⁺ /F	е ³⁺ про	изводил	іся исхс	дя из ст	сехиоме	грии; п.е	l. – не

СТИФЕЕВА и др.

2020

Таблица 2. идных ийс	Содер	ожание массива	малых (а Салла	элемен нлатва	тов (мк , крупн	т∕г) в г¦ озерни	ранатах стых ий	из пегу іолитоі	иатоиді з Салма	ных пир горскої	роксени го масс	итов ма ива Ко	ссива Е льской	зуория <u>г</u> магмат	ви, мел ическо	ікозерн й прові	инции	ийолит	ов и пе	CMaro-
Компо-		Macci	AB Byopt	иады				Ma	ссив Са.	планлаті	Ba						Салмаго	орский м	ассив	
ненты			96/57					32/130					25/50					731b		
Sc	40.4	62.2	141	135	153	45.3	50.3	133	147	183	66.9	9.40	13.4	16.8	20.6	8.29	17.8	22.3	29.8	49.2
>	611	597	968	910	925	620	601	922	860	935	558	671	546	502	448	868	870	796	897	742
Cr	8.56	10.7	27.0	20.8	28.7	9.04	9.40	30.8	35.7	45.3	8.29	12.0	18.5	22.2	25.8	13.3	21.8	22.5	37.2	16.5
Co	14.0	16.6	16.6	15.6	16.7	15.8	15.1	15.3	14.9	14.9	13.5	14.3	21.1	20.7	19.2	51.8	23.9	20.3	24.2	23.4
Ż	1.60	1.42	1.60	2.59	1.38	1.44	2.56	1.60	1.78	1.87	2.57	2.01	2.87	2.82	2.72	10.1	4.07	4.41	4.79	6.62
Cu	3.48	2.82	3.56	4.27	3.49	3.30	4.71	2.80	4.85	3.53	2.12	3.27	5.24	6.11	7.75	4.93	3.63	7.89	3.17	15.4
Zn	129	149	234	237	256	151	163	256	237	223	60.5	123	110	104	113	322	187	179	191	197
Ga	36.1	41.6	46.5	43.7	45.3	39.1	36.8	43.9	43.3	45.7	18.9	24.2	18.6	18.6	18.1	16.0	22.4	21.4	21.6	23.0
Y	669	952	846	737	867	899	751	768	689	832	369	493	594	509	487	57.2	232	225	441	435
Nb	245	253	335	272	299	255	229	324	266	302	229	505	180	143	142	382	387	355	276	250
Та	19.7	18.0	13.3	13.5	10.3	21.8	17.7	15.1	10.4	8.95	35.9	24.7	34.9	28.5	22.8	23.6	40.8	32.1	11.6	18.1
Zr	10358	12010	7549	7507	7885	9846	9333	7321	7754 8	3888 1	1964	2404	2676	2585	2686 2	2610 1	893	1633 5	885 4	-232
Sn	33.1	41.7	52.7	50.4	54.1	34.9	36.6	46.3	47.5	51.8	10.8	11.8	20.1	19.4	20.0	8.98	9.61	9.37	20.7	21.3
Pb	0.17	0.28	0.43	0.58	0.17	0.30	0.49	0.17	0.24	0.08	0.93	1.06	0.48	0.44	2.58	n.d.	0.41	1.06	0.15	0.74
Th	3.32	2.95	2.41	1.95	2.03	2.96	2.75	3.41	1.60	1.67	26.5	28.3	14.3	12.0	14.5	1.19	11.1	11.3	2.38	2.78
