УДК 552.11:552.3:550.4(571.17)

ПАЛЕОЗОЙСКИЕ ЩЕЛОЧНО-МАФИТОВЫЕ ИНТРУЗИИ КУЗНЕЦКОГО АЛАТАУ, ИХ ИСТОЧНИКИ И УСЛОВИЯ ОБРАЗОВАНИЯ РАСПЛАВОВ

© 2021 г. В. В. Врублевский^{а, *}, И. Ф. Гертнер^а

^аТомский государственный университет, Томск, Россия *e-mail: vasvr@yandex.ru Поступила в редакцию 18.03.2020 г. После доработки 16.05.2020 г. Принята к публикации 21.05.2020 г.

В северной части щелочной изверженной провинции Кузнецкого Алатау находится ареал дифференцированных интрузивов кембрийского, девонского и пермского возраста, сложенных субщелочным и щелочным габбро, фойдолитами, нефелиновыми и щелочными сиенитами, редко карбонатитами. Первичные расплавы, из которых сформировались изученные породы, умеренно фракционированы ((La/Yb)_N до ~7-12) и могли образоваться в мантийных условиях при 1-10% парциальном плавлении шпинелевого лерцолита. Распределение LILE и HFSE в мафитовых породах (в г/т: Rb 6–58, Ba 111–2499, Sr 175–1555, REE 28–208, Zr 40–315, Nb 1.5–52, Th 0.3–12, U 0.2–7.4) свидетельствует о вероятном магмогенезисе с вовлечением вещества океанической и окраинно-континентальной литосферы, подобного OIB и IAB. При этом источник материнского расплава был гетерогенным и состоял из смеси компонентов деплетированной (PREMA и E-MORB) и обогащенной (ЕМ-типа) мантии с промежуточным изотопным соотношением $\varepsilon_{Nd}(T) \sim 3-9$. Неоднородность источника отражается в первичном изотопном составе Pb горных пород и минералов: 208 Pb/ 204 Pb = 37.49 - 38.12, 207 Pb/ 204 Pb = 15.53 - 15.71, 206 Pb/ 204 Pb = 17.92 - 20.65. Последующая контаминация расплавов материалом верхней коры привела к одновременному повышению изотопных соотношений $({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{T}} \sim 0.7042 - 0.7074; \delta^{18}\text{O}_{\text{V-SMOW}} \sim 6.3 - 15.5\%$, а также к обогащению пород ²⁰⁷Pb. На основании геохимических признаков предполагается образование первичных расплавов под воздействием мантийного плюма (горячей точки ОІВ-типа) на аккреционно-коллизионные комплексы бывшей активной окраины континента. В подобной геодинамической обстановке следует ожидать неоднородные магматические источники даже в пределах небольшой изверженной провинции.

Ключевые слова: щелочной магматизм, геохимия, петрогенезис, мантийный плюм, континентальная окраина, Кузнецкий Алатау, Центрально-Азиатский складчатый пояс **DOI:** 10.31857/S0869590321010088

введение

Развитие щелочного магматизма на континентах и в океанах, как правило, связывают с периодами активности мантийных плюмов (Yarmolyuk et al., 2014; Ernst, 2014). В складчатых поясах мантийную природу щелочного магматизма часто маскируют процессы взаимодействия первичных магм с веществом аккреционно-коллизионных комплексов. Примером могут служить разновозрастные ассоциации щелочных пород и карбонатитов Центрально-Азиатского складчатого пояса (ЦАСП) (Покровский и др., 1998; Morikiyo et al., 2001; Никифоров и др., 2002, 2006; Doroshkevich et al., 2012; Baatar et al., 2013; Крупчатников и др., 2015; Врублевский, 2015; Врублевский и др., 2012, 2014, 20166; Vrublevskii et al., 2018, 2019, 2020a, 2020b).

Возникновение обширных ареалов щелочного мафит-ультрамафитового магматизма связано с деятельностью мантийных плюмов. В Алтае-Саянском и Байкальском сегментах ЦАСП (Кузнецкий Алатау, юго-восток Горного Алтая, Восточный Саян, плато Сангилен в Юго-Восточной Туве, Приольхонье, Витимское нагорье в Западном Забайкалье, Юго-Западное Прихубсугулье в Северной Монголии) отмечается несколько подобных центров палеозойского возраста: 520–420, 405–385, 310–260 млн лет (Яшина, 1982; Никифоров, Ярмолюк, 2007; Скляров и др., 2009; Doroshkevich et al., 2012; Дорошкевич и др., 2014, 2018; Врублевский и др., 2012, 2014, 2016б, Vrublevskii et al., 2019; Избродин и др., 2017; Сальникова и др., 2018; Никифоров и др., 2019).

В составе палеозойской щелочной провинции, выделяемой в Кузнецкого Алатау (Андреева, 1968; Андреева и др., 1984), преобладают магматические комплексы K-Na мафитовых фельдшпатоидных пород. В северной части региона, так называемой Мариинской Тайге, они распространены в виде ареала небольших по размерам плутонов с разным возрастом и соотношением субщелочных и щелочных габброидов, фойдолитов, нефелиновых и щелочных сиенитов. По данным изотопной геохронологии магматизм мог происходить неоднократно в среднем кембрии-раннем ордовике (~510-480 млн лет), в раннем-среднем девоне (~410-385 млн лет) и в поздней перми (~265 млн лет) (Врублевский и др., 2014; Vrublevskii et al., 2020b). Вулканические аналоги наиболее распространенных девонских интрузий широко развиты в Минусинском рифтогенном прогибе (Воронцов и др., 2013), обрамляющем Кузнецкий Алатау с востока. Подобно другим продуктам ранне- и среднепалеозойского базитового магматизма Алтае-Саянской области ЦАСП, они могут быть производными Северо-Азиатского PREMA-суперплюма (Ярмолюк, Коваленко, 2003, Kuzmin et al., 2010).

В настоящей статье обобщены новые и уже опубликованные прецизионные данные по геохимии главных разновидностей субщелочных и щелочных пород провинции, полученные нами на протяжении последних 30 лет. Несмотря на разный возраст изученных представительных плутонов, их сходство по геохимии редких рассеянных элементов, радиогенных и стабильных изотопов позволяет предполагать родство источников и сложной геодинамической обстановки магматизма. Первичные расплавы могли возникать из гетерогенного мантийного субстрата в условиях взаимодействия плюма с веществом аккреционно-коллизионных комплексов ранее существовавшей активной окраины континента.

ГЕОЛОГИЯ И ПЕТРОГРАФИЯ ЩЕЛОЧНО-МАФИТОВЫХ ПЛУТОНОВ

Тектоническая позиция. Горно-складчатое сооружение Кузнецкого Алатау, где была сформирована щелочная магматическая провинция, представляет собой каледонский террейн в составе ЦАСП с преобладанием в структуре комплексов океанической литосферы и островных дуг (Кунгурцев и др., 2001). Для него характерно неоднородное строение с чередованием выступов докембрийского фундамента, раннекаледонских поднятий и прогибов, а также среднепалеозойских впадин. В связи с неоднократной сменой тектонического режима наблюдается неравномерное распространение дислоцированных эффузивных, терригенно-карбонатных образований неопротерозоя-кембрия и субконтинентальных вулканогенно-осадочных отложений среднего палеозоя. В ходе эволюции регионального магматизма происходило формирование позднерифейских и палеозойских мафит-ультрамафитовых, габбромонцонитовых, гранитоидных и щелочно-базитовых комплексов (Шокальский и др., 2000).

Большинство щелочно-мафитовых интрузий локализовано в северо-восточном секторе Кузнецко-Алатауского хребта, где образуют ареал около 80-100 км в поперечнике (рис. 1б). Среди них выделяется три группы плутонов разного возраста (табл. 1, рис. 1в). Наиболее древние кембрийские массивы локализованы в осевой части горного хребта (например, Верхнепетропавловский и Университетский массивы). Ближе к его восточной периферии расположены левонские шелочные интрузивы (Кия-Шалтырский, Дедовогорский, Белогорский, Кургусульский). Предполагается, что Горячегорский плутон и его возможные сателлиты Подтайга и Андрюшкина Речка на границе с Минусинским прогибом (бассейн рек Береш, Ничкурюп. Базыр) могут иметь позднепермский возраст. Для провинции выбранные шелочные массивы являются представительными по петрографическому составу и не несут признаков масштабных метасоматических процессов.

Возраст и строение плутонов. Щелочные массивы (до $\sim 1-3 \text{ км}^2$) приурочены к зоне регионального глубинного разлома (рис. 16, 1в) и обычно прорывают метаморфизованные карбонатно-терригенные отложения и вулканиты рифея—кембрия. Горячегорский интрузив и его сателлиты расположены в поле раннедевонских эффузивов.

Интрузии позднекембрийской (~500 млн лет) эпохи. Согласно полученным геохронологическим данным, при современном эрозионном уровне региона к этому временному рубежу можно отнести два интрузивных массива. Представительный Верхнепетропавловский плутон образует шток, в котором преобладающее субщелочное габбро инъецировано телами тералитов, полевошпатовых ийолитов, фойяитов и поздних апатит-кальцитовых карбонатитов (Врублевский, 2015). Изотопный возраст фойдолитов и карбонатитов (~500-510 млн лет, Sm-Nd изохрона) согласуется с U-Pb датировками по акцессорному ширкону (~480–490 млн лет) из отдельных популяций его зерен в более поздних щелочно-базитовых плутонах провинции (Врублевский и др., 2014). Массив Университетский сложен преимущественно субщелочным и щелочным габбро, рассеченными дайками фойдолитов и мелкими жилами пегматоидных нефелиновых сиенитов (Осипов и др., 1989; Mustafayev et al., 2017).

Интрузии раннедевонской (~400 млн лет) эпохи. Среди изученных нами щелочно-мафитовых плутонических ассоциаций производные девонского магматизма являются самыми распространенными, что соответствует существующим представлениям (Андреева и др., 1984; Шокальский и др., 2000; Уваров, Уварова, 2008.). Наиболее дифференцированный Кия-Шалтырский массив состоит из трех пластинообразных тел, сложенных уртита-

Рис. 1. Геологическая позиция и строение щелочно-мафитовых плутонов в северной части Кузнецкого Алатау. (а) — расположение террейна Кузнецкого Алатау (прямоугольный контур) в ЦАСП, по (Şengör et al., 1993). (б) — фрагмент тектонической схемы западной части Алтае-Саянской складчатой области с ареалом распространения щелочно-мафитовых плутонов (белые кружки вне масштаба, причем, кружки большего размера — изученные массивы) в провинции Кузнецкого Алатау (КА), по (Врублевский и др., 2014 и ссылки там). 1 — отложения кайнозоя, 2 рифтогенные прогибы среднего и позднего палеозоя, 3 — каледониды и более древние структуры, 4 — глубинные разломы.

(в) – схемы геологического строения северо-восточной части Кузнецкого Алатау и представительных щелочных плутонов (Р – Подтайга, Аг – Андрюшкина Речка), по (Андреева, 1968; Осипов и др., 1989; Шокальский и др., 2000; Врублевский, 2015; Врублевский и др., 2014, 20166; Vrublevskii et al., 2020b). Отмечен изотопный возраст массивов, в млн лет. 1 – вулканиты и терригенные отложения девонских грабенов, 2 – вулканиты и карбонатные отложения раннего и среднего кембрия, 3 – кремнисто-сланцевые, вулканогенные и карбонатные отложения позднего неопротерозоя и раннего кембрия; 4–5 – габбро-сиенитовые интрузии (4) и гранитоиды (5) раннего палеозоя; 6 – офиолитовая ассоциация неопротерозоя, 7–14 – породы щелочно-мафитовых плутонов палеозоя: субщелочное габбро (7) и лейкогаббро (8), тералиты (9), плагиоклазовые ийолиты (лейкотералиты) (10), полевошпатовые ийолиты и уртиты (ювиты) (11), уртиты, пегматоидные ийолиты (12), нефелиновые сиениты (фойяиты) (13), дайки и жилы пегматоидных нефепиновых сиенитов (14); 15 – разрывные тектонические нарушения, 16 – границы геологических тел, 17 – фациальные петрографические границы.

ми и ийолит-уртитами, лейкократовым и меланократовым субщелочным габбро. Они сопровождаются жилами ийолитов, нефелиновых и щелочных сиенитов. Изотопный возраст (U-Pb, Sm-Nd) пород варьирует в интервале ~407—390 млн лет (Врублевский и др., 2014). Кургусульский массив имеет форму штока и состоит преимущественно из порфировидных ювитов и более ранних тералитов. Ювиты содержат цирконы двух генераций с возрастом ~485 и 395—390 млн лет. В Дедовогорском штокоподобном массиве преобладает лейкократовое субщелочное габбро (~407 млн лет,

Плутоны	Магматическая порода	Возраст (млн лет), метод, материал	Литературные ссылки
UP	Фойдолит, карбонатит	509 ± 10, Sm-Nd, минералы	Врублевский и др., 2014
	Тералит	502 ± 46, Rb-Sr, минералы	То же
	Тералит, фойдолит	490 ± 39, Rb-Sr, порода	Врублевский, 2015
U	Субщелочное габбро	498 ± 23, Sm-Nd, минералы	Mustafayev et al., 2017
KSh	Субщелочное габбро	406 ± 2 , Rb-Sr, минералы	Врублевский и др., 2014
	То же	407 ± 14, Sm-Nd, минералы	То же
	Уртит	405 ± 17, Sm-Nd, минералы	"_"
	Ийолит	399 ± 5, U-Рb, циркон	"_"
	Нефелиновый сиенит	388 ± 3, U-Pb, циркон	"_"
	То же	378 ± 15, К-Аг, нефелин	Андреева, 1968
DG	Субщелочное габбро	407 \pm 14, Sm-Nd, минералы	Врублевский и др., 2014
	Нефелиновый сиенит	401 ± 2, U-Рb, бадделеит	То же
	То же	401 ± 7, U-РЬ, циркон	"_"
BG	Фойдолит	403 ± 3, Ar-Ar, амфибол	Врублевский и др., 2016б
	Нефелиновый сиенит	401 ± 3, Ar-Ar, амфибол	То же
Κ	Ювит	394 ± 9 , U-Pb, циркон	Врублевский и др., 2014
GG	Фойдолит	265 ± 75 , Sm-Nd, минералы	Vrublevskii et al., 2020b
	Нефелиновый сиенит	264 ± 2, U-Рb, циркон	То же

Таблица 1. Обзор данных изотопного датирования щелочно-мафитовых интрузий в северной части Кузнецкого Алатау

Примечание. Плутоны: Верхнепетропавловский (UP), Университетский (U), Кия-Шалтырский (KSh), Дедовогорский (DG), Белогорский (BG), Кургусульский (K), Горячегорский (GG).

Sm-Nd), инъецированное фойяитами (~400 млн лет, U-Pb) (Врублевский и др., 2014). Белогорский массив образует два сближенных штока, сложенных габбро, тералитами, фойдолитами и более поздними фойяитами. Ar-Ar возраст породообразующего амфибола составляет 401—403 млн лет (Врублевский и др., 2016б).

Интрузии позднепермской (~265 млн лет) эпохи. Горячегорский массив образует штоковидное тело, состоящее из плагиоклазовых ийолитов ("лейкотералиты"), ювитов и поздних инъекционных нефелиновых сиенитов. U-Pb датировки по циркону из сиенитов показывают наличие двух генераций минерала: ~485–480 и ~265 млн лет (Врублевский и др., 2014; Vrublevskii et al., 2020b). Малые интрузии Андрюшкина Речка и Подтайга представляют собой пластообразную залежь субвулканических берешитов (основных фойдолитов) и два дайковых тела ийолит-уртитов соответственно.

Общей чертой щелочно-мафитовых плутонов Кузнецкого Алатау является наличие пород дайковой фации, соответствующих составу главных интрузивных фаз. Среди них распространены трахидолериты, камптониты, тералит-порфириты, тингуаиты, микроийолиты, фойдолитовые порфиры, нефелиновые и щелочные сиениты.

Общая петрографическая характеристика. Все изверженные породы шелочно-мафитовых плутонов имеют массивное полнокристаллическое строение (рис. 2). Субщелочное габбро обычно представлено лейкократовой (модальное количество мафических минералов (M) \leq 50) трахитоидной и мезократовой (M = 50-70) крупно- и среднезернистыми разновидностями. Для их состава характерна устойчивая ассоциация оливина, Ті-содержащего клинопироксена (диопсида, салит-фассаита), бурого амфибола и среднего или основного плагиоклаза, обладающих переменным идиоморфизмом (рис. 3а, 3б). Более шелочные разновидности габброидов соответствуют тералитам, в которых, наряду с уже отмеченными минералами, до 5–7 об. % присутствует нефелин (рис. 3в). В лейкотералитах, так называемых "горячитах" Горячегорского массива, содержание фельдшпатоида может достигать ~30 об. %. Собственно нефелин-пироксеновые породы представлены разновидностями ийолит-уртитового ряда, основными фойолитами и ювитами (полевошпатовый уртит) (рис. 2в, 2г). Их общим признаком является агпаитовая структура, особенно отчетливо проявленная в уртитах (рис. 2д,

Фойдолиты и нефелиновые сиениты

Рис. 2. Главные разновидности магматических пород в щелочно-мафитовых плутонах Кузнецкого Алатау. Субщелочное габбро лейкократовое (а) и мезократовое (б) в Дедовогорском и Кия-Шалтырском массивах; полевошпатовые ийолит-уртит (в) и уртит (ювит) (г) Верхнепетропавловского и Кургусульского массивов; уртит (д) Кия-Шалтырского массива; нефелиновый сиенит (фойяит) (е) Горячегорского массива. *Срх* – клинопироксен, *Pl* – плагиоклаз, *Fsp* – калиевый полевой шпат, *Ne* – нефелин. Фотосъемка выполнена цифровой камерой Sony α 300.

рис. Зд), а также появление в ассоциации с нефелином эгиринсодержащего клинопироксена наряду с распространенным титан-авгитом (рис. Зг). Вторичные изменения мафитов обычно ограничиваются частичным замещением оливина иддингситом, нефелина и калиевого полевого шпата глинистым веществом, а также соссюритизацией основного и среднего плагиоклаза.

