УДК 550.425

β-ФАКТОРЫ ТИТАНИТА И ФРАКЦИОНИРОВАНИЕ ИЗОТОПОВ КИСЛОРОДА В СИСТЕМЕ ТИТАНИТ–ИЛЬМЕНИТ–РУТИЛ

© 2021 г. Д. П. Крылов*

Институт геологии и геохронологии докембрия РАН, Санкт-Петербург, Россия *e-mail: dkrylov@dk1899.spb.edu Поступила в редакцию 07.12.2020 г. После доработки 12.01.2021 г. Принята к публикации 28.01.2021 г.

Методом "замороженных фононов" теории функционала плотности впервые определены температурные зависимости β-факторов ¹⁸O/¹⁶O титанита (с учетом основных изоморфных замещений Al + + F \Leftrightarrow Ti + O, Ti + O \Leftrightarrow Al + OH, Ti + O \Leftrightarrow Fe^{3 +} + OH) и ильменита (с учетом замещения Fe \Leftrightarrow Mg). Факторы фракционирования изотопов кислорода между титанитом (CaTiSiO₅), ильменитом (FeTiO₃) и рутилом (TiO₂) при изотопных равновесиях определяется соотношениями: 1000ln $\alpha_{ttn-ilm} = 1000ln\beta_{ttn} - 1000ln\beta_{ilm} = 1.96836x - 0.10514x^2 + 0.00319x^3$, 1000ln $\alpha_{ttn-rt} = 1000ln\beta_{ttn} - 1000ln\beta_{rt} = 1.80155x - 0.09262x^2 + 0.00288x^3$, $x = 10^6/T^2$ (K⁻²). Результаты могут использоваться в геотермометрии, особенно в кальций-силикатных и кальцийщелочных породах магматического, метаморфического и метасоматического происхождения.

Ключевые слова: β-факторы, фракционирование изотопов кислорода, титанит, ильменит, рутил, изотопная геотермометрия

DOI: 10.31857/S0869590321050046

Титанит (ttn, или сфен) – ортосиликат $CaTiSiO_4O$, встречающийся в виде акцессорного минерала в магматических, метаморфических и осадочных породах. Стабильность титанита во многом определяется соотношением Ca/Al, фугитивностью летучих компонентов (Frost et al., 2000) и ограничивается реакциями с образованием (или разложением) других Ті-содержащих фаз, главным образом ильменита (ilm, FeTiO₃) и рутила (rt, TiO_2) (рис. 1). Титанит обычно присутствует в породах с пониженным содержанием Al (кальшийсиликатные породы, базиты). Состав титанита может значительно отклоняться от CaTiSiO₅ (Ti-ttn), особенно за счет замещений Al + F ⇔ Ti + O (до 55 мас. % Al_2O_3), Ti + O \Leftrightarrow Al + OH (вплоть до конечного члена вуагнатита CaAlSiO₄OH, наиболее характерного для относительно низкотемпературных условий) (Krüger et al., 2015) и Ti + O \Leftrightarrow Fe³⁺ + OH. Повышенные содержания алюминия и фтора отмечаются для высоких и ультравысоких давлений. Пространственная группа титанита варьирует от низкотемпературной формы $P2_1/c$ (α -ttn) (β -ttn *A*2/*a* при *T* > 485 K) до *C*2/*c* (γ-ttn при *T* > 825 K или $P > 3.5 \Gamma \Pi a$) (Malcherek, Fischer, 2018).

Поскольку титанит принимает участие в многочисленных реакциях минералообразования (включая как Ті-содержащие фазы — ильменит и рутил, так и силикаты, карбонаты, компоненты флюида), он может быть использован в качестве трассера термодинамических процессов (барометр по содержанию Al-ttn, Kapp et al., 2009; термометр по содержанию Zr в титаните, Hayden et al., 2008; Kohn, 2017 и др.). В качестве примеров реакций, ограничивающих поля стабильности титанита в породах разного состава и при различных интенсивных параметрах процессов (Р, Т, состав флюида), можно привести ilm + qtz + CaO \Leftrightarrow ttn + usp; $ttn + fa \Leftrightarrow hed + ilm; ttn + usp + qtz \Leftrightarrow hed + ilm;$ $qtz + cc + rt \Leftrightarrow ttn + CO_2$; $zo + qtz + rt \Leftrightarrow ttn + an$ (где qtz – кварц, usp – ульвошпинель, fa – фаялит, hed - геденбергит, сс - кальцит, zo - цоизит, an анортит) и многие другие (Frost et al., 2000). Изотопные эффекты соответствующих фазовых превращений могут характеризовать условия образования или преобразования титанита, если известны зависимости факторов фракционирования изотопов между титанитом и другими фазами от температуры. Такие зависимости были получены полуэмпирически (методом "инкрементов", Hoffbauer et al., 1994, Zheng et al., 2003), а также эмпирически ("природные" калибровки, King et al., 2001). Проблемы, связанные с применением перечисленных методов для определения факторов фракционирования изотопов, неоднократно отмечались (например, Chacko et al., 2001; Horita, Clayton, 2007). Так, метод инкрементов до сих пор