D	7.25	9.03	12.7	9.85	11.8	8.53	6.98	13.4	10.4	13.4	7.14	16.8	4.73	3.53	3.89	5.18	12.4	12.8	8.92	8.19
La	22.0	19.9	16.7	14.8	15.5	19.1	18.8	15.9	14.6	16.0	24.3	11.0	22.2	20.6	18.8	28.3	38.2	37.0	20.2	18.6
Ce	125	114	90.2	79.0	83.7	116	110	91.2	78.3	91.6	159	87.4	144	133	119	146	221	198	92.2	82.1
Pr	26.2	25.6	19.7	17.2	18.6	26.5	24.9	20.6	17.2	20.1	35.6	22.4	31.7	30.5	26.5	29.6	47.5	41.1	17.2	16.3
Nd	181	185	141	124	131	197	182	144	126	145	224	166	213	203	180	181	294	260	110	108
Sm	84.0	97.1	76.8	68.6	73.4	102	88.1	74.2	66.4	77.2	77.2	72.8	86.9	77.3	69.5	59.9	87.3	83.8	48.5	54.7
Eu	35.3	42.4	34.3	29.7	33.2	44.2	38.2	31.7	29.1	34.1	26.7	28.4	32.6	29.0	26.2	20.6	27.6	26.8	20.3	22.0
Gd	127	164	131	118	129	165	142	121	113	129	83.1	95.6	110	97.3	90.9	6.99	82.8	80.1	77.8	82.1
Тb	22.6	30.0	23.9	21.5	23.8	30.4	24.0	21.8	20.2	24.1	12.6	16.1	19.0	16.4	15.4	9.58	10.3	10.2	13.5	13.8
Dy	147	201	163	140	160	198	154	148	134	161	75.8	102	128	106	103	53.5	52.3	51.1	85.4	83.7
Но	28.0	40.0	32.9	27.6	31.7	37.9	29.4	29.1	26.4	32.3	14.6	20.6	26.4	22.0	20.8	9.46	8.40	8.17	16.3	16.2
Er	77.3	111	91.0	80.1	92.9	103	80.3	86.0	75.7	93.2	39.8	59.2	77.8	64.4	63.6	24.3	20.1	20.2	44.9	42.0
Tm	9.20	13.9	11.8	9.92	11.7	13.0	9.75	10.8	9.41	11.8	5.12	7.87	9.91	8.20	8.20	2.95	2.32	2.25	5.57	5.22
Yb	56.2	84.5	74.4	63.8	74.2	78.0	60.2	67.6	58.4	73.6	32.6	47.0	59.9	50.3	47.8	18.3	14.7	14.2	34.5	32.2
Lu	7.08	10.2	9.39	7.96	9.23	9.44	7.33	8.53	7.54	8.89	4.25	5.83	7.45	6.36	6.19	2.39	1.93	1.85	4.52	4.17
Сумма REE	948	1140	917	803	888	1139	968	871	776	918	815	742	696	866	795	653	908	835	591	581
Th/U	0.46	0.33	0.19	0.20	0.17	0.35	0.39	0.25	0.15	0.13	3.72	1.67	3.02	3.41	3.73	0.79	0.89	0.88	0.27	0.34
$(La/Sm)_N$	0.16	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.14	0.13	0.20	0.15	0.16	0.17	0.17	0.43	0.27	0.28	0.21	0.26
(Gd/Yb) _N	1.87	1.61	1.46	1.53	1.44	1.75	1.94	1.35	1.59	1.45	2.11	2.03	1.52	1.60	1.57	5.13	4.64	4.65	2.11	1.87