Формирование плутонов завершается небольшими штоками и инъекционными жильными телами нефелиновых сиенитов средне-, крупнозернистого или пегматоидного строения (рис. 2е, рис. 3е). Характерной чертой состава этих пород является ассоциация бурой роговой обманки и эгирин-авгита (M = 10–30), что позволяет относить их к фойяитам. Преобладающие салические минералы представлены ортоклаз-пертитом (~60 об. %), нефелином (до ~20 об. %) и альбитом. При становлении только Верхнепетропавловского плутона наряду с нефелиновыми сиенитами происходило образование жильных карбонатитов (Врублевский, 2015). Породы имеют неравномернозернистый массивный облик и сложены мозаичным кальцитовым агрегатом (до ~50–70 об. %), в который погружены субидиоморфные кристаллы апатита (до ~5–20 об. %), а также клинопироксена (фассаита), ферромонтичеллита, флогопита и магнетита.

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Концентрации петрогенных и редких рассеянных элементов измерены методами XRF (энерго-

ВРУБЛЕВСКИЙ, ГЕРТНЕР

Субщелочное и щелочное габбро

Рис. 3. Микроструктурные особенности магматических пород в шелочно-мафитовых плутонах Кузнецкого Алатау. (а, б) – гипидиоморфная (габбровая, офитовая) микроструктура с эв- и субгедральными зернами оливина (*Ol*), Ti-содержащего клинопироксена (*Cpx*), основного плагиоклаза (*Pl*), бурого амфибола (*Amp*) в субщелочном габбро Кия-Шалтырского и Дедовогорского массивов; (в) – гипидиоморфная микроструктура (*Ne* – нефелин) в щелочном габбро (тералит, лейкотералит) Горячегорского массива; (г) – гипидиоморфная (агпаитовая) микроструктура в полевошпатовом ийолит-уртите (*Fsp* – калиевый полевой шпат) Горячегорского массива; (д) – агпаитовая микроструктура в уртите Кия-Шалтырского массива; (е) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (е) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (в) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (б) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (с) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (с) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (с) – гипидиоморфная (агпаитовая) и икроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (с) – гипидиоморфная (агпаитовая) микроструктура в пироксен-амфиболовом фойяите Дедовогорского массива; (с) – гипидиоморфная (агпаитовая) и икроструктура в пироксен-амфиболовом фой-

дисперсионный спектрометр Oxford ED2000, рентгенофлюоресцентный спектрометр ARL-9900XL) и ICP-MS (Agilent 7500сх, Finnigan MAT-262, Finnigan Element 2) в Национальном исследовательском Томском государственном университете (Томск), Институте геологии и минералогии СО РАН (Новосибирск), Институте минералогии, геохимии и кристаллохимии редких элементов (Москва), Тихоокеанском центре изотопных и геохимических исследований (Университет Британской Колумбии, Ванкувер, Канада).

Изотопный состав Sm-Nd и Rb-Sr изучен в статическом режиме на масс-спектрометрах МИ 1201-1, Finnigan MAT-262 и MAT-260, Finnigan Triton (TIMS) в институтах Российской академии наук: Геологическом институте КНЦ (Апатиты), Институте геологии и геохронологии докембрия (Санкт-Петербург), Институте геохимии и аналитической химии, Институте геологии рудных месторождений, петрографии, минералогии и геохимии, Геологическом институте (Москва) и в Университете Британской Колумбии (Ванкувер, Канада). Концентрации элементов определены изотопным разбавлением с точностью 1 отн. % для Rb и Sr и 0.5 отн. % для Sm и Nd. Ошибки (2о) не превышают 0.5 отн. % для ⁸⁷Rb/⁸⁶Sr и 0.2 отн. % для ¹⁴⁷Sm/¹⁴⁴Nd, 0.05 отн. % для ⁸⁷Sr/⁸⁶Sr и

0.005 отн. % ¹⁴³Nd/¹⁴⁴Nd. Аналитический контроль с параллельным измерением стандартных образцов показал средние результаты: La Jolla ¹⁴³Nd/¹⁴⁴Nd = $= 0.511828 \pm 22$; 0.511833 ± 15 ; 0.511837 ± 12 ; 0.511839 ± 8 ; 0.511853 ± 16 (нормализовано по ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219); SRM-987 ⁸⁷Sr/⁸⁶Sr = 0.710238 ± 16 ; 0.710250 ± 12 (нормализовано по ⁸⁸Sr/⁸⁶Sr = = 8.37521). Расчет первичных (T = 500, 400, 265 млн лет) изотопных отношений, ε_{Nd} и ε_{Sr} проведен по современным параметрам модельных резервуаров CHUR (¹⁴³Nd/¹⁴⁴Nd = 0.512638; ¹⁴⁷Sm/¹⁴⁴Nd = 0.1967) и UR (⁸⁷Sr/⁸⁶Sr = 0.7045; ⁸⁷Rb/⁸⁶Sr = 0.0827) (Faure, 1986).

Изотопный Pb-Pb анализ горных пород проводился в статическом режиме на MC-ICP-MS комплексе Nu Instruments Plasma (Nu 021) в Тихоокеанском центре изотопных и геохимических исследований (Университет Британской Колумбии, Ванкувер, Канада) по нормализованной процедуре (NIST SRM 981, $\pm 2\sigma$; ²⁰⁸Pb/²⁰⁴Pb = 36.7202 \pm 58, ²⁰⁷Pb/²⁰⁴Pb = 15.4999 ± 20 , ²⁰⁶Pb/²⁰⁴Pb = 16.9431 ± 21 ; n = 19) (Weis et al., 2006). Изотопный состав свинца в породообразующем микроклине, пирротине и пирите измерен на Thermo Scientific Neptune MC-ICP-MS масс-спекрометре (Германия) в Институте геологии рудных месторождений петрографии, минералогии и геохимии по стандартной методике (Чернышов и др., 2007). Для масс-спектрометрии свинец экстрагировали из 10-15 мг аликвот в смеси $HCl + HNO_3$ в среде HBr на хроматографических колонках с анионитом 1 × 8 Bio-Rad AG. Перед изотопным анализом растворы Рb (3% HNO₃) были предварительно трассированы Tl с известным соотношением ²⁰⁵Tl/²⁰³Tl. Образцы вводились в факел масс-спектрометра с помощью кварцевой распылительной камеры. Измеренные соотношения изотопов Рb были нормализованы по станлартному значению ²⁰⁵T1/²⁰³Tl. равному 2.3889 ± 2. Аналитическая точность оценивалась по результатам измерения стандартных образцов USGS: AGV-2 (²⁰⁶Pb/²⁰⁴Pb = 18.871 ± 5; $^{207}\text{Pb}/^{204}\text{Pb} = 15.621 \pm 4$; $^{208}\text{Pb}/^{204}\text{Pb} = 38.548 \pm 10$) (n = 5) u BCR-1 (²⁰⁶Pb/²⁰⁴Pb = 18.822 ± 6; 207 Pb/ 204 Pb = 15.640 ± 4; 208 Pb/ 204 Pb = 38.737 ± 12) (n = 10). Ошибка 2 σ анализа Pb составила $\pm 0.04\%$.

Величина δ^{18} О изверженных пород и породообразующих минералов (клинопироксен, нефелин, полевой шпат) определялась в лабораториях Геологического института (Москва) и Геологического института (Улан-Удэ) на масс-спектрометрах МИ 1201-В, Delta V Advantage и Finnigan MAT-253. Кислород из силикатов выделялся при помощи CIF₃. Изотопный состав кислорода в породах изучался методами газовой хроматографии с массспектрометрией (GC-MS) и лазерной абляции с системой MIR 10–30. Величина δ^{18} О приведена в промилле относительно значения V-SMOW. The $\delta^{18}O_{V-SMOW}$ в стандарте NBS-28 (кварц) составила 9.62‰ за все время измерений. Аналитическая ошибка δ^{18} О не превышала $\pm 0.2‰$.

ХИМИЧЕСКИЙ СОСТАВ ЩЕЛОЧНО-МАФИТОВЫХ КОМПЛЕКСОВ

Петрогенные элементы. Разновозрастные щелочно-мафитовые интрузивы Кузнецкого Алатау в различной степени представлены дифференциатами K-Na магматической серии субщелочное габбро-тералит-фойдолит (ийолит, уртит, полевошпатовый фойдолит, ювит)-нефелиновый сиенит (фойяит), редко жильный карбонатит (Врублевский, 2015). Химический состав главных разновидностей пород характеризуется пониженной кремнекислотностью (SiO₂ 40-57 мас. %), широкими вариациями щелочности ((Na₂O + K₂O) 1.5-15 мас. %; Na₂O/K₂O 1.5-7.2) и глинозема (Al₂O₃ 7-28 мас. %) (табл. 2-5, рис. 4). От габбро к фойяитам происходит накопление кремния, алюминия и щелочей с одновременным уменьшением содержаний CaO (18-1.7 мас. %), MgO (11-0.3 мас. %), Fe₂O₃ (14-2.5 мас. %) и совместимых элементов: Cr (от 766-530 до 10-4 г/т), Ni (от 170-90 до 10-3 г/т), Со (от 52 до 5-2 г/т), V (от

749—260 до 5—1 г/т), Sc (от 93—50 до 3—1 г/т). В целом этот тренд согласуется с моделью фракционной кристаллизации по Н. Боуэну. На TAS-диаграмме отчетливо прослеживается общая тенденция обогащения щелочами более поздних магматических производных (рис. 4а).

Редкие рассеянные элементы. Распределение микроэлементов при формировании шелочных плутонов неоднозначно. С уменьшением магнезиальности пород концентрации большинства из них заметно возрастают только в нефелиновых сиенитах (табл. 2-5, рис. 5). Дифференциация расплавов повлияла, главным образом, на содержания, г/т: Cs от 0.1 до 4–9, Rb 6–187, Th 0.3–67, U 0.2-30, Nb 1.5-59 и Та 0.1-5.9. Менее значительны вариации REE от ≈35-115 г/т в габбро до 200-482 г/т в основных фойдолитах и нефелиновых сиенитах. В габбро и фойдолитах концентрации большинства LILE и HFSE остаются примерно на одном уровне между средними составами ІАВ и OIB. Для пород характерно умеренное накопление Zr (до 200-500 г/т, за исключением ан. 4, табл. 2), Hf (2-12 г/т) и Yb (до 2-9 г/т) и широкий диапазон содержаний Ва и Sr (до ~400-2500 и ~700-1800 г/т соответственно). Возможно, в некоторых образцах габбро присутствует вещество, сходное с компонентами E-MORB (рис. 5).

Мультиэлементные спектры субщелочного габбро имеют отчетливые Nb-Ta и Zr-Hf минимумы и подобны среднему спектру IAB (рис. 6). Для тералитов и более поздних основных фойдолитов тенденция сохраняется, но отмечается их обогащенность легкими REE по сравнению с габбро (в среднем LREE/HREE = 8.7 и 5.6 соответственно), а также накопление Cs, Rb, Ba, Th, U, Ta и Nb до уровня OIB (табл. 2, рис. 6). Независимо от степени дифференциации базитовой магмы в породах повышено содержание стронция, который может иметь верхнекоровое происхождение.

Характерной чертой химического состава пород шелочно-мафитовой серии Кузнецкого Алатау являются невысокие концентрации REE (~140-200 г/т) по сравнению с платформенными аналогами (Бородин и др., 1987; Downes et al., 2005; Арзамасцев, Арзамасцева, 2013). Ийолиты и уртиты Кия-Шалтырского плутона максимально обеднены REE (~28-83 г/т) (табл. 2, рис. 6). При этом аномально высокая концентрация REE (347-482 г/т) для изученной серии наблюдается исключительно в жильных пегматоидных фойяитах Дедовогорского и Университетского массивов, которые также содержат, г/т: Zr 511-1054, Nb до 59, Y 55-85, Th 25-67, U 18-30, Cs до 9.2. Спектры распределения REE в большинстве мафитовых пород характеризуются положительной Eu-аномалией (Eu/Eu* ≈ ≈ 1.1–1.5). Сходную величину Eu/Eu* ≈ 1–1.1 имеют дайки микроийолитов, которые могли быть первой фракцией фойдового расплава, а более поздние