ttn-Rhy, ttn-Dac – в породах кислого состава (метариолиты и дациты); ttn-Maf – в породах основного состава, ttn-CaSi – в кальций-силикатных породах. При повышенных давлениях титанит замещается рутилом (rt), при пониженных давлениях – ильменитом (ilm).

Штрихпунктирные линии соответствуют геотермическому градиенту 5, 10 и 20°С/км.

не обеспечивает адекватное описание эффектов масс катионов, влияния гидроксильных групп и ковалентности связи на величину изотопного фракционирования. При этом отмечается, что основанные на силах связи методы (в том числе и все варианты метода инкрементов) по сути "являются производными подходами, в которых энергии связи служат в качестве меры энергии колебаний. являющиеся исходной причиной фракционирования изотопов, ... не составляют какую-либо отдельную теорию изотопного фракционирования, ... и могут использоваться для оценки изотопного фракционирования только пока нет либо экспериментальных данных, либо результатов теоретических вычислений" (Chacko et al., 2001, P. 31-32). При построении природных (эмпирических) калибровок необходимо выполнение нескольких критериев, включая достижение и сохранение изотопного равновесия и возможность определения соответствующих температур с помощью независимых изотопных или других термометров (там же, Р. 33).

Цель настоящей работы — определение изотопного фракционирования кислорода между титанитом и другими Тi-содержащими фазами (в частности, рутилом и ильменитом) на основе вычисления β-факторов. Тем самым, условия реакций изотопного обмена могут быть сопоставлены с условиями реакций образования или преобразования Ті-содержащих фаз и использованы в геотермометрии и петрохронологии. Для рутила значения β -факторов были определены ранее (Крылов, Кузнецов, 2019), для сфена и ильменита температурные зависимости β -факторов получены в настоящей работе из "первых принципов" (без использования каких-либо эмпирических предположений) с применением теории функционала плотности (DFT).

МЕТОДИКА ВЫЧИСЛЕНИЙ

Фактор фракционирования изотопов между фазами A и B, $10^3 \ln \alpha_{AB}$ можно определить на основе изменения частот колебаний при замещении изотопов. При изотопном равновесии $1000 \ln \alpha_{AB} = 1000 \ln \beta_A - 1000 \ln \beta_B$ (Chacko et al., 2001), а величины β (" β -факторы") в гармоническом приближении (например, Meheut et al., 2007):

$$\ln \beta = \frac{1}{N_q} \sum_{\{q\}} \left[\frac{1}{N} \sum_{i=1}^{3N_{at}} \ln \left(\frac{v_{q,i}^*}{v_{q,i}} \frac{\sinh(h v_{q,i}/2kT)}{\sinh(h v_{q,i}^*/2kT)} \right) \right], \quad (1)$$

где $v_{q,i}$ — частоты нормальных колебаний (фононов) с волновым вектором *q* первой зоны Бриллюэна и индексом фононной ветви *i* от 1 до