КАЛЬЦИЕВЫЕ ГРАНАТЫ КАК ИСТОЧНИК ИНФОРМАЦИИ 1 2

ПЕТРОЛОГИЯ том 28 № 1 2020 77

Рис. 3. Фотографии шлифов в проходящем свете из пегматоидного пироксенита массива Вуориярви (а), мелкозернистого ийолита массива Салланлатва (б), пегматоидного ийолита массива Салланлатва (в). *Grt* – гранат, *Ne* – нефелин, *Bt* – биотит, *Ap* – апатит, *Aeg* – авгит.

ты, как кимцеит ($Ca_3Zr_2(Al_2Si)O_{12}$) и кальдерит ($Mn_3Fe_2Si_3O_{12}$).

Гранат массива Вуориярви

Гранат из пегматоидного пироксенита (проба 96/57) представлен мелкими, имеющими смолянистый блеск зернами (3–8 мм) черного цвета. В отдельных случаях в них наблюдаются единичные включения мелких (<30 мкм) зерен апатита (рис. 3а). По составу он отвечает изоморфной серии андрадит-шорломит-моримотоит. Наблюдаются вариации в содержании железа (FeO = = 17.25–21.75 мас. %). Среднее содержание TiO₂ составляет 15.79 мас. %. Отмечается примесь циркония (ZrO₂ не более 1.50 мас. %) и натрия (Na₂O до 1.52 мас. %). На графике распределения REE (рис. 4а) наблюдается обогащение MREE и в меньшей степени – HREE. Значения ((La/Sm)_N = = 0.12–0.17) на порядок отличается от ((Gd/Yb)_N = = 1.22–1.92). Содержание урана в гранате изменяется от 6.92 до 15.76 мкг/г. Наблюдается положительная корреляция между содержаниями U, REE, FeO, в меньшей степени Ti, и отрицательная корреляция этих элементов с содержанием Al.

Гранат Салланлатвинского массива

Нами изучены гранаты из двух типов пород: мелкозернистого ийолита (проба C-25/50) и пегматоидного обособления в них (проба C-32/130). Гранат из мелкозернистого ийолита представлен черными изометричными зернами со смолянистым блеском, в тонких сколах имеющими темно-коричневый цвет. В них по трещинам развиваются кальцит, оксиды железа и отмечаются единичные включения апатита (рис. 36). Гранат из пегматоидного ийолита образует мелкие округлые зерна (до 3–5 мм), расположенные среди крупных зональных зерен эгирина и нефелина. Кроме того, в пегматоидных ийолитах встречаются прожилки, сложенные изометричными зернами граната (рис. 3в).

Гранаты из мелкозернистых и пегматоидных ийолитов различаются по составу. Гранат мелкозернистого ийолита изменяется по составу от андрадита до моримотоита (рис. 2), в то время как гранат из пегматоидных ийолитов по составу отвечают моримотоиту со значительной долей шорломитового компонента. Содержание титана в гранатах пегматоидных ийолитов увеличивается от центра зерен к их периферии. Гранаты мелкозернистых ийолитов обогащены LREE (рис. 4б), и прежде всего Pr и Nd, а гранаты пегматоидных ийолитов – MREE (рис. 4в). Следует также отметить, что гранаты из мелкозернистых ийолитов характеризуютя большими вариациями содержаний U (от 3.53 до 16.80 мкг/г) по сравнению с гранатами из пегматоидных ийолитов (от 6.98 до 13.4 мкг/г). При этом наблюдается положительная корреляция содержаний U и REE в гранатах мелкозернистых и пегматоидных ийолитов в зонах, обогащенных Ті, и отрицательная корреляция U с Са и Al.

Рис. 4. Графики распределения редкоземельных элементов в гранатах из пегматоидного пироксенита массива Вуориярви (а), мелкозернистого ийолита массива Салланлатва (б), пегматоидного ийолита массива Салланлатва (в), крупнозернистых ийолитов Салмагорского массива (г). Нормализовано по (Anders, Grevesse, 1989).

Гранат Салмагорского массива

Гранат из крупнозернистых ийолитов Салмагорского массива (проба 731b) принадлежит к изоморфному ряду андрадит—моримотоит—шорломит и характеризуется увеличением содержания титана от центра к краевым частям зерен. От других изученных гранатов он отличается повышенным содержанием моримотоитового компонента (рис. 2).