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vounououmu]	Плутон Унин	зерситетский	Ă	Плу	тон Верхнеп	етропавловс	ский
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	компоненты	1	2	3	4	5	6	7	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂	44.98	47.80	46.46	49.54	47.32	46.40	44.38	53.47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂	0.95	1.06	1.27	0.69	1.10	1.17	0.91	0.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al_2O_3	15.11	19.58	14.71	18.13	15.83	14.54	18.57	21.82
	Fe ₂ O ₃	11.20	9.11	11.34	9.70	8.25	12.52	10.68	6.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO	_	_	_	0.28	0.13	0.26	0.22	0.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgO	8.93	4.32	6.92	1.41	8.02	6.97	2.34	0.57
Na2O 2.96 2.80 4.23 9.08 2.50 4.03 7.22 7.89 KyO 0.95 0.39 2.43 2.82 0.60 2.43 2.44 4.49 PyOs 0.09 0.05 0.50 0.25 0.36 0.50 0.69 0.60 In.m. 1.13 0.54 1.26 1.18 1.12 Cymma 100.93 99.84 99.65 100.22 100.35 100.54 100.05 100.57 Cr 224 38 56 24 529 353 28 4 Ni 56 29 7 8 110 112 22 3 V 155 43 12 13 30 36 21 2 Sc 24 6.2 0.9 1.5 47 19 5.8 0.4 Cu 43 22 19 11 20 23 19 4	CaO	14.63	14.19	10.53	6.81	14.74	10.46	11.42	3.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ₂ O	2.96	2.80	4.23	9.08	2.50	4.03	7.22	7.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_2 O$	0.95	0.39	2.43	2.82	0.60	2.43	2.44	4.49
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$P_2 O_{\epsilon}$	0.09	0.05	0.50	0.25	0.36	0.50	0.69	0.60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ппп	1 13	0.54	1.26	1.51	1.50	1.26	1 18	1.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyana	100.93	99.84	99.65	100.22	100.35	100 54	100.05	100.57
Cl 24^{+} 35^{-} 24^{-} 325^{-} 235^{-} 23^{-} 4^{-} Ni 56 29^{-} 7 8 110 112 22^{-} 3 V 155 43 12 10 200 150 81 8 Co 49 34 12 13 30 36 21 2 2 Sc 24 62^{-} 0.9 1.5 47 19 5.8 0.4 Cu 43 22 19 11 20^{-} 23^{-} 19^{-} 24^{-} 12^{-} 71^{-} 19^{-} 24^{-} 16^{-} Cs 0.8^{-} 0.4^{-} 1^{-} 9^{-} 21^{-} 0.7^{-} 0.5^{-} 2 Ba 303 346^{-} 726^{-} 226^{-} 10^{-} 144^{-} 316^{-} 112^{-} 12^{-} 12^{-} 12^{-} 12^{-} 12^{-} 12^{-} 12^{-} 12^{-} 12^{-} 12^{-} 1311^{-} 144	Сумма	224	38	56	24	520	353	28	100.57
N1 50 27 7 6 110 112 22 3 V 155 43 12 10 200 150 81 8 Co 49 34 12 13 30 36 21 2 Sc 24 6.2 0.9 1.5 47 19 5.8 0.4 Cu 43 22 19 11 20 23 19 4 Zn 106 64 140 280 45 122 71 24 Pb $ 76$ 1.2 5.6 5.4 16 Cs 0.8 0.47 1 9.2 2.1 0.7 0.5 2 Ba 303 346 726 246 206 2499 1802 1908 Sr 538 1075 893 468 738 1084 869 1180 Nb 9 10 42 52 12 1	CI Ni	56	20	50 7	24	110	112	20	
V15314312133036212Co493412133036212Sc246.20.91.547195.80.4Cu432219112023194Zn10664140280451227124Pb761.25.65.416Cs0.80.4719.22.10.70.52Rb2438421879443492Ba303346726246206249918021908Sr538107589346873810848691180Nb91042594521212Ta0.60.72.55.90.21.60.70.4Zr1249527910547513114461Hf2.71.64121.72.52.60.9Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211844438.325283.4Sm4.63.4<	INI V	155	29 13	12	0	200	112	22 81	8
Co 7^{7} 5^{4} 12 15 15 30 21 12 21 Sc 24 6.2 0.9 1.5 47 19 5.8 0.4 Cu 43 22 19 11 20 23 19 4 Zn 106 64 140 280 45 112 71 24 Pb $ 76$ 1.2 5.6 5.4 16 Cs 0.8 0.477 1 9.2 2.1 0.7 0.5 2 Rb 24 38 42 187 9 44 34 92 Ba 303 346 726 246 206 2499 1802 1908 Sr 538 1075 893 468 738 1084 869 1180 Nb 9 10 42 59 4 52 12 11	v Co	49	34	12	10	30	36	21	2
Cu 43 22 19 11 20 23 19 4 Zn 106 64 140 280 45 122 71 24 Pb $ 76$ 1.2 5.6 5.4 16 Cs 0.8 0.47 1 9.2 2.1 0.7 0.5 2 Ba 303 346 726 246 206 2499 1802 1908 Sr 538 1075 893 468 738 1084 869 1180 Nb 9 10 42 59 4 52 12 12 Ta 0.6 0.7 2.5 5.9 0.2 1.6 0.7 0.4 Zr 124 95 279 1054 75 131 144 61 Hf 2.7 1.6 4 12 1.7 2.5 2.6 0.9 Y 22 17 45 85 19 33 2.7 </td <td>Sc</td> <td>74 24</td> <td>62</td> <td>0.9</td> <td>15</td> <td>47</td> <td>19</td> <td>5.8</td> <td>0.4</td>	Sc	74 24	62	0.9	15	47	19	5.8	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	43	22	19	1.5	20	23	19	0.4 4
IntI	Zn	106	64	140	280	45	122	71	24
Cs0.80.4719.21.10.70.70.51.2Rb2438421879443492Ba303346726246206249918021908Sr538107589346873810848691180Nb91042594521212Ta0.60.72.55.90.21.60.70.4Zr1249527910547513114461Hf2.71.64121.72.52.60.9Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211849845.426329.7Ce453810115314.5596314Pr5.24.59.1121.86.67.31Nd211844438.325283.4Sm4.63.48.58.135.55.30.7Eu1.31.42.620.921.81.1Gd4.443.28.18.83.25.54.80.7 <td>Ph</td> <td></td> <td>_</td> <td>_</td> <td>76</td> <td>12</td> <td>5.6</td> <td>54</td> <td>16</td>	Ph		_	_	76	12	5.6	54	16
Rb2438421879443492Ba303346726246206249918021908Sr538107589346873810848691180Nb91042594521212Ta0.60.72.55.90.21.60.70.4Zr1249527910547513114461Hf2.71.64121.72.52.60.9Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211849845.426329.7Ce453810115314.5596314Pr5.24.59.1121.86.67.31Nd211844438.325283.4Sm4.63.48.58.135.55.30.7Eu1.31.42.620.921.81.1Gd4.43.28.18.83.25.54.80.7Tb0.70.51.31.70.60.90.70.1Dy	Cs	0.8	0.47	1	9.2	2.1	0.7	0.5	2
Ba303346726246206249918021908Sr538107589346873810848691180Nb91042594521212Ta0.60.72.55.90.21.60.70.4Zr1249527910547513114461Hf2.71.64121.72.52.60.9Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211849845.426329.7Ce453810115314.5596314Pr5.24.59.1121.86.67.31Nd211844438.325283.4Sm4.63.48.58.135.55.30.7Eu1.31.42.620.921.81.1Gd4.43.28.18.83.25.54.80.7Th0.70.51.31.70.60.90.70.1Dy4.33.18.2123.24.84.20.7 <tr< td=""><td>Rb</td><td>24</td><td>38</td><td>42</td><td>187</td><td>9</td><td>44</td><td>34</td><td>92</td></tr<>	Rb	24	38	42	187	9	44	34	92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba	303	346	726	246	206	2499	1802	1908
Nb91042594521212Ta0.60.72.55.90.21.60.70.4Zr1249527910547513114461Hf2.71.64121.72.52.60.9Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211849845.426329.7Ce453810115314.5596314Pr5.24.59.1121.86.67.31Nd211844438.325283.4Sm4.63.48.58.135.55.30.7Eu1.31.42.620.921.81.1Gd4.43.28.18.83.25.54.80.7Tb0.70.51.31.70.60.90.70.1Dy4.33.18.2123.24.84.20.7Ho0.90.71.82.90.81.20.90.2Er2.41.95.192.13.52.50.6Tm<	Sr	538	1075	893	468	738	1084	869	1180
Ta 0.6 0.7 2.5 5.9 0.2 1.6 0.7 0.4 Zr 124 95 279 1054 75 131 144 61 Hf 2.7 1.6 4 12 1.7 2.5 2.6 0.9 Y 22 17 45 85 19 33 27 5 Th 2.7 2.5 7 25 0.4 3.1 3 5.6 U 1.9 2.3 5.5 30 0.3 2.4 2 3.2 La 21 18 49 84 5.4 26 32 9.7 Ce 45 38 101 153 14.5 59 63 14 Pr 5.2 4.5 9.1 12 1.8 6.6 7.3 1 Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Dy 4.3 3.1 8.2 12 3.2 4.8 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 0.7 0.7 Dy 4.3 3.1 8.2 12 3.2 2.5 0.6 <	Nb	9	10	42	59	4	52	12	12
Zr1249527910547513114461Hf2.71.64121.72.52.60.9Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211849845.426329.7Ce453810115314.5596314Pr5.24.59.1121.86.67.31Nd211844438.325283.4Sm4.63.48.58.135.55.30.7Eu1.31.42.620.921.81.1Gd4.43.28.18.83.25.54.80.7Tb0.70.51.31.70.60.90.70.1Dy4.33.18.2123.24.84.20.7Ho0.90.71.82.90.81.20.90.2Er2.41.95.192.13.52.50.6Tm0.40.30.81.50.30.50.40.1Yb2.21.94.88.81.93.22.60.6<	Та	0.6	0.7	2.5	5.9	0.2	1.6	0.7	0.4
Hf 2.7 1.6 4 12 1.7 2.5 2.6 0.9 Y 22 17 45 85 19 33 27 5 Th 2.7 2.5 7 25 0.4 3.1 3 5.6 U 1.9 2.3 5.5 30 0.3 2.4 2 3.2 La 21 18 49 84 5.4 26 32 9.7 Ce 45 38 101 153 14.5 59 63 14 Pr 5.2 4.5 9.1 12 1.8 6.6 7.3 1 Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4	Zr	124	95	279	1054	75	131	144	61
Y221745851933275Th2.72.57250.43.135.6U1.92.35.5300.32.423.2La211849845.426329.7Ce453810115314.5596314Pr5.24.59.1121.86.67.31Nd211844438.325283.4Sm4.63.48.58.135.55.30.7Eu1.31.42.620.921.81.1Gd4.43.28.18.83.25.54.80.7Tb0.70.51.31.70.60.90.70.1Dy4.33.18.2123.24.84.20.7Ho0.90.71.82.90.81.20.90.2Er2.41.95.192.13.52.50.6Tm0.40.30.81.50.30.50.40.1Yb2.21.94.88.81.93.22.60.6Lu0.30.30.71.10.30.50.40.1SREE113.895.2245347.446.3144.4154.5<	Hf	2.7	1.6	4	12	1.7	2.5	2.6	0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	22	17	45	85	19	33	27	5
U 1.9 2.3 5.5 30 0.3 2.4 2 3.2 La 21 18 49 84 5.4 26 32 9.7 Ce 45 38 101 153 14.5 59 63 14 Pr 5.2 4.5 9.1 12 1.8 6.6 7.3 1 Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 SREE 113.8 95.2 245 347.4 46.3 <	Th	2.7	2.5	7	25	0.4	3.1	3	5.6
La 21 18 49 84 5.4 26 32 9.7 Ce 45 38 101 153 14.5 59 63 14 Pr 5.2 4.5 9.1 12 1.8 6.6 7.3 1 Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 Σ REE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	U	1.9	2.3	5.5	30	0.3	2.4	2	3.2
Ce453810115314.5596314Pr 5.2 4.5 9.1 12 1.8 6.6 7.3 1 Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 Σ REE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	La	21	18	49	84	5.4	26	32	9.7
Pr 5.2 4.5 9.1 12 1.8 6.6 7.3 1 Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 Σ REE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	Ce	45	38	101	153	14.5	59	63	14
Nd 21 18 44 43 8.3 25 28 3.4 Sm 4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	Pr	5.2	4.5	9.1	12	1.8	6.6	7.3	1
Sm4.6 3.4 8.5 8.1 3 5.5 5.3 0.7 Eu 1.3 1.4 2.6 2 0.9 2 1.8 1.1 Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	Nd	21	18	44	43	8.3	25	28	3.4
Eu1.31.42.62 0.9 21.81.1Gd4.43.28.18.83.25.54.80.7Tb0.70.51.31.70.60.90.70.1Dy4.33.18.2123.24.84.20.7Ho0.90.71.82.90.81.20.90.2Er2.41.95.192.13.52.50.6Tm0.40.30.81.50.30.50.40.1Yb2.21.94.88.81.93.22.60.6Lu0.30.30.71.10.30.50.40.1 ΣREE 113.895.2245347.446.3144.4154.532.9	Sm	4.6	3.4	8.5	8.1	3	5.5	5.3	0.7
Gd 4.4 3.2 8.1 8.8 3.2 5.5 4.8 0.7 Tb 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	Eu	1.3	1.4	2.6	2	0.9	2	1.8	1.1
1b 0.7 0.5 1.3 1.7 0.6 0.9 0.7 0.1 Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9	Gd	4.4	3.2	8.1	8.8	3.2	5.5	4.8	0.7
Dy 4.3 3.1 8.2 12 3.2 4.8 4.2 0.7 Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9 LREE/HREE 6.3 7 7 6.6 2.7 6.2 8.3 9.7	Tb	0.7	0.5	1.3	1.7	0.6	0.9	0.7	0.1
Ho 0.9 0.7 1.8 2.9 0.8 1.2 0.9 0.2 Er 2.4 1.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9 LREE/HREE 6.3 7 7 6.6 2.7 6.2 8.3 9.7	Dy L	4.3	3.1	8.2	12	3.2	4.8	4.2	0.7
EI2.41.9 5.1 9 2.1 3.5 2.5 0.6 Tm 0.4 0.3 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9 LREE/HREE 6.3 7 7 6.6 2.7 6.2 8.3 9.7	H0 En	0.9	0.7	1.8	2.9	0.8	1.2	0.9	0.2
Im 0.4 0.5 0.8 1.5 0.3 0.5 0.4 0.1 Yb 2.2 1.9 4.8 8.8 1.9 3.2 2.6 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9 LREE/HREE 6.3 7 7 6.6 2.7 6.2 8.3 9.7	EI Tm	2.4	1.9	5.1 0.9	9	2.1	5.5	2.5	0.6
10 2.2 1.9 4.6 6.8 1.9 3.2 2.0 0.6 Lu 0.3 0.3 0.7 1.1 0.3 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9 $LREE/HREE$ 6.3 7 7 6.6 2.7 6.2 8.3 0.7	11fl Vb	0.4	0.3	U.8 1 9	1.5	0.3	0.5	0.4	0.1
Lu 0.5 0.7 1.1 0.5 0.4 0.1 ΣREE 113.8 95.2 245 347.4 46.3 144.4 154.5 32.9 $L REE/HREE$ 6.3 7 7 6.6 2.7 6.2 8.3 0.7	10 1 u	2.2	1.9	4.0	0.0	1.9	5.2 0.5	2.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lu VREE	0.5	0.5 95 2	0.7 245	1.1 347 /	0.5 46 3	0.3 144 A	0.4	32.0
LNLL/IINLL = 0.7 + 7 + 7 + 1 + 0.0 + 7.7 + 0.7 + 0.7 + 97	LREE/HREE	6.3	7	7	6.6	2.7	6.2	8.3	9.7

Таблица 2. Химический состав магматических пород в щелочно-мафитовых плутонах кембрийского возраста, Кузнецкий Алатау

Примечание. 1, 2, 5 – субщелочное габбро, 3, 6 – тералит, 4, 8 – нефелиновый сиенит, 7 – полевошпатовый ийолит. Оксиды даны в мас. %, элементы – в г/т, прочерк – не определялось.

500pueru, 1190n	• 4.	aray								
Компоненты	1	2	3	4	5	6	7	8	9	10
SiO ₂	45.58	44.27	46.31	40.74	41.46	40.29	40.33	42.66	41.07	52.28
TiO ₂	0.99	0.82	1.06	0.33	0.34	0.36	1.00	1.50	1.29	0.24
Al_2O_3	11.92	18.21	21.14	28.30	28.55	26.42	18.22	18.53	17.86	23.24
Fe ₂ O ₃	8.84	7.47	7.67	3.90	3.31	4.53	11.82	11.30	11.92	4.24
MnO	0.16	0.13	0.12	0.06	0.05	0.08	0.20	0.20	0.23	0.09
MgO	10.85	7.63	4.66	1.78	2.08	2.35	3.61	5.55	3.37	1.18
CaO	16.54	14.75	11.60	6.91	6.89	7.66	12.62	10.28	11.08	5.77
Na ₂ O	2.32	2.90	4.07	11.47	10.92	11.16	7.19	5.16	5.63	8.07
K ₂ O	0.56	0.56	0.66	2.63	2.89	3.03	1.91	1.31	1.63	1.87
P_2O_5	0.09	0.01	0.06	0.32	0.29	0.45	0.38	0.42	0.70	0.17
П.п.п.	1.97	2.63	2.43	2.14	2.58	2.70	1.72	2.86	4.55	2.01
Сумма	99.47	99.38	99.78	98.58	99.36	99.03	99.00	99.77	99.33	99.16
Cr	766	39	21	10	9	18	16	47	12	14
Ni	171	53	70	13	12	20	21	43	20	15
V	264	120	89	17	16	21	18	137	38	16
Co	52	26	23	12	9	13	25	36	20	5
Sc	48	19	10	0.68	0.7	1.1	1.2	7.3	2.4	0.6
Cu	9	6	29	11	7	8.8	28	19	47	12
Zn	61	61	44	35	25	39	65	115	88	47
Pb	2.6	1.9	2.6	0.9	1.7	6.9	2.4	4.1	7.9	8.2
Cs	0.3	0.13	0.22	0.52	0.34	0.77	0.55	1.5	1.4	1.3
Rb	7	5.8	6.4	39	45	43	30	30	58	46
Ba	162	111	343	113	88	389	155	402	448	936
Sr	394	680	1007	789	693	953	685	785	577	1823
Nb	4.5	1.5	4.2	3	2.1	20	6.2	17	21	18
Та	0.3	0.14	0.36	0.15	0.13	0.75	0.42	0.82	1.4	1
Zr	91	74	113	40	45	58	128	168	189	118
Hf	2.7	1.8	2.4	0.57	0.62	0.7	1.5	3.4	2.3	1.7
Y	24	13	17	6.4	6	14	14	33	28	12
Th	0.76	0.26	0.56	0.75	0.45	2.9	1.6	2.5	4.3	5.3
U	0.62	0.17	0.38	0.76	0.38	3.1	1.2	2.4	3.7	3.4
La	12	5	10	8	5	19	1/	21	32	28
Ce Dr	18	11	18	10	11	35	28	4/	61 5 1	41
PI Na	2.5	1.3	2.3	1.9	1.3	5.8 14	2.8	0.2	2.1 22	3./ 14
Nu Sm	12	10	12	0.7	12	14	12	23 53	23	14
SIII Fu	5 11	1.9	2.2	1.4	0.28	2.0	2.4	5.5 2	5.0 1.2	2.2
Eu Gd	1.1	0.75	1.1	0.49	0.30	0.00	0.05	2 5 8	1.2	1.1
Uu Th	5.2 0.5	0.37	0.37	0.10	1.1	2.4	2.1	0.85	5.7 0.71	0.3
Dv	0.5	23	0.37	0.19	0.17	0.39	0.41	0.85 5 2	0.71	0.5
Dy Ho	5.7 0.7	2.5	2.7	0.98	0.92	2.2	2.2	1.2	4.0	0.30
Fr.	1.0	1.2	1.3	0.22	0.21	13	1.3	3.2	1.1	0.39
Tm	0.3	0.15	0.21	0.01	0.55	1.3 0.19	0.18	0.5	2.5 0.37	0.16
Vh	1.5	1.7	13	0.09	0.55	11	1.10	3	29	1 2
Iu	0.2	0.15	0.17	0.00	0.55	0.16	0.23	5 0.46	0.35	0.18
ΣREE	60.7	34 7	55.4	38.6	28.5	83.5	71.4	124 7	142.3	96.7
LREE/HREE	4.0	34	53	83	6.8	92	73	5 2	7 8	13.4
	1.0	2.1	5.5	5.5	5.0	1.4		5.2		1.2.1

Таблица 3. Химический состав магматических пород Кия-Шалтырского габбро-уртитового плутона девонского возраста, Кузнецкий Алатау

Примечание. 1–3 – субщелочное габбро меланократовое (1), мезократовое (2) и лейкократовое (3); 4–6 – уртит, 7 – пегматоидный ийолит, 8, 9 – микроийолит, 10 – нефелиновый сиенит. Оксиды даны в мас. %, элементы – в г/т.

ВРУБЛЕВСКИЙ, ГЕРТНЕР

Компоненты	Плутон	Дедовог	орский		Π	Ілутон Бе	логорски	й		Плу Кургусу	тон /льский
	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	49.04	48.46	56.85	47.98	44.34	45.82	47.28	41.18	56.19	45.32	51.45
TiO ₂	1.38	0.69	0.11	1.63	1.34	1.56	1.12	0.88	0.10	0.95	0.38
Al_2O_3	6.97	20.57	22.67	19.24	17.81	17.36	21.04	26.86	20.97	19.94	22.37
Fe_2O_2	9.77	6.81	2.46	11.98	14.45	11.59	9.68	7.04	4.65	10.05	6.22
MnO	0.19	0.12	0.08	0.18	0.19	_	0.12	0.13	0.14	0.16	0.19
MgO	10.70	5.53	0.64	3.25	5.31	4.40	3.75	2.21	0.32	3.90	0.86
CaO	18.10	11.97	2.18	8.29	10.14	7.39	10.76	7.43	1.92	10.82	4.33
Na ₂ O	0.90	3.45	9.62	4.67	2.89	4.82	3.97	10.44	8.20	3.61	7.25
$K_2 O$	0.62	0.59	2.30	1.13	1.08	1.23	0.87	1.62	4.58	1.43	5.22
P_2O_5	0.06	0.10	0.01	0.77	1.05	0.88	0.61	0.64	0.08	0.59	0.18
Ппп	1 51	0.85	2.09	1 79	2 31	3 41	1 33	1 33	2.65	2.73	1 51
Сумма	99.24	99.14	99.01	100.91	100.91	98.46	100.53	99.76	99.80	99.50	99.96
Cr	303	162	10	16	18	88	11	16	16	102	20
Ni	90	70	7	15	27	58	17	34	28	54	17
V	749	100	11	79	91	59	42	11	3	86	42
Co	48	23	3	20	20	24	18	7	4	27	13
Sc	93	18	0.78	8	6	6	2	1.2	0.8	10	2.6
Cu	39	17	13	8	20	73	28	29	26	25	31
Zn	63	36	62	64	63	24	92	11	26	107	133
Pb	1.9	1.9	13	2.1	2.8	3.8	1.9	5.2	15	3.7	56
Cs	0.54	0.29	1.3	0.81	0.26	0.46	0.3	0.65	2.6	0.5	3.8
Rb	14	8	77	19	9	31	10	49	81	26	101
Ba	111	140	174	569	407	522	385	240	762	992	1129
Sr	175	536	341	752	1029	1433	1555	808	420	1319	1153
Nb	6.3	3.3	29	8	10	14	14	10	41	21	37
Та	0.39	0.24	1.8	0.45	0.6	0.78	0.8	0.49	2	1.1	1.8
Zr	130	60	511	61	75	95	76	85	179	103	203
Hf	4.2	1.3	8.1	1.4	1.7	2.2	1.6	1.5	3.2	2	2.9
Y	35	13	55	15	14	17	14	13	17	23	19
Th	1.4	1.4	67	1.4	1.3	1.6	1.3	2.2	12	2.2	23
U	0.79	0.39	18	1.3	1.1	1.2	1.1	1.7	9.1	1.7	7.4
La	9	8	130	18	17	23	18	23	41	22	55
Ce	24	14	239	41	38	46	43	46	/4	51	96
Pr Nd	3./ 10	1.5	18	4.5	4.2	2.5	4.0	5.5 10	7.5	5.0 22	9 20
INU Sm	10	0	54	10	1/	4.1	19	10	22	22	29
SIII	4.9	1.0	9	5.0	5.5	4.1	5.0 1.4	5.1 0.0	5.4 0.6	4.5	4.2
Gd	1. 4 5.6	1.6	0.87 8 3	1.5	3	1.0	1.4	28	2.0	1.7	1.2
Th	0.89	0.31	1.4	0.5	0.45	0.6	0.48	0.43	0.48	ч. ч 07	0.6
Dv	59	2.1	79	2.8	2.6	3.4	27	0. 4 5 2.4	2.8	3.5	3.2
Ho	12	0.46	19	0.57	0.52	0.7	0.54	0.5	0.62	0.9	0.7
Er	3.2	1	5.4	1.5	1.4	1.9	1.4	1.4	1.9	2.5	2.2
Tm	0.48	0.15	0.71	0.2	0.2	0.3	0.2	0.2	0.34	0.35	0.35
Yb	2.8	1	4.4	1.2	1.2	1.8	1.1	1.3	2.5	2.1	2.3
Lu	0.42	0.13	0.59	0.18	0.18	0.27	0.17	0.2	0.43	0.34	0.35
ΣREE	81.5	40.6	481.5	97	91	115.1	99.5	105.5	160.5	121.6	207.7
LREE/HREE	3.0	5.0	5.7	7.7	8.5	8.5	9.1	10.4	12.4	7.2	14.6

Таблица 4. Химический состав магматических пород в щелочно-мафитовых плутонах девонского возраста, Кузнецкий Алатау

Примечание. 1, 2, 4–6 – субщелочное габбро меланократовое (1), мезократовое (5, 6) и лейкократовое (2, 4); 7, 10 – тералит; 8 – плагиоклазовый ийолит; 3, 9 – нефелиновый сиенит; 11 – полевошпатовый уртит (ювит). Оксиды даны в мас. %, элементы – в г/т, прочерк – не определялось.

41

Компоненты			Плутон Го	рячегорский	İ		Плутон Подтайга	Плутон Андрюшкина Речка
	1	2	3	4	5	6	7	8
SiO ₂	43.98	46.28	51.37	49.18	52.69	53.87	43.29	45.76
TiO2	0.91	0.33	0.51	0.30	0.29	0.27	0.45	0.47
AlaQa	23.58	22.83	18.36	20.95	19.84	17.00	25.88	23.84
Fe O	6.07	7 49	0.57	20.95	6.14	0.12	6.02	23.04 9.10
$M_{2}O_{3}$	0.97	7.40	9.37	7.02	0.14	9.13	0.02	0.10
MnO MaO	0.19	0.22	0.27	0.13	0.18	0.23	0.11	0.19
MgO CaO	1.07	0.90	0.98	2.02	0.97	1.00	0.30 5.75	0.93
CaO Na O	7.47 8.60	3.33	2.73	0.61	1.75	0.84	5.75 0.45	4.07
Na ₂ O	8.09	12.43	8.95	9.01	10.34	9.84	9.43	7.23
K_2O	1.61	2.84	3.33	2.80	3.46	4.38	2.68	2.74
P_2O_5	0.35	0.17	0.25	0.26	0.15	0.15	0.35	0.24
П.п.п.	2.92	3.33	2.69	3.52	2.43	1.61	5.62	5.90
Сумма	98.54	100.22	99.01	99.68	98.42	99.26	100.10	100.11
Cr	33	8	13	19	10	21	14	9
Ni	15	6.5	8.5	10	6.7	13	5	3
V	11	5	6.4	2.8	1.5	0.6	11	7
Co	21	8	5	8	4.7	4.2	8	9
Sc	_	—	0.7	—	—	—	0.5	0.7
Cu	29	9	7.2	23	3.9	5.1	7	5
Zn	91	100	124	71	127	194	59	90
Pb	3.7	16	11	—	—	—	3.5	6.7
Cs	0.6	1.2	1	0.1	1.8	2.3	0.45	1.1
Rb	15	36	50	5.7	94	104	25	28
Ba	475	1312	1760	319	743	493	659	825
Sr	1163	985	547	189	353	205	1240	1275
Nb	21	48	31	14	25	25	16	25
Ta	1	2.4	1.5	1	1.5	1.3	0.9	1.4
Zr	172	315	292	287	396	499	102	172
Ht	2	3.4	5	6.4	7.3	10	1.3	2
Y	33	40	41	23	43	27	9	18
lh U	2.3	/.1	4.4	5.9	8.8	6.7	1.3	3.2
U	1.9	6.2	3.2	3.3	6	6	1.3	2.5
La	20 54	3/	37	33 60	44 04	43 76	15	25
Dr	54 76	03	0.1	74	0.5	/0	22	52
ГI Nd	20	7.0	9.1	7.4	9.5	32	3.5	5.4 10
Sm	29 18	20	63	20 5 /	54 62	57	21	33
Fu	1.0	16	0.5	1.6	1.5	11	0.7	11
Gd	4 5	3.7	57	4.2	53	4 5	1.8	3
Th	0.6	0.6	0.9	0.7	1	0.8	0.28	0.5
Dv	4.9	5	6	3.5	6.1	4.3	1.6	3.1
Ho	0.9	1.1	1.3	0.8	1.5	1	0.34	0.7
Er	2.4	2.8	3.7	1.9	4.1	2.7	1	2
Tm	0.4	0.6	0.6	0.3	0.7	0.5	0.15	0.33
Yb	2.3	3	4	2	5	4.3	1	2
Lu	0.3	0.4	0.7	0.3	0.7	0.8	0.15	0.3
ΣREE	139.6	158.4	191.3	151.1	202.6	185.7	76	117.2
LREE/HREE	7.6	8.7	7.4	8.6	7.5	8.8	11.1	8.9

Таблица 5. Химический состав магматических пород в щелочно-мафитовых плутонах пермского возраста, Кузнецкий Алатау

Примечание. 1 – плагиоклазовый ийолит, 2 – полевошпатовый уртит (ювит), 3–5 – фойяит, 6 – микросиенит, 7 – ийолитуртит, 8 – берешит. Оксиды даны в мас. %, элементы – в г/т, прочерк – не определялось.

Рис. 4. Петрохимические особенности щелочно-мафитовых плутонов.

1 – субщелочное габбро, тералит; 2 – фойдолит; 3 – нефелиновый сиенит.

(a) – классификационные диаграммы: SiO₂– (Na₂O + K₂O), по (Middlemost, 1994); R₁–R₂, по (De la Roche et al., 1980). Цифры на рис. (a): 1 – габбро-перидотит, 2 – габбро, субщелочное габбро, 3 – габбро-диорит, 4 – диорит, 5 – гранодиорит, 6 – монцогаббро, 7 – монцодиорит, 8 – монцонит, 9 – кварцевый монцонит, 10 – сиенит, 11 – нефелиновое габбро, 12 – нефелиновый монцодиорит, 13 – нефелиновый монцосиенит, 14 – нефелиновый сиенит, 15 – фойдолит. Преобладающие составы пород щелочно-мафитовых интрузий Кузнецкого Алатау приведены по литературным данным: Γ – субщелочное габбро, T – тералиты, Φ – фойдолиты, У – уртиты, HC – нефелиновые сиениты. Значения R₁ < < –2000 показаны числами вне масштаба.

(б) – вариационные диаграммы CaO–MgO, SiO₂–MgO, Fe₂O₃–MgO, Al₂O₃–MgO.

Рис. 5. Содержание редких рассеянных элементов (г/т) в щелочно-мафитовых плутонах. 1 – субщелочное габбро, тералит; 2 – фойдолит; 3 – нефелиновый сиенит. Средние составы OIB (базальты океанических островов), E-MORB (обогащенные базальты срединно-океанических хребтов), по (Sun, McDonough, 1989); IAB (островодужные базальты), по (Kelemen et al., 2003).

Рис. 6. Распределение редкоземельных и других некогерентных (LIL, HFS)-элементов в породах щелочно-мафитовых плутонов.

Концентрации нормализованы по примитивной мантии (PM) и хондриту (Sun, McDonough, 1989). Средние составы базальтов океанических островов (OIB) и островодужных базальтов (IAB) по (Sun, McDonough, 1989; Kelemen et al., 2003). Для образцов, имеющих сходные содержания, рассчитаны средние значения. Не учитывался нефелиновый сиенит, ассоциирующий, предположительно, с ликвационными карбонатитами Верхнепетропавловского массива (Врублевский, 2015).

Рис. 7. Фракционирование изотопов кислорода между нефелином (*Ne*), полевым шпатом (*Fsp*) и клинопироксеном (*Cpx*) в габбро и щелочных породах.

1 – щелочные комплексы Кузнецкого Алатау; 2 – щелочные породы Витимской провинции (Западное Забайкалье); 3 – ультрамафитовые фойолиты Полярной Сибири; 4 – нефелиновые сиениты Кольской провинции. Составы минералов в породах Полярной Сибири (плутон Одихинча), Кольской (Хибинский плутон) и Витимской (массивы Западного Забайкалья) провинций приведены по (Покровский, 2000; Doroshkevich et al., 2012). Расчет изотерм по (Покровский, 2000), изотопное равновесие по данным в табл. 10.

фойяиты с пониженными значениями Eu/Eu* $\approx 0.3-1$ представляют собой его максимальные дифференциаты.

Радиогенные (Nd, Sr, Pb) изотопы. Разновозрастные щелочно-мафитовые интрузии Кузнецкого Алатау отличаются по изотопному составу неодима (Врублевский и др., 2014, 2016б, 2018б; Mustafayev et al., 2017; Vrublevskii et al., 2020b). Наиболее высокие значения $\varepsilon_{Nd}(T) \sim 5-9 ((^{143}Nd)^{144}Nd)_{T}$ 0.512245-0.512459) характерны для кембрийских габброидов, фойдолитов, нефелиновых сиенитов, карбонатитов и их породообразующих минералов оливина, клинопироксена, плагиоклаза и апатита (табл. 6). Породы и минералы (клинопироксен, полевой шпат. нефелин) в девонских ((¹⁴³Nd/¹⁴⁴Nd)_т 0.512282-0.512464) и позднепермских ((143 Nd/ 144 Nd)_т 0.512477–0.512540) интрузивах имеют пониженные значения $\varepsilon_{Nd}(T)$ до ~3–5 (табл. 7, 8), что может отражать влияние вещества менее деплетированной мантии. Наряду с гетерогенностью мантийных источников магм, вероятными причинами значимого отклонения величины лита Горячегорского массива (~6.8 и ~1.7 соответственно) могут быть разная степень перемешивания материала в расплавах или их коровая контаминация.

Для изученной изверженной серии характерно возрастание первичных отношений (⁸⁷Sr/⁸⁶Sr)_т от ~0.7042–0.7055 в габбро до ~0.7049–0.7074 в поздних щелочных породах и карбонатитах (табл. 6–8). По-видимому, только клинопироксен в габбро

ПЕТРОЛОГИЯ том 29 № 1 2021

((87 Sr/ 86 Sr)_T ~ 0.702–0.704, Верхнепетропавловский и Кия-Шалтырский массивы) как наиболее ранний породообразующий минерал сохраняет признаки первоначальной мантийной природы. В остальных случаях можно предполагать разную степень взаимодействия первичной магмы с веществом верхней континентальной коры (Покровский и др., 1998; Врублевский и др., 2014, 2016б, 2018б; Vrublevskii et al., 2020b).

Первичные изотопные отношения Рb как в породах, так и в минералах заметно варьируют (табл. 9). Микроклин и сульфиды (пирротин, пирит) обладают пониженными значениями U/Pb (0.005-0.2) и Th/Pb (0.007-0.19), поэтому их изотопный состав может быть индикатором источника расплавов. Интервал изотопных отношений Рь в минералах ((²⁰⁶Pb/²⁰⁴Pb)_T 18.19–20.65, (²⁰⁷Pb/²⁰⁴Pb)_T 15.53-15.71, (²⁰⁸Рb/²⁰⁴Рb)_т 37.59-38.12) соответствует возможному смешению деплетированного и обогащенного мантийного вещества, подобного источникам PREMA и EMII-типа. Сульфиды и микроклин из карбонатитов в кембрийских (~507-490 млн лет) щелочных интрузиях соседних регионов Горного Алтая и Юго-Восточной Тувы имеют менее радиогенный изотопный состав ((²⁰⁶Pb/²⁰⁴Pb)_т 17.28–18.05, (²⁰⁷Pb/²⁰⁴Pb)_т 15.40, (²⁰⁸Pb/²⁰⁴Pb)_т 37.21-37.68), свойственный продуктам магматизма с вероятным участием вещества типа ЕМІ. В провинции Кузнецкого Алатау от габбро к фойдолитам значения U/Pb (0.23-0.78) и Th/Pb (0.27–0.8) возрастают подобно другим дифференцированным сериям, однако различие

Рис. 8. Изотопный состав кислорода (δ^{18} O, ‰) и углерода (δ^{13} C, ‰) в карбонатитах и метакарбонатных породах Кузнецкого Алатау.

PIC (primary igneous carbonatites) – первичные изверженные карбонатиты (Conway, Taylor, 1969; Keller, Hoefs, 1995); NSC (normal sedimentary carbonate) морские осадочные карбонаты (Покровский, 2000); О-С изотопные сдвиги по (Demény et al., 1998). Элементы модели рэлеевского изотопного фракционирования (Rayleigh isotopic fractionation model) первоначального карбонатного расплава (крест) с вариациями состава $\pm 1\% \delta^{18}$ О (сплошная и точечные линии) и молярного соотношения $H_2O/CO_2 = 0.9$ при 700°C по (Ray, Ramesh, 2000). Пунктирная линия соответствует изотопным изменениям кальцита, образованного при взаимодействии магматического флюида с известняком (Bowman, 1998) с различным значением отношения флюид/порода и мольной доли $X_{CO_2} = 0.5$ во флюиде, по (Smith et al., 2015). Состав мантийнокоровых карбонатитов и вмещающих метаосадочных пород в западной части ЦАСП по данным (Врублевский, 2015; Vrublevskii et al., 2020a).

изотопных отношений Pb в породах ($(^{206}Pb/^{204}Pb)_T$ 17.92—19.29, ($^{207}Pb/^{204}Pb)_T$ 15.53—15.58, ($^{208}Pb/^{204}Pb)_T$ 37.49—37.83) также позволяет предполагать их происхождение из гетерогенного магматического источника.

Стабильные (О, С, S) изотопы. Величина $\delta^{18}O_{V-SMOW}$ в породообразующем клинопироксене, полевом шпате и нефелине варьирует от 6.3 до 13.4, от 7.8 до 10.8 и от 8.4 до 12.0% соответственно, заметно превышая мантийные значения $\delta^{18}O =$ = 5.5 ± 0.5% (табл. 10). Сходным образом изменяется общий состав пород: $\delta^{18}O_{V-SMOW}$ от 7.3– 10.7% в габброидах и фойдолитах до 10.2–15.5% в нефелиновых сиенитах и карбонатитах (Покровский и др., 1998; Врублевский, 2015), что может свидетельствовать о значительной коровой контаминации расплавов. Подобная тенденция отмечается для других щелочных комплексов западной части ЦАСП, например, в Горном Алтае, Западном Забайкалье, Юго-Восточной Туве и Северо-Западной Монголии (Врублевский и др., 2012; Doroshkevich et al., 2012; Vrublevskii et al., 2019, 2020а). Степень изотопного фракционирования между нефелином, полевым шпатом и клинопироксеном (Δ^{18} O до 1.5–2.4‰) соответствует высокой температуре (600–800°С) минералообразования (рис. 7), что характерно для закрытия изотопно-кислородных систем в фельдшпатоидных породах (Покровский, 2000). Нарушение равновесия нефелин–клинопироксен ($\Delta^{18}O_{Ne-Cpx} \approx 0$) наблюдается только на участках позднемагматической перекристаллизации фойдолитов при участии нагретых метеорных вод с $\delta^{18}O < 0$.

Максимальный уровень коровой контаминации достигается в карбонатитах Верхнепетропавловского массива (Врублевский, 2015). Значения δ^{13} С и δ^{18} О в породообразующем кальците образуют положительную корреляцию (δ^{13} C от -3.5 до -2.0%) и δ^{18} О 11.8–15.5‰), которая соответствует модели высокотемпературного ($T = 700^{\circ}$ C) рэлеевского фракционирования и характеризует тренд мантийно-коровых карбонатитов (рис. 8). Температуры изотопно-кислородного равновесия между карбонатом ($\delta^{18}O = 11.8 - 13.4\%$) и сосуществующим титаномагнетитом ($\delta^{18}O = 7.1 - 7.5\%$), и клинопироксеном ($\delta^{18}O = 9.0\%$) варьируют в диапазоне ~650-850°С. Сходная степень фракционирования между кальцитом и магнетитом ($\Delta^{18}O_{Cc-Mag} \approx 4-5$) фиксируется в карбонатитах комплекса Ока в Канаде (Conway, Taylor, 1969).