По характеру распределения REE гранат из крупнозернистых ийолитов Салмагорского массива относится к двум группам. Первая группа представлена гранатами с повышенными концентрациями LREE (рис. 4г). Для второй группы гранатов характерны более низкие содержания LREE и повышенные содержания MREE (рис. 4г). Содержание урана изменяется в пределах от 5.18 до 12.84 мкг/г. Распределения U и REE в гранате из ийолитов Салмагорского массива имеют положительную корреляцию вне зависимости от вы-

ПЕТРОЛОГИЯ том 28 № 1 2020

деленных зон. Титан демонстрирует отрицательную корреляцию с ураном и группой REE.

РЕЗУЛЬТАТЫ U-РЬ ГЕОХРОНОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

Массив Вуориярви. Геохронологические исследования проведены для двух микронавесок граната из пироксенитов массива Вуориярви (табл. 3). Содержание в них U составляет 8.02 и 4.82 мкг/г, доля Pb_c (Pb_c/Pb_t) – 0.49–0.46. Изученный гранат характеризуется конкордантным возрастом 373 ± 2 млн лет (СКВО = 0.01; вероятность – 94%) или незначительно дискордантен (№ 1, 2, табл. 3). Среднее значение возраста (²⁰⁶Pb/²³⁸U) составляет 374 ± 1 млн лет.

Массив Салланлатва. Для геохронологических исследований использована микронавеска граната из мелкозернистого ийолита (обр. С-25/50) и две микронавески граната из пегматоидного ийолита

Рис. 5. Диаграммы с конкордиями для гранатов из пегматоидного пироксенита массива Вуориярви (а), мелкозернистого ийолита и пегматоидного ийолита массива Салланлатва (б), пегматоидного ийолита Салмагорского массива (в).

(обр. С-32/130) (№ 5, табл. 3). Гранат из мелкозернистого ийолита характеризуется низким содержанием U – 5.78 мкг/г, (Pb_c/Pb_t) = 0.24. Конкордантный возраст этого граната – 375 ± 2 (СКВО = 0.01, вероятность – 92%) (рис. 4).

Содержание U в гранатах из пегматоидного ийолита составляет 8.5–6.7 мкг/г, а доля Pb_c (Pb_c/Pb_t) – 0.66–0.18 (N_0 3, 4, табл. 3). Для одной из микронавесок граната получена конкордантная оценка возраста 378 ± 3 млн лет (СКВО = = 0.08; вероятность – 78%) (N_0 3, 4, табл. 3, рис. 5). Среднее значение возраста, рассчитанное по отношению ($^{206}Pb/^{238}U$) для двух микронавесок граната составляет 378 ± 1 млн лет, которое совпадает с оценкой возраста граната из мелкозернистого ийолита.

Салмагорский массив. Геохронологические исследования проведены для двух микронавесок граната из крупнозернистых ийолитов (\mathbb{N}° 6, 7, табл. 3). Содержание урана в изученных гранатах составляет 6.5 и 8.8 мкг/г, а доля Pb_c (Pb_c/Pb_t) не превышает 0.33. На диаграмме с конкордией (рис. 5) точки их изотопного состава расположены на конкордии, а их конкордантный возраст соответствует 377 ± 1 млн лет (СКВО = 0.40; вероятность – 53%).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Характерными особенностями химического состава магматических пород щелочно-ультраосновного ряда являются: низкое содержание кремнезема, значительное обогащение кальцием, щелочами, титаном, железом, а также редкими элементами (Фролов, 1972). Это находит свое отражение и в составе гранатов из щелочно-ультраосновных пород. Додекаэдрическая позиция граната преимущественно заполнена Са, в значительно меньшем количестве присутствуют Mg, Mn, Fe²⁺ и Na. Октаэдрическую позицию занимают Ті и Fe^{3+} , однако, нередко в нее входят Al, Zr, Fe^{2+} и Mg. В тетраэдрической позиции нередко обнаруживается дефицит кремния, который компенсируется вхождением Al и Fe³⁺. Кроме того, гранаты щелочно-ультраосновных пород отличает постоянное присутствие в составе Na (Na₂O до 1.5 мас. %) и Zr (ZrO₂ до 1.7 мас. %) (табл. 1), а также повышенные содержания U, Th, Hf и REE.