Для пирротина изученных карбонатитов характерно обогащение ³⁴S (+4.6‰ δ^{34} S) по сравнению с метеоритным стандартом (δ^{34} S_{CDT} ~ 0‰) и сульфидами многих подобных пород со средним значением δ^{34} S около –3‰ (Deines, 1989). В связи с тем, что битуминозные доломитовые известняки в северной части Кузнецкого Алатау часто заражены сероводородом (δ^{34} S ~ 16–19‰), можно предположить смешение мантийной и осадочной серы при верхнекоровой контаминации расплавов (Покровский и др., 1998).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Последовательность и петрогенезис интрузивных комплексов. Изотопно-геохронологические данные позволяют выделить три эпохи развития щелочно-мафитового магматизма Кузнецкого Алатау в среднем кембрии—раннем ордовике (~510—480 млн лет), раннем—среднем девоне (~410—385 млн лет) и поздней перми (~ 265 млн лет). Его проявления в кембрии и девоне происходили почти синхронно с формированием габбро-монцонитовых и гранитоидных плутонов (~510—490 и ~430—400 млн лет) восточного склона Кузнецкого Алатау (Врублевский и др., 2016а, 2018а). Мас-

								T							
ТОНЫ	Номер образца	Порода, минерал	Sm, r/T	Nd, r/T	$p_{N_{\dagger \dagger I}}/m_{S_{\ell \dagger I}}$	pN ^{\$\$\$I} /pN ^{\$\$I}	±2σ	$(p_{N_{\dagger\dagger}}/p_{N_{\dagger\dagger}})$	$\epsilon_{Nd}(T)$	Rb, r/T	Sr, r/T	¹ S ⁹⁸ /dA ⁷⁸	${}^{1}\mathrm{S}^{98}/{}^{1}\mathrm{S}^{78}$	$T(12^{86}/12^{78})$	$\epsilon_{Sr}(T)$
	S36/147	Субщелочное габбро	3.42	15.3	0.1353	0.512808	6	0.512365	7.25	19	583	0.09363	0.70620	0.70553	23.1
		01	4.49	13.23	0.2050	0.513051	10	0.512380	7.54						
		Cpx	4.18	15.02	0.1682	0.512922	8	0.512371	7.36						
		Pl	1.53	9.46	0.0978	0.512709	16	0.512389	7.71						
	S41/87	Субщелочное габбро	1.77	7.46	0.1433	0.512907	12	0.512438	8.67	14	745	0.05208	0.70520	0.70483	13.06
		<i>IO</i>	3.95	11.02	0.2165	0.513160	12	0.512451	8.93						
		Cpx	2.43	7.99	0.1841	0.513041	25	0.512438	8.67						
		Pl	0.59	3.44	0.1033	0.512797	6	0.512459	9.08						
	8A	Тералит	5.98	31.38	0.11523	0.512766	19	0.512389	7.71	44	964	0.12967	0.70649	0.70557	23.57
	U2013	Нефелиновый сиенит	9.45	50.77	0.11257	0.512727	14	0.512432	6.03	207	539	1.08279	0.71266	0.70495	14.69
•	6/239.6	Субщелочное габбро	2.74	9.43	0.17551	0.512937	5	0.512362	7.19	8.6	709	0.053	0.70452	0.70414	3.28
		Cpx								16	150	0.312	0.70426	0.70200	-27.2
	1001/172	Субщелочное габбро								9	673	0.026	0.70431	0.70413	3.04
	15/94.4	Тералит								41.7	196	0.125	0.70577	0.70488	13.75
	1001/88.5	Тералит								26	673	0.112	0.70556	0.70476	12.09
	14/52.4	Тералит								30	1035	0.083	0.70583	0.70524	18.87
	31/323.5	Тералит								8	869	0.026	0.70551	0.70532	20.02
	PT-8	Полевошпатовый ийолит								74	1045	0.205	0.70685	0.70537	20.73
	PT-51	Полевошпатовый ийолит								37	723	0.147	0.70629	0.70523	18.74
	PT-14	Полевошпатовый ийолит	5.18	27.5	0.11384	0.512618	5	0.512245	4.90	19	1365	0.040	0.70566	0.70538	20.80
		Cpx								15	428	0.102	0.70537	0.70463	10.21
	PT-7	Срх, ийолит								5	140	0.105	0.70566	0.70490	14.05
	50/515.5	Полевошпатовый ийолит								42	620	0.196	0.70684	0.70544	21.76
	43/77.5	Полевошпатовый ийолит								57	1585	0.104	0.70629	0.70555	23.27
	19/54.5	Нефелиновый сиенит								90	275	0.946	0.71292	0.70618	32.22
	6/38.8	Срх, нефелиновый сиенит								19	380	0.146	0.70595	0.70489	13.91
	45/208.7	Карбонатит	21.5	106	0.12235	0.512648	4	0.512247	4.94						
		Cpx	2.97	11.9	0.15042	0.512740	7	0.512247	4.94	ю	1000	0.009	0.70590	0.70584	27.35
		Ap	147	756	0.11764	0.512630	4	0.512245	4.90						
	45/287.8	Срх, карбонатит								7	2300	0.008	0.70652	0.70646	36.25

Таблица 6. Изотопный Sr-Nd состав минералов и пород в кембрийских шелочно-мафитовых плутонах Кузнецкого Алатау

ПАЛЕОЗОЙСКИЕ ЩЕЛОЧНО-МАФИТОВЫЕ ИНТРУЗИИ КУЗНЕЦКОГО АЛАТАУ

47

Τ	аблица	7. Изотопн	ый Sr-Nd состав минера	алов и	н тофоп	з девонск	лих щелоч	M-OHI	афитовы	х плутс	нах Ку	знецка	ого Алат	ay			
Ц	Ілутоны	Номер образца	Порода, минерал	Sm, 1/T	Nd, I/T	$p_{N_{t \neq l}}/m_{S_{\ell \neq l}}$	pN _{tti} /pN _{tti}	±2σ	$^{\mathrm{L}}(\mathrm{p}_{\mathrm{N}_{\mathrm{f}\mathrm{f}\mathrm{I}}}/\mathrm{p}_{\mathrm{N}_{\mathrm{f}\mathrm{f}\mathrm{I}}})$	$\epsilon_{Nd}(T)$	Rb, r/t	Sr, r/T	JS98/09778	1S ⁹⁸ /1S ⁷⁸	±2σ	$T(12^{86}S_{1})$	$\epsilon_{Sr}(T)$
IΥ	Sh	Ksh-26/1	Субщелочное габбро	3.35	12.54	0.1614	0.512809	8	0.512387	5.21 5.20	8.27	583 00 5	0.0411	0.705035	6	0.70480	10.93
			Cpx Pl	3.97 0.35	13.30 2.61	0.1806 0.0811	0.512600	01 9	0.512388	5.18 5.18	16.2	C.88	40.0.0	121601.0	y	0./04/0	00.6
		47/86	Субщелочное габбро								6.61	853	0.0024	0.70510		0.70509	15.01
			Cpx								10	656	0.0440	0.70442		0.70417	1.99
		47/86a	Срх, субщелочное габбро								18	162	0.3220	0.70619		0.70436	4.64
		45/86	Тералит								8	827	0.0290	0.70542		0.70526	17.41
		Ksh-25/2	Субщелочное габбро	2.77	12.18	0.1373	0.512726	13	0.512367	4.77	5.76	1455	0.0114	0.705286	11	0.70522	16.84
			Cpx	5.27	18.02	0.1758	0.512839	12	0.512379	5.00							
			PI	0.51	4.37	0.0727	0.512574	10	0.512384	5.10							
		Gi-4	Ургиг	1.31	6.77	0.1168	0.512671	7	0.512373	4.87	39.4	690	0.1653	0.706496	6	0.70545	21.50
			Cpx	3.87	15.66	0.1484	0.512762	5	0.512373	4.88							
			Ne	0.81	4.38	0.1113	0.512665	4	0.512374	4.90							
		Ksh-20/7	Срх, уртит	2.91	12.37	0.1419	0.512748	5	0.512376	4.94							
		29/86	Уртит								38	1144	0.0950	0.70581		0.70527	17.61
		35/86	Ийолит-ургит								60	958	0.1880	0.70683		0.70576	24.57
		Ksh-21/3	Пегматоидный ийолит	3.23	16.34	0.1196	0.512683	8	0.512370	4.82	30.9	923	0.0971	0.706235	8	0.70568	23.38
			Cpx	3.73	17.53	0.1285	0.512708	5	0.512371	4.84	3.58	576	0.0180	0.705711	6	0.70561	22.43
		Ksh-20/8	Микроийолит	5.44	28.09	0.1172	0.512719	6	0.512396	5.37	60.7	805	0.2183	0.706647	10	0.70541	19.52
Ц	DC	Dg-15/8	Субщелочное габбро	2.17	9.37	0.1458	0.512784	4	0.512402	5.45	8.1	704	0.0333	0.704498	Π	0.70431	3.96
п			Cpx	6.55	22.7	0.1742	0.512847	9	0.512391	5.23							
ET			Pl	0.19	1.30	0.0866	0.512603	30	0.512376	4.94							
PO		Dg-15/4b	Нефелиновый сиенит	7.58	47.7	0.0961	0.512612	8	0.512360	4.63	47.9	332	0.4168	0.708319	6	0.70595	27.22
лс			Cpx	25.6	160	0.0970	0.512596	4	0.512342	4.28							
ы			Ne	3.96	27.2	0.0881	0.512587	5	0.512356	4.55							
е ля	Ŋ	GOM-1	Субщелочное габбро	4.81	24.25	0.119854	0.512668	15	0.512354	4.51	20	863	0.06543	0.70588	15	0.70551	21.30
		GOM-2	Субщелочное габбро	4.77	24.36	0.118386	0.512667	11	0.512357	4.57	10.5	1329	0.02234	0.70703	18	0.70690	41.10
то		GOM-3	Тералит	5.63	28.0	0.121515	0.512646	17	0.512328	4.00	10.7	1975	0.01526	0.70746	14	0.70737	47.8
м 2		8589-Gx	Полевошпатовый ийолит	4.96	28.9	0.10368	0.512557	14	0.512285	3.16	50.2	950	0.14905	0.70626	19	0.70541	19.63
9		8547-Gx	Нефелиновый сиенит	6.13	34.9	0.10618	0.512573	19	0.512295	3.36	137	275	1.29161	0.71200	16	0.70464	8.72
×		KL2011-1	Полевоншатовый ургит	4.98	32.62	0.0923	0.512524	12	0.512282	3.11	113	1169	0.27343	0.70791	16	0.70635	32.97
∳ 1			Cpx	6.95	82.99	0.0506	0.512556	8	0.512423	5.87							
			Ne	0.42	3.37	0.0749	0.512660	21	0.512464	6.65							
20		KL2011-1/1	Полевошпатовый уртит	4.56	30.89	0.0892	0.512569	20	0.512335	4.15	114	1240	0.25968	0.70762	14	0.70614	29.98
تم ت 21	[римечан асчет пе	ние. Плутоні рвичных изо	ы: Кия-Шалтырский (KSh) гтопных отношений на воз), Дедо раст 40	вогорскі 0 млн ле	и й (DG), т	Белогорск	ий (В	G), Kypry	сульски	й (K). <i>C</i> _{<i>p</i>}	$x - k\pi$	ноципони	сен, <i>Pl</i> -1	плагис	оклаз, <i>Ne</i> –	нефелин.

48

ВРУБЛЕВСКИЙ, ГЕРТНЕР

$\epsilon_{Sr}(T)$	13.5	32.7	9.67								15.27	36.6	31.90	17.1	24.5	18.82	1Х ИЗО-
$T^{(87}S^{1})$	0.70514	0.70649	0.70487								0.70526	0.70677	0.70644	0.70540	0.70591	0.70551	срвичнь
±2σ	16	18	2								21	15	20	20	14	15	счет п
12 ⁹⁸ /12 ⁷⁸	0.70536	0.70668	0.704985								0.705616	0.70933	0.71199	0.70559	0.70608	0.706439	фелин. Ра
л8 ⁹⁸ /дЯ ⁷⁸	0.05893	0.05036	0.03087								0.09359	0.67958	1.47335	0.05165	0.04431	0.24550	3, <i>Ne</i> – не
Sr, r/T	1706	1661	2125								1233	342	183	865	175	611	иокла
Rb, r/t	35.6	29.7	22.7								39.9	82.4	95.7	15.8	2.8	51.9	– плаг
$\epsilon_{Nd}(T)$	3.67	4.04	3.92	3.51	3.53	3.53	4.74	4.18	3.86	4.27	1.74	4.18	4.27	6.77	3.01	2.73	ксен, <i>Pl</i>
¹ (p _{Nţţt} /p _{NξţI})	0.512485	0.512504	0.512498	0.512477	0.512478	0.512478	0.512540	0.512511	0.512495	0.512516	0.512386	0.512511	0.512516	0.512644	0.512451	0.512437	одипонип
$\pm 2\sigma$	15	11	16	5	16	14	23	17	12	16	11	7	13	6	13	16	x - x
pN ^{\$\$I} /pN ^{\$\$I}	0.512666	0.512680	0.512691	0.512728	0.512609	0.512649	0.512704	0.512789	0.512688	0.512672	0.512568	0.512709	0.512706	0.512872	0.512652	0.512637	ій (GG). <i>С</i>
$p_{N_{\dagger \dagger I}}/m_{S_{\ell \dagger I}}$	0.104647	0.101714	0.11128	0.14451	0.07582	0.09869	0.11218	0.16014	0.11144	0.09003	0.10473	0.114386	0.109345	0.131235	0.115904	0.11523	зячегорски
Nd, r/T	26.37	19.4	23.2	15.2	5.38	4.48	40.7	23.7	4.31	4.58	27.7	28.78	31.71	22.15	23.35	38.4	(Pdt), Foj
 Sm, r/T	4.57	3.26	4.27	3.63	0.68	0.73	7.56	6.28	0.79	0.65	4.79	5.45	5.74	4.81	4.48	7.31	одтайга (
Порода, минерал	Полевошпатовый ийолит	Ийолит-уртит	Полевошпатовый ийолит	Cpx	ld	Ne	Полевошпатовый ийолит	Cpx	Ы	Ne	Полевошпатовый уртит	Полевошпатовый уртит	Нефелиновый сиенит	Нефелиновый сиенит	Нефелиновый сиенит	Нефелиновый сиенит	ны: Андрюшкина Речка (AR), П на возраст 265 млн лет.
Номер образца	AR2013	PDT2013	G-11/7b				G2011-4				G-10/7a	G-12/1	G-12/2	G2011-3	G2011-1	G-13/2	ие. Плутоі ношений і
Плутоны	AR	Pdt	GG														Примечані топных отн
ПЕТРОЛОГИЯ	то	и 29	№ 1	202	21												

Таблица 8. Изотопный Sr-Nd состав минералов и пород в пермских щелочно-мафитовых плутонах Кузнецкого Алатау

Порола, минерал U, T/T Th, T/T Ph, T/T Ph, T/T Ph, T/T Ph, T/T Ph, T/T	b-Pb cocr	ав пород и минералов в п	алеозо 	йских п	м-онногод	афитовы	X IIJYTO	нах запа	днои ча т		T	Т	Т
оплитатовый ийолит 1.84 2.33 3.96 20.561 15.640 38.259 15.575 37.735 0.8073 1.9559 лочное габброо 0.61 0.71 2.61 18.933 15.532 37.650 0.8605 2.0861 лочное габброо 0.61 0.71 2.61 18.933 15.572 37.650 0.8605 2.0641 лочное габброо 0.61 0.71 18.936 18.338 15.572 37.829 0.8478 2.0643 омлиный ийслиг 1.72 1.00 1.25 21.61 15.554 37.522 37.829 0.8473 2.0643 Фелиновый ийслиг 0.49 0.68 7.4 18.516 15.556 37.597 15.653 37.597 0.8473 2.0643 Фелиновый ийслиг 2.01 0.016 0.026 2.8210 15.556 37.597 0.8473 2.0643 Фелиновый ийслиг 2.01 0.016 0.026 2.821 15.548 37.597 0.8474 2.0653	й	рода, минерал	U, 1/T	Th, 1/T	Pb, r/T	9d ₇₀₇ /9d ₉₀₇	$q_{d_{202}}/q_{d_{202}}$	9d ₇₀₇ /9d ₈₀₇	(q _{d^{\$07}} /q _{d907})	$(q_{\rm T02}/q_{\rm T02})$	$(q_{\rm d_{207}}/q_{\rm d_{807}})$	(9d ₉₀₇ /9d ₂₀₇)	(q ₄₉₀₇ /q ₄₈₀₇)
лючное габбро 0.61 0.71 2.61 18.993 15.581 38.005 18.048 15.529 37.650 0.8605 2.0861 тоилный ийолигт 1.72 1.80 3.41 20.654 15.690 38.481 18.358 15.554 37.722 0.8491 2.0548 фелиновый слениг 0.97 1.00 1.25 21.671 15.754 38.930 18.339 15.572 37.829 0.8491 2.0623 фелиновый слениг 0.49 0.68 7.4 18.516 15.556 37.597 18.379 0.8548 2.0623 фелиновый ийолиг 0.01 0.016 2.016 2.556 37.597 18.217 18.216 15.549 37.598 0.8547 2.0663 липатовый ийолиг 2.01 2.016 18.217 15.550 37.549 15.549 0.8665 2.0918 обонатиг 0.016 0.026 2.8 15.550 37.549 15.549 0.8665 2.0918 обонатиг 0.53 <	олев	ошпатовый ийолит	1.84	2.33	3.96	20.561	15.640	38.259	19.293	15.575	37.735	0.8073	1.9559
соилиный ийолит 1.72 1.80 3.41 20.654 15.690 38.481 18.358 15.564 37.722 0.8478 2.0548 сфелиновый сменит 0.97 1.00 1.25 21.671 15.754 38.930 18.339 15.572 37.829 0.8491 2.0643 сфелиновый сменит 0.49 0.68 7.4 18.516 15.550 37.598 0.8491 2.0643 сфелиновый сменит 0.49 0.68 7.4 18.516 15.559 37.598 0.8549 2.0643 офелиновый сменит 0.49 0.66 2.2 18.217 18.215 15.549 37.598 0.8549 2.0643 офелиновый сменит 0.016 2.2 18.210 15.549 37.593 0.8549 2.0663 ошпатовый ийолит 2.01 0.016 2.2 18.217 15.549 37.494 0.8665 2.0918 обонатит 0.52 0.50 28.249 17.924 15.543 38.021 0.7949 1.9327	убщ	алочное габбро	0.61	0.71	2.61	18.993	15.581	38.005	18.048	15.529	37.650	0.8605	2.0861
Фелиновый сиении 0.97 1.00 1.25 21.671 15.754 38.930 18.339 15.572 37.829 0.8491 2.0623 Фелиновый сиении 0.49 0.68 7.4 18.516 15.568 37.717 18.215 15.552 37.598 0.8549 2.0641 Фелиновый сиении 0.49 0.66 2.2 18.210 15.550 37.597 18.215 15.552 37.596 0.8549 2.0643 Опшатовый ийолии 0.016 0.026 2.8 18.217 15.550 37.597 18.191 15.549 37.595 0.8547 2.0662 Опшатовый ийолии 2.01 0.016 0.26 2.8 18.217 15.550 37.597 13.665 2.0662 Опшатовый ийолии 2.01 0.016 0.26 2.8 15.570 37.494 0.8665 2.0918 Обонатит 0.52 0.530 15.549 38.021 15.549 37.696 0.8010 1.9327 Обонатит 0.10 <td< td=""><td>егма</td><td>тоидный ийолит</td><td>1.72</td><td>1.80</td><td>3.41</td><td>20.654</td><td>15.690</td><td>38.481</td><td>18.358</td><td>15.564</td><td>37.722</td><td>0.8478</td><td>2.0548</td></td<>	егма	тоидный ийолит	1.72	1.80	3.41	20.654	15.690	38.481	18.358	15.564	37.722	0.8478	2.0548
фелиновый сиснит 0.49 0.68 7.4 18.516 37.717 18.215 15.552 37.598 0.8538 2.0641 0.011 0.016 2.2 18.210 15.550 37.599 18.187 15.549 37.590 0.8549 2.0663 0.011 0.016 2.2 18.217 15.550 37.597 18.191 15.549 37.595 0.8547 2.0663 0.016 0.026 2.8 18.217 15.550 37.597 18.191 15.548 37.585 0.8547 2.0663 0.016 0.026 2.8 18.217 15.550 37.597 18.191 15.548 37.585 0.8547 2.0663 0.016 0.026 2.8 18.217 15.550 37.594 15.663 2.0663 2.0918 0.001 0.52 0.50 2.8 15.629 38.246 15.637 38.123 0.7606 1.8460 0.001 0.52 0.50 2.8 15.531 37.043 0.7606<	ртит		0.97	1.00	1.25	21.671	15.754	38.930	18.339	15.572	37.829	0.8491	2.0628
0.011 0.016 2.2 18.210 15.550 37.599 18.187 15.549 37.590 0.8549 2.0668 шпатовый ийолит 0.016 0.026 2.8 18.217 15.550 37.597 18.191 15.548 37.596 0.8547 2.0663 шпатовый ийолит 2.01 2.766 6.10 19.637 15.629 38.249 17.924 15.531 37.494 0.8665 2.0918 бонатит 0.52 0.50 2.610 19.637 15.709 38.123 0.7606 1.8460 ироксенит 0.52 0.50 2.4.212 15.896 40.312 19.672 15.637 38.021 0.7949 1.9327 ороксенит 2.83 4.44 3.53 24.212 15.896 40.312 19.672 15.637 0.7949 1.9327 бонатит 0.0708 0.094 16.44 3.534 15.540 37.297 0.7505 0.8910 2.1528	<i>с</i> , неф	релиновый сиенит	0.49	0.68	7.4	18.516	15.568	37.717	18.215	15.552	37.598	0.8538	2.0641
Половый ийолит 0.016 0.854 2.0663 37.597 18.191 15.548 37.585 0.8547 2.0663 Шпатовый ийолит 2.01 2.76 6.10 19.637 15.629 38.249 17.924 15.531 37.494 0.8665 2.0918 бонатит 2.01 2.76 6.10 19.637 15.629 38.249 17.924 15.531 37.494 0.8665 2.0918 бонатит 0.52 0.50 2.6 21.888 15.779 38.460 20.652 15.708 38.123 0.7606 1.8460 ироксенит 2.83 4.44 3.53 24.212 15.896 40.312 19.672 15.637 38.021 0.7949 1.9327 онатит 0.078 0.007 1664 18.048 15.540 37.682 0.8611 2.0880 онатит 0.10 0.094 1.6 15.540 37.205 0.7505 0.8910 2.1528	A		0.011	0.016	2.2	18.210	15.550	37.599	18.187	15.549	37.590	0.8549	2.0668
шпатовый ийолит 2.01 2.76 6.10 19.637 15.629 38.249 17.924 15.531 37.494 0.8665 2.0918 бонатит 0.52 0.50 2.6 21.888 15.779 38.460 20.652 15.708 38.123 0.7606 1.8460 бонатит 0.53 4.44 3.53 24.212 15.896 40.312 19.672 15.637 38.123 0.7606 1.8460 ороксенит 2.83 4.44 3.53 24.212 15.896 40.312 19.672 15.637 38.021 0.7949 1.9327 орнатит 0.078 0.007 1664 18.048 15.540 37.682 0.8611 2.0880 онатит 0.10 0.094 1.6 17.626 15.418 37.297 15.399 37.205 0.8910 2.1528	ı		0.016	0.026	2.8	18.217	15.550	37.597	18.191	15.548	37.585	0.8547	2.0662
Обонатит 0.52 0.50 2.6 21.888 15.779 38.460 20.652 15.708 38.123 0.7606 1.8460 ироксенит 2.83 4.44 3.53 24.212 15.896 40.312 19.672 15.637 38.021 0.7949 1.9327 5онатит 0.078 0.007 1664 18.048 15.540 37.682 18.047 15.540 37.682 0.8611 2.0880 бонатит 0.10 0.094 1.6 17.626 15.418 37.297 17.282 15.399 0.8910 2.1528	олевс	шпатовый ийолит	2.01	2.76	6.10	19.637	15.629	38.249	17.924	15.531	37.494	0.8665	2.0918
лироксенит 2.83 4.44 3.53 24.212 15.896 40.312 19.672 15.637 38.021 0.7949 1.9327 бонатит 0.078 0.007 1664 18.048 15.540 37.682 18.047 15.540 37.682 0.8611 2.0880 бонатит 0.10 0.094 1.6 17.626 15.418 37.297 17.282 15.399 37.205 0.8910 2.1528	<i>vr</i> , Kaļ	обонатит	0.52	0.50	2.6	21.888	15.779	38.460	20.652	15.708	38.123	0.7606	1.8460
Бонатит 0.078 0.007 1664 18.048 15.540 37.682 18.047 15.540 37.682 0.8611 2.0880 бонатит 0.10 0.094 1.6 17.626 15.418 37.297 17.282 15.399 37.205 0.8910 2.1528	юниг	лироксенит	2.83	4.44	3.53	24.212	15.896	40.312	19.672	15.637	38.021	0.7949	1.9327
бонатит 0.10 0.094 1.6 17.626 15.418 37.297 17.282 15.399 37.205 0.8910 2.1528	v, Kap	бонатит	0.078	0.007	1664	18.048	15.540	37.682	18.047	15.540	37.682	0.8611	2.0880
	c, Kal	рбонатит	0.10	0.094	1.6	17.626	15.418	37.297	17.282	15.399	37.205	0.8910	2.1528

50

²⁰²¹

Порода	Плутоны	Номер образца	$\delta^{18}O_{WR}$	$\delta^{18}O_{Cpx}$	$\delta^{18}O_{Pl}$	$\delta^{18}O_{Ne}$
Субщелочное габбро	UP	6/239.6	7.5	6.3	8.0	
		1001/172	7.3			
	KSh	Ksh-26/1	8.0	7.4	8.2	
		Ksh-25/2	10.5	8.1	10.2	
		43/86		6.6		
		44/86		7.6		
		46/86	8.4	7.5		
		47/86	8.1	6.8		
	DG	Dg-15/8	7.8	6.9	7.8	
Тералит, фойдолит	UP	15/94.4	9.6	8.6	10.8	
		1001/88.5	7.5			
		14/52.4	9.7	9.2		
		31/323.5	7.9			
		4/60.8		8.8		10.7
		43/77.5	10.7	9.4		11.0
		PT-51	9.5			
		PT-8	10.2			
		PT-7		8.3		
		PT-16	9.6	8.8		10.3
		PT-14	9.6	9.8		9.7
		50/515.5	9.5			
	KSh	Ksh-21/3	10.1	9.7		10.2
		Ksh-20/8	10.0	9.1		10.0
		Ksh-22/12	9.3			
		Ksh-27/86	9.4	9.0		9.5
		45/86	8.0			
		Gi-4	9.4			
		29/86	9.7	9.4		
		10K				12.0
		12K				8.4
	GG	G-11/7b	9.4	8.5	9.6	
Нефелиновый сиенит	UP	6/38.8	10.8	9.3		
	KSh	Ksh-25/1	10.2			
	DG	Dg-15/4B	10.3	8.2	10.6*	9.2
Карбонатит	UP	45/208.7		9.0		

Таблица 10. Изотопный состав кислорода в щелочно-мафитовых интрузиях Кузнецкого Алатау

Примечание. Плутон: Верхнепетропавловский (UP), Кия-Шалтырский (KSh), Дедовогорский (DG), Горячегорский (GG). WR – валовый состав породы, *Срх* – клинопироксен, *Pl* – плагиоклаз, *Ne* – нефелин. * Калиевый полевой шпат.

сивы пермского возраста (Горячегорский, Подтайга, Андрюшкина Речка) не сопровождаются какими-либо другими интрузивными комплексами и залегают только среди вулканитов среднего палеозоя на границе орогена и Минусинского рифтового прогиба (рис. 1). Похожая дискретность щелочного магматизма прослеживается в провинциях Центрального Сангилена (Юго-Восточная Тува) и Витимского нагорья (Западное Забайкалье) (Doroshkevich et al., 2012; Дорошкевич и др., 2014, 2018; Избродин и др., 2017 Vrublevskii et al., 2020а), что указывает на периодичность мантийных процессов в палеозойской истории ЦАСП.

Изученные изверженные породы принадлежат к дифференцированной K-Na (Na₂O/K₂O ~ 2–7)

серии субщелочное габбро-тералит-фойдолитнефелиновый сиенит (фойяит) (рис. 4а). Исключением являются более редкие уртиты и ийолиты, которые имеют низкую кремнекислотность и обогащены щелочами. По своему химизму породы плутонов сопоставимы с комагматичными вулканитами базанит-тефрит-фонолитового ряда, распространенными в Кузнецком Алатау и Минусинской впадине (Бородин и др., 1987; Воронцов и др., 2013). Содержание петрогенных и многих рассеянных элементов в щелочных интрузиях (рис. 4–6) не противоречит фракционной кристаллизации по модели Н. Боуэна. На примере представительного Верхнепетропавловского плутона формирование щелочно-мафитовой ассоциации предполагается в гипабиссальных условиях ~3 кбар и ~1000-1150°С (Врублевский, 2015). В сходном температурном интервале (~930-1200°С) наблюдается гомогенизация микровключений в породообразующем клинопироксене, плагиоклазе и нефелине из других интрузивов провинции (Шацкий, 1975). По-видимому, даже в магнетите и салите поздних карбонатитов прекращение обмена изотопов кислорода происходило при ~700-800°C, что соответствует условиям рэлеевского фракционирования в остывающем карбонатном расплаве. Широкий диапазон температур (~800-400°С) изотопно-кислородного равновесия фиксируется в парагенезисах клинопироксена с нефелином и полевым шпатом щелочных пород (табл. 10, рис. 7), что свидетельствует о позднемагматическом преобразовании минеральных систем, иногда с участием метеорных вод (Врублевский, 2015; Vrublevskii et al., 2020a).

Условия генерации материнской базитовой магмы. Распределение редких элементов в породах щелочных плутонов Кузнецкого Алатау может отражать неоднородность вещества магматических источников. Наиболее раннее субщелочное габбро обладает отчетливыми геохимическими признаками участия в источнике их расплава вещества ІАВ в сочетании с компонентом, подобным E-MORB (рис. 5, 6). Его присутствие позволяет предположить возможность переработки океанической литосферы в зоне субдукции и последующее вовлечение эклогитизированного слэба в магмогенезис (Donnelly et al., 2004). На примере данной провинции участие такого материала косвенно подтверждается корреляцией соотношений Nb/Ta и Zr/Sm в габбро и щелочных породах (рис. 9в).

По сравнению с веществом источника OIB габброиды имеют пониженные значения Gd/Yb и La/Lu, что соответствует меньшей глубине генерации магмы и более высокой степени плавления протолита (рис. 9а). Состав мафитов Белогорского плутона отличается бо́льшим отношением

 $(La/Yb)_N \sim 9-12$, чем аналоги в других изученных массивах провинции ((La/Yb)_N $\sim 2-7$). Это может свидетельствовать не только о неоднородности источников и разных условиях выплавления, но также о степени фракционирования первичной магмы. Наблюдаемые в габбро высокие концентрации HREE_{Gd-Lu}, достигающие ~20-30 г/т, У до ~20-45 г/т и величина отношения LREE/HREE, равная 3-9, указывают на отсутствие реститового граната в протолите и генерацию магмы в результате ~1-10% равновесного плавления мантийного шпинелевого лериолита. По-вилимому, в сходных условиях формировалась первичная магма девонских базальтов в прилегающей Минусинской котловине (рис. 96, 9г). Для продуктов кембрийского ОІВ-магматизма Кузнецкого Алатау тоже характерна относительно невысокая (~2-3%) степень плавления мантийного перидотита, но экстракция расплава осуществлялась из более глубокого источника с небольшим количеством стабильного граната (Врублевский и др., 2016в).

Мантийные источники и коровая контаминация расплавов. Изотопный состав неодима $\varepsilon_{Nd}(T) \sim 3-9$ в щелочно-мафитовых плутонах Кузнецко-Алатауской провинции свидетельствует о мантийном происхождении первичной магмы. Независимо от возраста плутонов, общий мантийный компонент представлен PREMA (prevalent mantle)-подобным материалом, который мог взаимодействовать как с более деплетированной (E-MORB-тип), так и с обогащенной литосферной (ЕМ-тип) мантией. Повидимому, наблюдаемые отклонения от преобладающих значений $\epsilon_{Nd}(T) \sim 4.2 - 5.5$ (рис. 10) связаны с различным соотношением мантийных компонентов, либо зависят от степени перемешивания вещества в магматических камерах. Некоторое увеличение доли вещества ЕМ в щелочных породах поздней перми соответствует составу производных магматизма, развитого в блоках с утолщенной зрелой литосферой.

Сходные значения $\varepsilon_{Nd}(T) \sim 3-5$ отмечаются в кембрийских габбро-монцонитовых и гранитных ассоциациях Кузнецкого Алатау, девонских базальтах смежного Минусинского прогиба, а также в палеозойских щелочных плутонических комплексах на Сангиленском (Юго-Восточная Тува) и Витимском (Западное Забайкалье) плоскогорьях (Врублевский и др., 2016а, 2018а; Воронцов и др., 2013; Doroshkevich et al., 2012). По-видимому, в этом случае происходило унаследование источников вещества, которые были повторно активированы под воздействием мантийного плюма. О вероятной мобилизации материала ранее метасоматизированной нижней литосферы может свидетельствовать совместное нахождение в

Рис. 9. Соотношение HFS-элементов в магматических мафитовых породах Кузнецкого Алатау и примыкающей Минусинской впадины.

(a): Gd/Yb–La/Lu (Boyce et al., 2015); (b): (Sm/Yb)_N–(La/Sm)_N (Bi et al., 2015). Концентрации REE нормализованы (N) по хондриту (Sun, McDonough, 1989); (b): Nb/Ta–Zr/Sm (Foley et al., 2002); (г): Dy/Yb–La/Yb (Jung et al., 2006). На кривых плавления модельных лерцолитов с разным содержанием граната (*Gr*) и шпинели (*Spl*) обозначена доля расплава в процентах. Состав габбро (рис. (a), (б), (г)) в шелочно-мафитовых плутонах: Белогорский (черный квадрат), Университетский, Верхнепетропавловский, Кия-Шалтырский, Кургусульский, Дедовогорский (белые квадраты) в сравнении с неопротерозойскими вулканитами OIB-типа на юго-восточном склоне Кузнецкого Алатау (KA) (Врублевский и др., 2016в) и девонскими базальтами Минусинской рифтогенной впадины (Воронцов и др., 2013). См. пояснение в тексте.

девонских и пермских щелочных породах Кузнецкого Алатау разновозрастных (~1300, ~500 и ~400 млн лет) популяций циркона (Врублевский и др., 2014). Доминирование вещества, подобного PRE-MA, в эволюции палеозойского мафитового магматизма ЦАСП уже отмечалось в связи с деятельностью Северо-Азиатского суперплюма (Ярмолюк, Коваленко, 2003). Вероятно, его влияние таким же образом отразилось на изотопном составе Nd кембрийских гранитоидов ($\varepsilon_{Nd}(530-490) = = 6.6-7.9$), сформированных в островодужно-аккреционных комплексах Озерной зоны (Западная Монголия) ЦАСП (Саватенков и др., 2020).

Неоднородность магматических источников вызывает вариации изотопных отношений Pb в породах и минералах (рис. 11а, 11в). Их значения образуют дискретный тренд, параллельный известной последовательности EACL (East Africa Carbonatite Line) карбонатит-нефелинитового вулканизма Восточно-Африканского рифта (Bell, Tilton, 2001). По-видимому, щелочно-мафитовые интрузии Кузнецкого Алатау имели комбинированный источник с преобладанием вещества PREMA и

Рис. 10. Изотопный состав Nd и Sr палеозойских плутонических комплексов Кузнецкого Алатау и других магматических центров ЦАСП.

GGM – кембрийско-раннеордовикские гранитоиды и габбро-монцонитовая ассоциация восточного склона Кузнецкого Алатау (Врублевский и др., 2016а, 2018а). МВВ – девонские базальты Минусинской впадины, по (Воронцов и др., 2013). Составы палеозойских щелочных комплексов плато Витим (Западное Забайкалье) и Сангилен (Юго-Восточная Тува), по данным (Doroshkevich et al., 2012; Vrublevskii et al., 2020а), щелочных пород и карбонатитов (комплекс эдельвейс, Эд) в Горном Алтае, по (Врублевский и др., 2012). Средний состав базальта Северо-Азиатского суперплюма, по (Ярмолюк, Коваленко, 2003). Область "Мантийный ряд", резервуары MORB (DMM), PREMA, EMI и EMII в соответствии с их современными параметрами показаны по (Zindler, Hart, 1986; Stracke et al., 2005). См. пояснение в тексте.

различным участием компонентов, сходных с ЕМІІ или ЕМІ. Эта зависимость также прослеживается в раннепалеозойских щелочных интрузиях Горного Алтая и Центрального Сангилена ЦАСП. Сопоставимые первичные изотопные отношения Рb (рис. 11а, 11б) характерны для щелочных плутонов Европейского и Сибирского кратонов, базальтов Таримской провинции и щелочных комплексов плато Шилонг (Shillong) в Северо-Восточной Индии, образование которых связывают с плюмовой активностью (Lee et al., 2006; Когарко, Зартман, 2011; Зартман, Когарко, 2014; Zhang et al., 2010; Ghatak, Basu, 2013). По всей вероятности, в их формировании принимало участие вещество не только мантии, но и верхней литосферы.

Несмотря на отмеченные признаки мантийного происхождения, для щелочно-мафитовых интрузий характерны повышенные значения $(^{87}Sr/^{86}Sr)_{T}$ до ~0.705—0.707 и δ^{18} О до 8—12‰ в силикатных породах, что может быть вызвано коровой контами-

нацией расплавов. Ее влияние особенно заметно в карбонатитах: $\delta^{18}O_{V-SMOW} \sim 12-15.5\%$, $\delta^{13}C_{V-PDB}$ от -3.5 до -2.0%, $\delta^{34}S_{CDT} = +4.6\%$, $(^{87}Sr/^{86}Sr)_{T} \sim 0.706-0.707$ (Врублевский, 2015). Существующая положительная корреляция между величинами $(^{87}Sr/^{86}Sr)_{T}$ и δ^{18} О также наблюдается в других палеозойских изверженных комплексах западной части ЦАСП и приближенно соответствует модели мантийно-корового взаимодействия. Участие компонентов континентальной коры в развитии щелочного магматизма Кузнецкого Алатау является вполне вероятным для аккреционно-коллизионного орогена.