Наличие трех крупнокатионных позиций в структуре граната, обуславливает возможность большого количества изоморфных замещений, и в том числе вхождение элементов группы актино-идов (Лаверов и др., 2010). Основной интерес для геохронологических исследований представляет возможность вхождения в структуру граната урана, ионный радиус которого ($U^{4+} = 1.06$ Å) близок

Название							, M3(OTOIIHERE OTH	с			Box	зраст, млн л	leT
массива, номер пробы	ы П∕п	Навеска, мг	Pb, mkt/r	U, MKT/F	Pb _c /Pb _t	²⁰⁶ Pb/ ²⁰⁴ Pb	$^{207}Pb/^{206}Pb^{a}$	²⁰⁸ Pb/ ²⁰⁶ Pb ^a	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	Rho	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
Массив Вуориярви, 96/57	-	0.98	0.97	8.02	0.49	69.36	0.0540 ± 8	0.1338 ± 1	0.4442 ± 8	0.0597 ± 3	0.44	373 ± 1	373 ± 1	373 ± 18
	5	1.29	0.54	4.82	0.46	73.45	0.0547 ± 9	0.1251 ± 1	0.4498 ± 10	0.0596 ± 4	0.46	377 ± 1	373 ± 1	403 ± 21
Массив Салланлатва, 32/130	ω	1.15	1.07	8.5	0.66	113.17	0.0539 ± 12	1.1367 ± 1	0.4482 ± 15	0.0603±8	0.56	376±2	378 ± 1	366 ± 29
	4	2.58	1.20	6.67	0.18	116.74	0.0549 ± 7	1.7746 ± 1	0.4570 ± 7	0.0604 ± 3	0.47	382 ± 1	378 ± 1	408 ± 15
Массив Салланлатва, 25/50	Ś	1.18	0.81	5.78	0.24	84.89	0.0541 ± 11	1.0189 ± 1	0.4467 ± 13	0.0599 ± 5	0.49	375 ± 1	375 ± 1	374 土 26
Салмагорский массив, 731b	9	1.24	0.91	8.78	0.33	89.64	0.0541 ± 9	0.2820 ± 1	0.4504 ± 11	0.0603 ± 4	0.47	378 ± 1	378 ± 1	<i>377</i> ± 21
	7	1.44	69.0	6.52	0.35	85.05	0.0539 ± 10	0.2813 ± 1	0.4461 ± 12	0.0601 ± 4	0.46	375 ± 1	376 ± 1	366 ± 23
Примечание. Rh значащим цифра ^а Изотопные отно	о – Коэ м после инения	ффициент и запятой. , скорректи	корреля рованні	ции ошт ые на бла	ибок ²⁰⁷ Р анк и обь	<mark>ь/²³⁵U-²¹ ичный Рt</mark>	⁰⁶ Pb/ ²³⁸ U; Pb _c	— обычный Ғ	^ъ b; Рb _t – общи	й Рb. Величи	IHЫ OIIIN	ιδοκ (2σ) coi	ответствуют	последним

КАЛЬЦИЕВЫЕ ГРАНАТЫ КАК ИСТОЧНИК ИНФОРМАЦИИ

81

ПЕТРОЛОГИЯ том 28

28 № 1 2020

к ионному радиусу кальция ($Ca^{2+} = 1.00$ Å), что допускает изоморфное вхождение U на позицию Са по схеме замещения U⁴⁺ на Ca²⁺ в додекаэдрической позиции. Однако при этом необходимо учитывать гетеровалентный характер этого замещения и, как следствие, возникающий избыточный заряд. Механизм компенсации заряда строится на частичном переходе Fe³⁺ в Fe²⁺ (Rák et al., 2011). То есть необходимым условием осуществления изоморфного замещения кальция ураном является присутствие в составе граната достаточного количества Fe.

Гранаты из щелочно-ультраосновных массивов Кольской провинции содержат большое количество железа (до 28 мас. % FeO) и кальция (до 33 мас. % CaO), что делает возможным реализацию предложенной схемы изоморфного вхождения урана. В пользу присутствия в гранате "структурно связанного" урана также свидетельствуют результаты экспериментов по ступенчатому выщелачиванию этого минерала из щелочно-ультраосновных пород массива Африканда (Salnikova et al., 2019), свидетельствующие об отсутствии в нем урансодержащих включений.

Изученные гранаты характеризуются сравнительно высоким и выдержанным для всех массивов концентраций урана (от 3.53 до 15.8 мкг/г) и высоким содержанием REE (от 5433 до 17595 мкг/г) (табл. 2). При этом их распределение не зависит от вариаций содержаний петрогенных элементов. Сравнение наших результатов с данными для гранатов из других щелочно-ультраосновных массивов (Salnikova et al., 2019) показывает аналогичный характер распределения в них REE и общую тенденцию к обогащению группой MREE.

Возрастные границы главного этапа формирования Кольской шелочной провинции были выделены на основании большого количества геохронологических данных, полученных разными методами, и по существующим оценкам составляют 380-360 млн лет (Kramm et al., 1994). Однако при этом было использовано ограниченное число минералов-геохронометров с устойчивыми изотопными системами, что заставляет еще раз вернуться к обсуждению этого вопроса. К этому следует добавить, что ранее полученные данные в большинстве случаев относятся к раннему или к заключительным этапам формирования щелочно-ультраосновных интрузий Кольской провинции. При этом породы фоидолитовой серии оставались неизученными в геохронологическом плане.

Полученные нами оценки U-Pb возраста гранатов из пироксенитов массива Вуориярви, крупнозернистых ийолитов Салмагорского массива, мелкозернистых ийолитов и пегматоидных ийолитов массива Салланлатва согласуются между собой и находятся в интервале 373–377 млн лет. Возраст (377 ± 3 млн лет) граната из кальцит-амфибол-пироксенового пегматита массива Африканда также соответствует этому интервалу (Сальникова и др., 2018а).

выводы

Кальциевые гранаты характеризуются сравнительно высоким содержанием урана, входящего в их структуру, устойчивостью U-Pb системы относительно постмагматических процессов, что делает возможным использование этого минерала в качестве надежного минерала-геохронометра. Их повсеместное распространение в породах фоидолитовой серии, открывает новые перспективы для получения достоверной информации о возрасте щелочно-ультраосновных интрузий.

Результаты U-Pb (ID-TIMS) геохронологических исследований кальциевых гранатов из щелочноультраосновных массивов Кольской провинции (Вуориярви, Салланлатва, Салмагорский, Африканда) свидетельствуют о менее продолжительном интервале проявления главного этапа щелочно-ультраосновного магматизма в пределах Кольской провинции, чем это предполагалось ранее.

Источники финансирования. Исследования выполнены при поддержке РФФИ (проекты №№ 17-05-00912, 18-55-18011).

СПИСОК ЛИТЕРАТУРЫ

Арзамасцев А.А., Ву Фу-Ян. U-Pb геохронология и изотопная (Sr, Nd) систематика минералов щелочно-ультраосновных массивов Кольской провинции // Петрология. 2014. Т. 22. № 5. С. 496–515.

Арзамасцев А.А., Арзамасцева Л.В., Травин А.В. и др. Длительность формирования полифазной магматической системы палеозойских щелочных комплексов центральной части Кольского полуострова: U-Pb, Rb-Sr, Ar-Ar данные // Докл. AH. 2007. Т. 413. № 5. С. 666– 670.

Афанасьев Б.В. Минеральные ресурсы щелочно-ультраосновных массивов Кольского полуострова. СПб.: Изд-во "Роза ветров", 2011. 224 с.