Предположительно, дополнительное поступление ⁸⁷Sr в магму происходило с рассолами, мобилизованными теплом интрузий из рифейскокембрийских метакарбонатных отложений (Sr > 2000 г/т, ⁸⁷Sr/⁸⁶Sr \approx 0.708) на севере региона (Покровский и др., 1998). Как следствие, содержание Sr в мафитовых породах достигает ~1300–

Рис. 11. Изотопный состав Pb в минералах (микроклин, пирротин, пирит) и в породах щелочно-мафитовых плутонов. Данные на Pb–Pb диаграммах см. в табл. 9. Мантийные компоненты: PREMA (преобладающая мантия), FOZO (мантия фокусной зоны), HIMU (мантия с высоким значением µ), DMM (деплетированная MORB мантия), EMI (обогащенная мантия 1) и EMII (обогащенная мантия 2), элементы плюмботектоники и изотопной эволюции Pb соответствуют параметрам по (Stacey, Kramers, 1975; Zartman, Haines, 1988; Zindler, Hart, 1986; Hart et al., 1992; Stracke et al., 2005). Компоненты: UC – верхнекоровый, Oro – орогенный, M – мантийный. EACL – East African Carbonatite Line, по (Bell, Tilton; 2001). Составы шелочных пород и карбонатитов Ловозерского, Ковдорского (Европейский кратон) и Гулинского (Сибирский кратон) массивов, по (Когарко, Зартман, 2011; Зартман, Когарко, 2014; Lee et al., 2006), галенита из карбонатитов в плутонах Себльявр, Салланлатви, Вуориярви, Ковдор Кольской провинции, по (Bell et al., 2015), базальтов Таримской плюмовой провинции, по (Zhang et al., 2010), шелочно-ультрамафитовых комплексов, лампроитов и сиенитов (LS) Северо-Восточной Индии, по (Ghatak, Basu, 2013). Допускается возможное сходство параметров мантийных субстратов и современных изотопных резервуаров. Пояснение см. в тексте.

1800 г/т. Сохраняющееся при этом изотопно-кислородное равновесие между минералами с кристаллической структурой разной ¹⁸О-емкости указывает на поступление корового материала непосредственно в расплав. Происходившая кон-

таминация также могла вызвать обогащение пород изотопом ²⁰⁷Pb до уровня, характерного для орогенических областей (рис. 116).

Щелочной магматизм суперпозиции мантийного плюма и аккреционно-коллизионного террейна. По существующим оценкам процессы смешения мантийных и коровых компонентов в магмогенезисе особенно эффективны в обстановке субдукции (Kelemen et al., 2003; Добрецов, 2010; Гордиенко, 2019; Jia et al., 2020; Sun et al., 2020). На примере эволюции западно-тихоокеанской активной окраины в позднем кайнозое считается, что благодаря разрыву и сдвигу океанической литосферной плиты в зоне трансформного растяжения формируется канал (slab-window), по которому астеносферные магмы или вещество более глубинных плюмов поступают в надсубдукционный мантийный клин (Ярмолюк и др., 2013; Martynov et al., 2017; Kimura et al., 2018; Гордиенко, 2019). Кроме того, материал самого клина перед возможным плавлением подвергается метасоматическому воздействию флюидов, возникающих при дегидратации слэба (Donnelly et al., 2004). В результате составы производных окраинно-континентального вулканизма нередко проявляют геохимическую конвергенцию между внутриплитными (WPB/OIB-тип) и островодужными (ІАВ-тип) базальтами (Ярмолюк и др., 2013; Martynov et al., 2017; Гордиенко, 2019). В качестве дополнительного фактора смешения нередко рассматривается процесс магматического андерплейтинга (underplating) в основании континентальной коры (Thybo, Artemieva, 2013 и ссылки там). Предполагается, что в этом случае плавление корового материала под влиянием базитовых интрузий приводит к образованию фельзитовых гибридных магм (Petford, Gallagher, 2001; Annen, Sparks, 2002).

Содержания и соотношения некоторых редких и рассеянных элементов в щелочно-мафитовых интрузиях Кузнецкого Алатау могут свидетельствовать о сложной тектонической обстановке их внедрения. Сходные по степени дифференциации $(La/Yb)_N \sim 5-10$ габброиды и фойдолиты характеризуются мультиэлементными спектрами распределения, подобными среднему составу IAB, но более щелочные производные обогащены

REE, Nb, Ta, Th, U, Rb и Ba (рис. 5, 6) до уровня состава ОІВ и выше. Содержания HFSE в большинстве мафитовых пород являются переходными между составами OIB и IAB (рис. 12). Такое сочетание вероятно при смешении компонентов мантийного плюма и островной дуги (Врублевский, 2015; Врублевский и др., 2012, 2016а, 2016б; Martynov et al., 2017; Гордиенко, 2019). Похожие вариации наблюдаются в габбро-монцонитовых плутонах на востоке региона (рис. 12е) и тоже могут быть обусловлены мантийно-коровым взаимодействием (Врублевский и др., 2018а). По-видимому, участие вещества самого плюма отразилось на индикаторных соотношениях HFSE в мафитах, в которых они достигают значений, характерных для производных OIB-магматизма и континентальных платобазальтов (рис. 12а, 12б). Предположительно, в субщелочном габбро также содержится материал, сопоставимый с океаническими базальтами типа E-MORB. ВАВВ и ОРВ (рис. 5, 12а, 12г, 12д). Присутствие этих компонентов в геодинамических комплексах Палеоазиатского океана неоднократно отмечается в пределах северо-западного сегмента ЦАСП (Buslov et al., 2001; Dobretsov et al., 2003; Wilhem et al., 2012).

На основании существующей модели формирования каледонид ЦАСП (Ярмолюк и др., 2013) и данных по геохимии и изотопной геохронологии щелочно-мафитового магматизма в Кузнецком Алатау нами допускается взаимодействие изученных интрузий с материалом аккреционных комплексов уже бывшей активной континентальной окраины. При относительном небольшом диапазоне преобладающих значений $\varepsilon_{Nd}(T) \approx 4-6$ в породах плутонов заметно варьируют соотношения Ce/Pb, Ce/Nb, Th/Nb (рис. 13). Считается, что они служат индикаторами участия континентальной коры в магмогенезисе (Hofmann et al., 1986; Rudnick, Gao, 2003). Таким образом, в породах рассмотренной изверженной провинции их вариации могут отражать разную степень контаминации мантийных расплавов с унаследованием сигнатур более древних субдукционных процес-

Рис. 12. Геохимическая интерпретация источников и тектонической обстановки щелочно-мафитового магматизма Кузнецкого Алатау.

⁽a): Nb/Y–Zr/Y (Condie, 2005), штриховой линией разделены плюмовые и неплюмовые источники; (б): (Tb/Ta)_{PM}– (Th/Ta)_{PM} (Thièblemont et al., 1994), нормализация по примитивной мантии (PM; Sun, McDonough, 1989); (в): Th/Yb– Ta/Yb (Gorton, Schandl, 2000); (г): Th/Ta–La/Yb (Tomlinson, Condie, 2001); (д): Th_N–Nb_N (Saccani, 2015), нормализация по N-MORB (Sun, McDonough, 1989); (е): Yb/Ta–Y/Nb (Eby, 1990). Базальты срединно-океанических хребтов нормальные (N-MORB) и обогащенные (E-MORB), океанических островов (OIB), океанических плато (OPB), субдукционных зон (SZB), островных дуг (IAB/ARC), задуговых бассейнов (BABB), внутриплитные (WPB). AB – щелочной базальт, CFB – континентальный платобазальт, IAT – толеиты островных дуг, OIA – океаническая островная дуга, ACM – активная окраина континента, WPVZ – внутриплитная вулканическая зона, CAMB – базальты активной окраины континента, CWPAB – щелочные и субщелочные внутриплитные континентальные базальты. Крестом отмечен средний состав базальтов по (Sun, McDonough, 1989; Kelemen et al., 2003), кембрийские габбро-монцониты Кузнецкого Алатау по (Врублевский и др., 2018а).

Рис. 13. Диаграммы Ce/Nb–Th/Nb (a) и $\varepsilon_{Nd}(T)$ –Ce/Pb (б) для пород щелочно-мафитовой серии (залитые кружки) Кузнецкого Алатау. Состав примитивной (PM) и деплетированной (DMM) мантии. E-MORB, OIB, PREMA, BSE (bulk silicate Earth, вало-

Состав примитивной (РМ) и деплетированной (DMM) мантии, E-MORB, OIB, PREMA, BSE (bulk suitcate Earth, валовый состав Земли), UC (верхняя континентальная кора), по (Sun, McDonough, 1989; Zindler, Hart, 1986; Salters, Stracke, 2004; Rudnick, Gao, 2003). См. пояснение в тексте.

сов. При этом установленное геохимическое подобие разновозрастных щелочных интрузий свидетельствует не только о родственной природе магматических источников, но и подтверждает представления о длительной плюмовой активности в палеозойской эволюции ЦАСП (Ярмолюк и др., 2003).

Предполагается, что присутствие гетерогенного вещества в составе плутонов Кузнецкого Алатау вызвано суперпозицией мантийного плюма и кембрийских геодинамических комплексов бывшей активной континентальной окраины. В сходных тектонических условиях наиболее вероятно воздействие плюма на метасоматизированную надсубдукционную мантию с сохранением ее геохимических признаков в процессах плавления (Врублевский и др., 2014; Лавренчук и др., 2017). Однако с позиции плейт-тектоники для проявления подобного многократного магматизма необходимо учитывать возможность его эволюции на ограниченной площади (~4.5 тыс. км² в данном случае), сопоставимой с площадными размерами классической горячей точки. Поэтому в предлагаемой модели допускается, что первоначальный мантийный плюм в кембрии-ордовике (Ярмолюк, Коваленко, 2003) при подъеме эродировал литосферу под уже зрелой островной дугой и был источником только небольших порций щелочнобазальтовой магмы. Геохимическое подобие щелочных интрузий более поздних (девон, пермь) периодов плюмовой активности обусловлено смешением вновь поступившего мантийного материала и переплавленного литосферного субстрата, метасоматизированного инициальным плюмом (Врублевский и др., 2014). При этом взаимодействие щелочной магмы непосредственно с фрагментами аккреционных комплексов на нижнекоровом уровне ограничивалось очень незначительным их плавлением в краевых частях. По-видимому, участие разнородного, в том числе карбонатного, вещества в процессах петрогенезиса вызывало изотопные эффекты (Покровский и др., 1998), но слабо отразилось на общем химизме изверженных пород.

ЗАКЛЮЧЕНИЕ

(1) Щелочно-мафитовый интрузивный магматизм на севере Кузнецкого Алатау проявлялся неоднократно. Сформированные плутоны кембрийского, девонского и пермского возраста сложены изверженными породами К-Na серии: субщелочное габбро-тералит-фойдолит-нефелиновый сиенит, редко карбонатит.

(2) Вариации HFSE в габбро свидетельствуют о неоднородности протолита первичной магмы. Наряду с компонентом, подобным IAB, в нем присутствует вещество океанических базальтов типа OIB, E-MORB, BABB и OPB.

(3) По сравнению с условиями образования OIB, для первичной магмы исследованной серии пород характерна меньшая глубина генерации в условиях частичного (1–10%) плавления шпинелевого лерцолита мантии и умеренная степень ее фракционирования ((La/Yb)_N до ~7–12).

(4) Первичный изотопный состав Nd и Pb в породах и минералах свидетельствует о мантийном происхождении первичной магмы и взаимодействии в ее источнике доминирующего вещества PREMA-типа с материалом более деплетированного (MORB/DMM) и обогащенного (ЕМ-тип) резервуаров. Повышенные значения и положительная корреляция отношений изотопов Sr и O в интрузивах могут быть связаны с коровой контаминацией расплавов. Этому не противоречат наблюдаемые изотопные С–О ковариации в карбонатитах, характерные для высокотемпературного рэлеевского фракционирования.

(5) Распределение большинства редких и рассеянных элементов в плутонах указывает на возможное смешение в расплавах материала островных дуг и океанической литосферы в сложной геодинамической обстановке суперпозиции мантийного плюма и бывшей активной окраины континента. Участие подобных компонентов в магмогенезисе могло произойти еще на стадии аккреции.

(6) Щелочно-мафитовые интрузии аккреционно-коллизионного орогена Кузнецкого Алатау обладают неоднородным изотопным (Nd, Pb) составом, что указывает на гетерогенность их мантийных протолитов. Плюм-литосферное взаимодействие могло привести к унаследованию геохимических признаков более ранних субдукционных комплексов Палеоазиатского океана, а также возрастанию роли обогащенной мантии в магмогенезисе.

Благодарности. Авторы признательны сотрудникам производственных геологических организаций Кузбасса и Красноярского края, Томского национального исследовательского государственного университета, институтов Российской академии наук, Университета Британской Колумбии (Канада) за многолетнюю помощь в экспедиционных и аналитических исследованиях. С благодарностью были восприняты рецензии от член-корреспондента РАН Е.В. Склярова и старшего научного сотрудника ИГЕМ РАН А.В. Никифорова.

Источники финансирования. Рукопись подготовлена при поддержке Министерства науки и высшего образования РФ и Российского научного фонда (проект № 18-17-00240).

СПИСОК ЛИТЕРАТУРЫ

Андреева Е.Д. Щелочной магматизм Кузнецкого Алатау. М.: Наука, 1968. 169 с.

Андреева Е.Д., Кононова В.А., Свешникова Е.В., Яшина Р.М. Щелочные породы. Магматические горные породы. Т. 2. М.: Наука, 1984. 415 с.

Арзамасцев А. А., Арзамасцева Л.В. Геохимические индикаторы эволюции щелочно-ультраосновных серий па-

ПЕТРОЛОГИЯ том 29 № 1 2021

леозойских массивов Фенноскандинавского щита // Петрология. 2013. Т. 21. № 3. С. 277–308.

Бородин Л.С., Попов В.С., Гладких В.С. и др. Геохимия континентального вулканизма. М.: Наука, 1987. 238 с.

Воронцов А.А., Федосеев Г.С., Андрющенко С.В. Девонский вулканизм Минусинского прогиба Алтае-Саянской области: геологические, геохимические и изотопные Sr-Nd характеристики пород // Геология и геофизика. 2013. Т. 54. № 9. С. 1283–1313.

Врублевский В.В. Источники и геодинамические условия петрогенезиса Верхнепетропавловского щелочнобазитового интрузивного массива (средний кембрий, Кузнецкий Алатау, Сибирь) // Геология и геофизика. 2015. Т. 56. № 3. С. 488–515.

Врублевский В.В., Крупчатников В.И., Изох А.Э., Гертнер И.Ф. Щелочные породы и карбонатиты Горного Алтая (комплекс эдельвейс): индикатор раннепалеозойского плюмового магматизма в Центрально-Азиатском складчатом поясе // Геология и геофизика. 2012. Т. 53. № 8. С. 945–963.

Врублевский В.В., Гертнер И.Ф., Гутиеррес-Алонсо Г. и др. Изотопная (U-Pb, Sm-Nd, Rb-Sr) геохронология щелочно-базитовых плутонов Кузнецкого Алатау // Геология и геофизика. 2014. Т. 55. № 11. С. 1598–1614.

Врублевский В.В., Котельников А.Д., Руднев С.Н., Крупчатников В.И. Эволюция палеозойского гранитоидного магматизма Кузнецкого Алатау: новые геохимические и U-Pb (SHRIMP-II) изотопные данные // Геология и геофизика. 2016а. Т. 57. № 2. С. 287–311.

Врублевский В.В., Гринев О.М., Изох А.Э., Травин А.В. Геохимия, изотопная (Nd-Sr-O) триада и ⁴⁰Ar-³⁹Ar возраст палеозойских щелочно-мафитовых интрузий Кузнецкого Алатау (на примере Белогорского плутона) // Геология и геофизика. 2016б. Т. 57. № 3. С. 592– 602.

Врублевский В.В., Котельников А.Д., Крупчатников В.И. Позднедокембрийский ОІВ-магматизм Кузнецкого Алатау, Сибирь: геохимические особенности вулканитов кульбюрстюгской свиты // Докл. АН. 2016в. Т. 469. № 4. С. 592–602.

Врублевский В.В., Котельников А.Д., Изох А.Э. Возраст, петрологические и геохимические условия формирования когтахского габбро-монцонитового комплекса Кузнецкого Алатау // Геология и геофизика. 2018а. Т. 59. № 7. С. 900–930.

Врублевский В.В., Гертнер И.Ф., Чугаев А.В. Источники вещества высокоглиноземистых щелочных магм по данным изотопной (Nd, Sr, Pb, O) геохимии пород Кия-Шалтырского габбро-уртитового интрузива девонского возраста, Южная Сибирь // Докл. АН. 20186. Т. 479. № 6. С. 666–672.

Гордиенко И.В. Связь субдукционного и плюмового магматизма на активных границах литосферных плит в зоне взаимодействия Сибирского континента и Палеоазиатского океана в неопротерозое и палеозое // Геодинамика и тектонофизика. 2019. Т. 10. № 2. С. 405–457. Добрецов Н.Л. Петрологические, геохимические и геодинамические особенности субдукционного магматизма // Петрология. 2010. Т. 18. № 1. С. 88–110.

Дорошкевич А.Г., Рипп Г.С., Избродин И.А. и др. Геохронология Гулхенского массива Витимской щелочной провинции, Западное Забайкалье // Докл. АН. 2014. Т. 457. № 6. С. 687–691.

Дорошкевич А.Г., Избродин И.А., Рампилов М.О. и др. Пермо-триасовый этап щелочного магматизма Витимского плоскогорья (Западное Забайкалье) // Геология и геофизика. 2018. Т. 59. № 9. С. 1325–1344.

Зартман Р.Э., Когарко Л.Н. Изотопный состав свинца агпаитовых нефелиновых сиенитов и редкометальных руд Ловозерского массива (Кольский полуостров, Россия) // Докл. АН. 2014. Т. 454. № 1. С. 77–80.

Избродин И.А., Дорошкевич А.Г., Рампилов М.О. и др. Возраст, минералогическая и геохимическая характеристики пород Чининского щелочного массива (Западное Забайкалье) // Геология и геофизика. 2017. Т. 58. № 8. С. 1135–1156.

Когарко Л.Н., Зартман Р.Э. Новые данные о возрасте Гулинской интрузии и проблема связи щелочного магматизма Маймеча-Котуйской провинции с Сибирским суперплюмом (данные по изотопии U-Th-Pb системы) // Геохимия. 2011. № 5. С. 462–472.

Крупчатников В.И., Врублевский В.В., Крук Н.Н. Раннемезозойские лампроиты и монцонитоиды юго-востока Горного Алтая: геохимия, Sr-Nd изотопный состав, источники расплавов // Геология и геофизика. 2015. Т. 56. № 6. С. 1057–1079.

Кунгурцев Л.В., Берзин Н.А., Казанский А.Ю., Метелкин Д.В. Тектоническая эволюция структуры юго-западного обрамления Сибирской платформы в венде– кембрии по палеомагнитным данным // Геология и геофизика. 2001. Т. 42. № 7. С. 1042–1051.

Лавренчук А.В., Скляров Е.В., Изох А.Э. и др. Особенности состава габброидов Крестовской зоны (Западное Прибайкалье) как отражение взаимодействия надсубдукционной литосферной мантии с мантийным плюмом // Геология и геофизика. 2017. Т. 58. № 10. С. 1439–1458.

Никифоров А.В., Ярмолюк В.В. Раннепалеозойский возраст формирования и геодинамическое положение Ботогольского и Хушагольского массивов щелочных пород Центрально-Азиатского складчатого пояса // Докл. АН. 2007. Т. 412. № 1. С. 81–86.

Никифоров А.В., Ярмолюк В.В., Коваленко В.И. и др. Позднемезозойские карбонатиты Западного Забайкалья: изотопно-геохимические характеристики и источники // Петрология. 2002. Т. 10. № 2. С. 168–188.

Никифоров А.В., Болонин А.В., Покровский Б.Г. и др. Геохимия изотопов (О, С, S, Sr) и Rb-Sr возраст карбонатитов Центральной Тувы // Геология рудн. месторождений. 2006. Т. 48. № 4. С. 296–319.

Никифоров А.В., Сальникова Е.Б., Ярмолюк В.В. и др. Раннепермский возраст нефелиновых сиенитов Коргоредабинского массива (Сангиленское нагорье, Тува) // Докл. АН. 2019. Т. 485. № 2. С. 194–197.

Осипов П.В., Макаренко Н.А., Корчагин С.А. и др. Новый щелочно-габброидный рудоносный массив в Кузнецком Алатау // Геология и геофизика. 1989. № 11. С. 79–82.

Покровский Б.Г. Коровая контаминация мантийных магм по данным изотопной геохимии (Тр. ГИН РАН, Вып. 535). М.: Наука, 2000. 228 с.

Покровский Б.Г., Андреева Е.Д., Врублевский В.В., Гринев О.М. Природа контаминации щелочно-габброидных интрузий южного обрамления Сибирской платформы по данным изотопии стронция и кислорода // Петрология. 1998. Т. 6. № 3. С. 259–273.

Саватенков В.М., Козловский А.М., Ярмолюк В.В. и др. Рb и Nd изотопная систематика гранитоидов Озерной зоны, Монгольского и Гобийского Алтая как отражение процессов корообразования в Центрально-Азиатском орогенном поясе // Петрология. 2020. Т. 28. № 5. С. 451–467.

Сальникова Е.Б., Стифеева М.В., Никифоров А.В. и др. Гранаты ряда андрадит-моримотоит — потенциальные минералы-геохронометры для U-Pb датирования ультраосновных щелочных пород // Докл. АН. 2018. Т. 480. № 5. С. 583–586.

Скляров Е.В., Федоровский В.С., Котов А.Б. и др. Карбонатиты в коллизионных обстановках и квазикарбонатиты раннепалеозойской Ольхонской коллизионной системы // Геология и геофизика. 2009. Т. 50. № 12. С. 1409–1427.

Уваров А.Н., Уварова Н.М. Петротип горячегорского щелочно-габброидного комплекса (Кузнецкий Алатау). Новосибирск: СНИИГГиМС, 2008. 194 с.

Чернышев И.В., Чугаев А.В., Шатагин К.Н. Высокоточный изотопный анализ Рb методом многоколлекторной ICP-масс-спектрометрии с нормированием по ²⁰⁵Tl/²⁰³Tl: оптимизация и калибровка метода для изучения вариаций изотопного состава Рb // Геохимия. 2007. № 11. С. 1155–1168.

Шацкий В.С. Условия минералообразования в Кийском габбро-сиенитовом комплексе (Кузнецкий Алатау): Автореф. дис. ... канд. геол.-мин. наук. Новосибирск: ИГиГ АН СССР, 1975. 30 с.

Шокальский С.П., Бабин Г.А., Владимиров А.Г., Борисов С.М. Корреляция магматических и метаморфических комплексов западной части Алтае-Саянской складчатой области // Под ред. А.Ф. Морозова. Новосибирск: Изд-во СО РАН, 2000. 187 с.

Ярмолюк В.В., Коваленко В.И. Глубинная геодинамика, мантийные плюмы и их роль в формировании Центрально-Азиатского складчатого пояса // Петрология. 2003. Т. 11. № 6. С. 556–586.

Ярмолюк В.В., Коваленко В.И., Ковач В.П. и др. Геодинамика формирования каледонид Центрально-Азиатского складчатого пояса // Докл. АН. 2003. Т. 389. № 3. С. 354–359.

Ярмолюк В.В., Кузьмин М.И., Воронцов А.А. Конвергентные границы западно-тихоокеанского типа и их роль в формировании Центрально-Азиатского склад-

чатого пояса // Геология и геофизика. 2013. Т. 54. № 12. С. 1831—1850.

Яшина Р.М. Щелочной магматизм складчато-глыбовых областей (на примере южного обрамления Сибирской платформы). М.: Наука, 1982. 274 с.

Annen C., Sparks R.S.J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust // Earth and Planetary Science Letters. 2002. V. 203. P. 937–955.

Baatar M., Ochir G., Kynicky J. et al. Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu alkaline complexes, Southern Mongolia // International Journal of Geosciences. 2013. V. 4. P. 1200–1214.

Bell K., Tilton G.R. Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity // J. Petrology. 2001. V. 42. P. 1927–1945.

Bell K., Zaitsev A.N., Spratt J. et al. Elemental, lead and sulfur isotopic compositions of galena from Kola carbonatites, Russia – implications for melt and mantle evolution // Mineralogical Magazine. 2015. V. 79. P. 219–241.

Bi J.H., Ge W.C., Yang H. et al. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China: Petrogensis and tectonic implications // Lithos. 2015. V. 234/235. P. 27–46.

Bowman J.R. Stable-isotope systematics in skarns // Ed. D.R. Lentz. Mineralized Intrusion-Related Skarn Systems. Mineralogical Association of Canada Short Course. 1998. V. 26. P. 1–49.

Boyce J.A., Nicholls I.A., Keays R.R., Hayman P.C. Variation in parental magmas of Mt Rouse, a complex polymagmatic monogenetic volcano in the basaltic intraplate Newer Volcanics Province, southeast Australia // Contributions to Mineralogy and Petrology. 2015. V. 169. 21 p.

Buslov M.M., Saphonova I.Y., Watanabe T. et al. Evolution of the Paleo-Asian Ocean (Altai–Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the Southern marginal part of the Siberian continent // Geoscience J. 2001. V. 5. P. 203–224.

Condie K.C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. V. 79. P. 491–504.

Conway C.H., Taylor H.P. $^{18}O/^{16}O$ and $^{13}C/^{12}C$ ratios of coexisting minerals in the Oka and Magnet Cove carbonatite bodies // J. Geology. 1969. V. 77. P. 618–626.

Deines P. Stable isotope variations in carbonatites // Ed. Bell K. Carbonatites: genesis and evolution. London: Unwin Hyman, 1989. P. 301–359.

De la Roche H., Leterrier J., Grandclaude P., Marchal M. A classification of volcanic and plutonic rocks using R1–R2 diagram and major element analyses – Its relationships with current nomenclature // Chemical Geology. 1980. V. 29. P. 183–210.

Demény A., Ahijado A., Casillas R., Vennemann T.W. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study // Lithos. 1998. V. 44. P. 101–115.

Dobretsov N.L., Buslov M.M., Vernikovsky V.A. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia // Gondwana Research. 2003. V. 6. P. 143–159.

Donnelly K.E., Goldstein S.L., Langmuir C.H., Spiegelman M. Origin of enriched ocean ridge basalts and implications for mantle dynamics // Earth and Planetary Science Letters. 2004. V. 226. P. 347–366.

Doroshkevich A.G., Ripp G.S., Izbrodin I.A., Savatenkov V.M. Alkaline magmatism of the Vitim province, West Transbaikalia, Russia: Age, mineralogical, geochemical and isotope (O, C, D, Sr and Nd) data // Lithos. 2012. V. 152. P. 157– 172.

Downes H., Balaganskaya E., Beard A. et al. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review // Lithos. 2005. V. 85. P. 48–75.

Eby G.N. The A-type granitoids: a review of their occurrence and chemical characteristics and speculation on their petrogenesis // Lithos. 1990. V. 26. P. 115–134.

Ernst R.E. Large igneous provinces. Cambridge: Cambridge University Press, 2014. 630 p.

Faure G. Principles of Isotope Geology. N.Y.: John Wiley & Sons, 1986. 608 p.

Foley S., Tiepolo M., Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones // Nature. 2002. V. 417. P. 837–840.

Ghatak A., Basu A.R. Isotopic and trace element geochemistry of alkalic-mafic-ultramafic-carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume // Geochimica et Cosmochimica Acta. 2013. V. 115. P. 46–72.

Gorton M.P., Schandl E.S. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks // The Canadian Mineralogist. 2000. V. 38. P. 1065–1073.

Hart S.R., Hauri E.H., Oschmann L.A, Whitehead J.A. Mantle plumes and entrainment: isotopic evidence // Science. 1992. V. 256. P. 517–520.

Hofmann A.W., Jochum K.P., Seufert H.M., White W.M. Nb and Pb in oceanic basalts: new constraints on mantle evolution // Earth and Planetary Science Letters. 1986. V. 79. P. 33–45.

Jia L., Mao J., Liu P., Yu M. Crust–mantle interaction during subduction zone processes: Insight from late Mesozoic I-type granites in eastern Guangdong, SE China // J. Asian Earth Sciences. 2020. V. 192, 104284.

Jung C., Jung S., Hoffer E., Berndt J. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany // J. Petrology. 2006. V. 47. P. 1637–1671.

Kelemen P.B., Hanghøj K., Greene A.R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust // Eds. Y.D. Holland, K.K. Turekian. Treatise on Geochemistry. Elsevier Ltd., 2003. V. 3. P. 593–659.

Keller J., Hoefs J. Stable isotope characteristics of recent natrocarbonatite from Oldoinyo Lengai // Eds. K. Bell, J. Keller. Carbonatite Volcanism: Oldoinyo Lengai and the

Petrogenesis of Natrocarbonatites. IAVCEI Proceedings Volcanology. 1995. V. 4. P. 113–123.

Kimura J-I., Sakuyama T., Miyazaki T. et al. Plume-stagnant slab-lithosphere interactions: origin of the late Cenozoic intra-plate basalts on the East Eurasia margin // Lithos. 2018. V. 300–301. P. 227–249.

Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province // Earth Science Reviews. 2010. V. 102. P. 29–59.

Lee M.J., Lee J.I., Hur S.D. et al. Sr-Nd-Pb isotopic composition of the Kovdor phoscorite–carbonatite complex, Kola Peninsula, NW Russia // Lithos. 2006. V. 91. P. 250–261.

Martynov Y.A., Khanchuk A.I., Grebennikov A.V. et al. Late Mesozoic and Cenozoic volcanism of the East Sikhote-Alin area (Russian Far East): A new synthesis of geological and petrological data // Gondwana Research. 2017. V. 47. P. 358–371.

Middlemost E.A.K. Naming materials in the magma igneous rock system // Earth Science Reviews. 1994. V. 37. P. 215–244.

Morikiyo T., Miyazaki T., Kagami H. et al. Sr, Nd, C and O isotope characteristics of Siberian carbonatites // Ed. N.V. Vladykin. Alkaline magmatism and the problems of mantle sources. Irkutsk: Proceeding of International Workshop, 2001. P. 69–84.

Mustafayev A.A., Gertner I.F., Serov P.A. Features of geology and composition of rocks from the alkaline-gabbroic University massif (NE Kuznetsky Alatau ridge, Siberia) // IOP Conference Series: Earth and Environmental Science. 2017. V. 110. 012016.

Petford N., Gallagher K. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma // Earth and Planetary Science Letters. 2001. V. 193. P. 483– 499.

Ray J.S., Ramesh R. Rayleigh fractionation of stable isotopes from a multicomponent source // Geochimica et Cosmochimica Acta. 2000. V. 64. P. 299–306.

Rudnick R.L., Gao S. Composition of the continental crust // Eds. Y.D. Holland, K.K. Turekian. Treatise on Geochemistry. Amsterdam: Elsevier, 2003. V. 3. P. 1–64.

Saccani E. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics // Geoscience Frontiers. 2015. V. 6. P. 481–501.

Salters V., Stracke A. Composition of the depleted mantle // Geochemistry Geophysics Geosystems. 2004. V. 5. C00597.

Şengör A.C., Natal'in B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia // Nature. 1993. V. 364. P. 299–306.

Smith M.P., Campbell L.S., Kynicky J. A review of the genesis of the world class Bayan Obo Fe–REE–Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions // Ore Geology Reviews. 2015. V. 64. P. 459–476.

Stacey J.C., Kramers J.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth and Planetary Science Letters. 1975. V. 26. P. 207–221.

Stracke A., Hofmann A.W., Hart S.R. FOZO, HIMU, and the rest of the mantle zoo // Geochemistry Geophysics Geosystems. 2005. V. 6. P. Q05007.

Sun P., Dan W., Wang Q. et al. Zircon U-Pb geochronology and Sr-Nd-Hf-O isotope geochemistry of Late Jurassic granodiorites in the southern Qiangtang block, Tibet: Remelting of ancient mafic lower crust in an arc setting? // J. Asian Earth Sciences. 2020. V. 192. P. 104235.

Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Eds. A.D. Saunders, M.J. Norry. Magmatism in the ocean basins. Geological Society Special Publication. 1989. V. 42. P. 313–345.

Thièblemont D., Chèvremont P., Castaing C. et al. The geotectonic discrimination of basic magmatic rocks from trace elements. Re-appraisal from a data base and application to the Pan-African belt of Togo // Geodinamica Acta. 1994. V. 7. P. 139–157.

Tomlinson K.Y.R., Condie K.C. Archean mantle plumes: evidence from greenstone belt geochemistry // Geological Society of America. Special Papers. 2001. V. 352. P. 341–358.

Thybo H., Artemieva I.M. Moho and magmatic underplating in continental lithosphere // Tectonophysics. 2013. V. 609. P. 605–619.

Vrublevskii V.V., Morova A.A., Bukharova O.V., Konovalenko S.I. Mineralogy and geochemistry of Triassic carbonatites in the Matcha alkaline intrusive complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian Orogenic Belt // J. Asian Earth Sciences. 2018. V. 153. P. 252–281.

Vrublevskii V.V., Gertner I.F., Ernst R.E. et al. The Overmaraat-Gol Alkaline Pluton in Northern Mongolia: U-Pb Age and Preliminary Implications for Magma Sources and Tectonic Setting // Minerals. 2019. V. 9. 170.

Vrublevskii V.V., Nikiforov A.V., Sugorakova A.M., Kozulina T.V. Petrogenesis and tectonic setting of the Cambrian Kharly alkaline–carbonatite complex (Sangilen Plateau, Southern Siberia): Implications for the Early Paleozoic evolution of magmatism in the western Central Asian Orogenic Belt // J. Asian Earth Sciences. 2020a. V. 188. 104163.

Vrublevskii V.V., Gertner I.F., Gutiérrez-Alonso G. et al. Multiple intrusion stages and mantle sources of the Palaeozoic Kuznetsk-Alatau alkaline province, Southern Siberia: geochemistry and Permian U-Pb, Sm-Nd ages in the Goryachegorsk ijolite-foyaite intrusion // International Geology Review. 2020b.

doi.org/10.1080/00206814.2020.1830312

Weis D., Kieffer B., Maerschalk C. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS // Geochemistry Geophysics Geosystems. 2006. V. 7. Q08006.

Wilhem C., Windley B.F., Stampfli G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review // Earth-Science Reviews. 2012. V. 113. P. 303–341.

Yarmolyuk V.V., Kuzmin M.I., Ernst R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt // J. Asian Earth Sciences. 2014. V. 93 P. 158–179.

Zhang Y., Liu J., Guo Z. Permian basaltic rocks in the Tarim basin, NW China: implications for plume–lithosphere interaction // Gondwana Research. 2010. V. 18. P. 596–610.

Zartman R.E., Haines S.M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs – A case for bi-directional transport // Geochimica et Cosmochimica Acta. 1988. V. 52. P. 1327–1339.

Zindler A., Hart S.R. Chemical geodynamics // Annual Review of Earth and Planetary Sciences. 1986. V. 14. P. 493–571.

Paleozoic Alkaline-Mafic Intrusions of the Kuznetsk Alatau, Their Sources and Conditions for Magma Generation

V. V. Vrublevskii¹ and I. F. Gertner¹

¹Tomsk State University, Tomsk, Russia

In the northern part of the alkaline igneous province of Kuznetsk Alatau, an area of differentiated intrusions of the Cambrian, Devonian and Permian ages, composed of subalkaline and alkaline gabbros, foidolites, nepheline and alkaline syenites, rarely carbonatites, was formed. Primary melts are moderately fractionated ((La/Yb)_N up to 7–12) and could form in the mantle at 1–10% of partial melting of spinel lherzolite. Distribution of LILE and HFSE in mafic rocks (Rb 6–58, Ba 111–2499, Sr 175–1555, REE 28–208, Zr 40–315, Nb 1.5–52, Th 0.3–12, U 0.2–7.4, ppm) indicates a probable mantle magma generation with the involvement of oceanic and marginal-continental lithosphere materials, similar to OIB and IAB. The source of the juvenile melt was heterogeneous and consisted of a mixture of depleted (PREMA and E-MORB) and enriched (EM-type) mantle components with an intermediate isotopic ratio $\varepsilon_{Nd}(T) \sim 3-9$. Apparent heterogeneity is reflected in the primary isotopic composition of Pb in rocks and minerals: ²⁰⁸Pb/²⁰⁴Pb = 37.49–38.12, ²⁰⁷Pb/²⁰⁴Pb = 15.53–15.71, ²⁰⁶Pb/²⁰⁴Pb = 17.92–20.65. The subsequent contamination of the melts with the material of the upper crust led to a simultaneous increase in the isotopic ratios (⁸⁷Sr/⁸⁶Sr)_T ~ 0.7042–0.7074; $\delta^{18}O_{V-SMOW} \sim 6.3-15.5\%$, as well as to an enrichment of rocks in ²⁰⁷Pb. Based on geochemical features, it is assumed that the mantle plume (OIB-type hot spot) affects accretion-collision complexes of the former active margin of the continent. In such a geodynamic setting, heterogeneous magmatic sources should be expected, even within a small igneous province.

Keywords: Alkaline magmatism, geochemistry, petrogenesis, mantle plume, continental margin, Kuznetsk Alatau, Central Asian fold belt