Баянова Т.Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. Автореф. дисс. ... докт. геол.-мин. наук. М.: ИЛСАН, 2002. 198 с.

Булах А.Г., Золотарев А.А., Кривовичев В.Г. Структура, изоморфизм, формулы, классификация минералов. СПб.: Изд-во СПб. ун-та, 2014. 132 с.

Кухаренко А.А., Орлова М.П., Булах А.Г. и др. Каледонский комплекс ультраосновных, шелочных пород и карбонатитов Кольского полуострова и Северной Карелии. М.: Недра, 1965. 755 с. Лаверов Н.П., Юдинцев С.В., Лившиц Т.С. и др. Искусственные минералы со структурой пирохлора и граната: матрицы для иммобилизации актинидсодержащих отходов // Геохимия. 2010. № 1. С. 3–16.

Сальникова Е.Б., Стифеева М.В., Шахмурадян А.Р. и др. U-Pb систематика шорломита из кальцит-амфиболпироксеновых пегматитов массива Африканда (Кольский полуостров) // Докл. АН. 2018а. Т. 478. № 4. С. 443–446.

Сальникова Е.Б., Стифеева М.В., Никифоров А.В. и др. Гранаты ряда андрадит—моримотоит — потенциальные минералы-геохронометры для U-Pb датирования ультраосновных щелочных пород // Докл. АН. 20186. Т. 480. № 5. С. 583—586.

Стифеева М.В., Сальникова Е.Б., Самсонов А.В. и др. U-Pb возраст граната из скарнов Дашкесанского месторождения (Малый Кавказ) // Докл. АН. 2019 (в печати).

Фролов А.А. Структурные условия образования формации ультраосновных-щелочных пород и карбонатитов // Под ред. А.И. Гинзбурга. М.: Недра, 1972. Вып. 35. С. 7–35.

Amelin Ju.V., Zaitsev A.N. Precise geochronology of phoscorites and carbonatites: The critical role of U-series disequilibrium in age interpretations // Geochim. Cosmochim. Acta. 2002. V. 66. № 13. P. 2399–2419.

Anders E., Grevesse N. Abundances of the elements: meteoritic and solar // Geochim. Cosmochim. Acta. 1989. V. 53. P. 197–214.

Chakhmouradian A.R, Salnikova E.B., Yakovleva S.Z. et al. Timing of carbonatite emplacement at the Cinder Lake alkaline intrusive complex: U-Pb ID-TIMS data from andradite // Isotope dating of geological processes: new results, approaches and prospects. Abstracts of the VI Russian Conference on Isotope Geochronology. St. Petersburg. 2015. P. 350–351.

Corfu F., Andersen T.B. U-Pb ages of the Dalsfjord Complex, SW Norway and their bearing on the correlation of allochthonous crystalline segment of the Scandinavian Caledonides // Inter. Journal of Earth Science. 2002. V. 91. P. 955–963.

Deng X-D, Li J-W, Luo T., Wang H-Q. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb gepchronometry // Contrib. Mineral Petrol. 2017. V. 172. P. 71–82.

DeWolf C.P., Zeissler C.J., Halliday A.N. et al. The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis // Geochim. Cosmochim. Ac-ta. 1996. V. 60. P. 121–134.

Horwitz E.P., Dietz M.L., Chiarizia R. et al. Separation and preconcentration of uranium from acidic media by extraction chromatography // Analitica Chimica Acta. 1992. V. 266. P. 25–37.

Kramm U., Kogarko L.N. Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia // Lithos. 1994. V. 32. P. 225–242.

Kramm U., Kogarko L.N., Kononova V.A., Vartiainen H. The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr

ПЕТРОЛОГИЯ том 28 № 1 2020

ages define 380–360 age range for all magmatism // Lithos. 1993. V. 30. P. 33–44.

Krogh T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.

Ludwig K.R. PbDat for MS-DOS, version 1.21 U.S. Geological Survey Open-File Report 88-542. 1991. 35p.

Ludwig K.R. Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Special Publications. 2012. V. 5. 70 p.

Rák Zs., Ewing R.C., Becker U. Role of iron in the incorporation of uranium in ferric garnet matrices // Physic. Review. 2011. B84. 155128.

Reguir E.P., Camacho A., Yang P. et al. Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS // Mineral. Petrol. 2010. V. 100. P. 95–103.

Rukhlov A.S., Bell K. Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution // Mineral. Petrol. 2010. V. 98. P. 11–54.

Salnikova E., Chakhmouradian A., Stifeeva M. et al. Calcic garnets as a promising U-Pb geochronometer // "Gold-schmidt-2017" Conference. 2017. Abstract 3479; https://goldschmidtabstracts.info/2017/3479.pdf.

Salnikova E.B., Chakhmouradian A.R., Stifeeva M.V. et al. Calcic garnets as a gechronological and petrogenetic tool applicable to a wide variety of rocks // Lithos. 2019. V. 338– 339. P. 141–154.

Seaman S., Stockli D.F., McLean N.M. U-Pb geochronology of grossular-andradite garnet // Chemical Geology. 2017. V. 460. P. 106–116.

Steiger R.H. Jäger E. Subcommission on geochronology: 865 convention of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. P. 359–362.

Stifeeva M., Salnikova E., Plotkina Y. et al. Andradite from Dashkesan iron skarn deposit as a potential standard reference material for U-Pb geochronological studies // National Conference with international participation "GEOSCI-ENCES 2018". Abstracts. Rev. Bulgarian Geol. Soc. 2018. V. 79. № 3. P. 61–62.

Wu F-Y., Yang Y-H., Marks M.A.W. et al. In situ U-Pb, Sr, Nd, and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS // Chemical. Geology. 2010. V. 273. P. 8–34.

Yang Y-H., Wu F-Y., Yang J-H. et al. U-Pb age determination of schorlomite garnet by laser ablationinductively coupled plasma mass spectrometry // J. Analytical Atomic Spectrometry. 2018. V. 33. P. 231–239.

Zhang Y., Liu Q., Shan Y., Li H. Fingerprinting the hydrothermal fluid characteristics from LA-ICP-MS trace element geochemistry of garnet in the Yongping Cu deposit, SE China // Minerals. 2017. V. 7. P. 1–27.

84

СТИФЕЕВА и др.

Garnet Ages of Alkaline-ultramafic Massifs from Kola Magmatic Province

M. V. Stifeeva^a, *, E. B. Salnikova^a, A. A. Arzamastsev^a, A. B. Kotov^a, **, and V. Y. Grozdev^b

^aInstitute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, 199034 Russia ^bGeological Institute BAS, Sofia, 1113 Bulgaria

> *e-mail: stifeeva.maria@yandex.ru **e-mail: abkotov-spb@mail.ru

The paper presents data of U-Pb (ID-TIMS) geochronologic studies of schorlomite-morimotoite-andradite garnet from the Vuoriyarvi, Sallanlatva, and Salmagorsky massifs in the Kola alkaline province. The garnet is relatively rich in U (5–9 ppm) and poor in common Pb (Pb_c/Pb_t = 0.2–0.7), contains U as an isomorphous component, and does not host inclusions of any U-bearing minerals. The U-Pb ages of garnet from the various rocks of the massifs (373 ± 2 to 377 ± 1 Ma) are mutually consistent and correspond to the main pulse of alkaline ultramafic magmatism in the Kola province (360–380 Ma). The geochronologic data indicate that the U-Pb system of schorlomite-morimotoite-andradite garnet is stable and can be utilized as a reliable geochronometer for alkaline ultramafic rocks.

Keywords: U-Pb, ID-TIMS, garnet, alkaline ultramafic intrusions, Kola magmatic province