ПЕТРОЛОГИЯ том 29 № 6 2021

КРЫЛОВ

<i>T</i> , °C	x	CaTiSiO ₄ O			Изоморфные миналы				ilma	alilt
		<i>C</i> 2/ <i>c</i>	A2/a	$P2_{1}/c$	vua	AlF	FeOH	Zr-ttn	um	gkit
0	13.403	95.61	96.00	94.87	102.05	102.76	95.79	89.36	79.75	80.094
100	7.182	55.34	55.58	54.89	59.32	59.66	55.45	51.57	45.02	46.493
200	4.467	35.83	35.98	35.54	38.74	38.70	36.15	33.32	28.72	29.888
300	3.044	24.97	25.08	24.77	27.15	26.99	25.32	23.20	19.84	23.335
400	2.207	18.35	18.43	18.20	20.03	19.85	18.67	17.04	14.50	15.569
500	1.673	14.03	14.09	13.92	15.36	15.18	14.31	13.02	11.05	11.665
600	1.312	11.07	11.12	10.98	12.13	11.98	11.31	10.27	8.70	9.140
700	1.056	8.95	8.99	8.88	9.82	9.69	9.15	8.30	7.02	7.365
800	0.868	7.38	7.41	7.32	8.11	7.99	7.56	6.85	5.78	6.063
900	0.727	6.19	6.22	6.14	6.81	6.70	6.34	5.74	4.85	5.084
1000	0.617	5.27	5.29	5.22	5.79	5.70	5.40	4.88	4.12	4.320
1100	0.530	4.53	4.55	4.50	4.99	4.91	4.65	4.20	3.54	3.714
1200	0.461	3.94	3.96	3.91	4.34	4.27	4.04	3.66	3.08	3.233
1300	0.404	3.46	3.48	3.43	3.81	3.75	3.55	3.21	2.70	2.835
1400	0.357	3.06	3.08	3.04	3.37	3.32	3.14	2.84	2.39	2.506
1500	0.318	2.73	2.74	2.71	3.01	2.96	2.80	2.53	2.13	2.233
Коэффициенты полинома а $x - bx^2 + cx^3$ для вычисления 1000ln eta										
	а	8.62408	8.66486	8.55831	9.52309	9.34685	8.86713	7.99452	6.71927	7.04829
	b	0.14699	0.14854	0.14717	0.21441	0.16703	0.19549	0.12987	0.06874	0.08002
	с	0.00267	0.00272	0.00274	0.00537	0.00311	0.00501	0.00230	0.00085	0.00109

Таблица 1. Значения β-факторов (1000ln β) титанита, ильменита и крайних членов изоморфизма

Примечание. Коэффициенты полиномов аппроксимированы с шагом 10°С при коэффициенте корреляции $R^2 > 0.99$; в таблице представлены значения $1000 \ln\beta$ с шагом 100° С; $x = 10^6/T^2$ (K⁻²). C_2/c , A_2/a , P_2_1/c – пространственные группы симметрии титанита. vua – CaAlSiO₄OH (вуагнатит), AIF – CaAlSiO₄F, FeOH–CaFe³⁺ + SiO₄OH, Zr-ttn – CaZrSiO₄O, ilm – ильменит, gklt – MgTiO₃ (гейкелит).

 $3N_{\rm at}$ ($N_{\rm at}$ – количество атомов), T – температура, °С, *h* и *k* – постоянные Планка и Больцмана, N – число атомов, подвергающихся изотопному замещению, N_q – количество векторов *q*, учитываемых при суммировании. Надстрочный индекс * относится к более тяжелому изотопу.

Для определения частот колебаний различных изотопологов применен метод "замороженных фононов" теории функционала плотности (DFT) с использованием набора гауссовых полноэлектронных базисов и функционала B3LYP после оптимизации параметров решетки и координат атомов (программа CRYSTAL17) (детали см. в Приложении А). Далее, согласно соотношению (1), вычислены величины 1000 ln β для различных температур (от 0 до 1500°C с шагом 10°C) и определены температурные зависимости 1000 ln β.

РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ В-ФАКТОРОВ

β-факторы для отдельных полиморфных модификаций титанита (*P*2₁/*c*, *A*2/*a*, *C*2/*c*), крайних членов изоморфных замещений титанита CaAlSiO₄F (AlF-ttn), CaFe³ + SiO₄OH (FeOH-ttn), CaAlSiO₄OH (vua), ильменита и рутила (для последнего, Крылов, Кузнецов, 2019) представлены посредством аппроксимирующих полиномов в виде 1000ln $\beta = Ax + Bx^2 + Cx^3$, $x = 10^6/T^2$ (K⁻²) (табл. 1). Форма представления в виде кубического полинома, принятая в настоящей работе, обеспечивает хорошую точность представления результатов в пределах всего диапазона температуры (коэффициент детерминации $R^2 > 0.999$ при *T* от 0 до 1500°C).

Для всех полиморфных модификаций CaTiSiO₅ вычисленные β-факторы практически одинаковы и обобщенное соотношение для чистого титанита (без изоморфных примесей) записывается в виде:

$$1000 \ln \beta(\text{ttn}) = 8.68763x -$$

- 0.17388x² + 0.00404x³ (0 < T < 1500°C). (2)

С учетом же изоморфных замещений и при условии идеальности соответствующих твердых растворов, выражения β-факторов отдельных компонентов твердых растворов можно объединить

670

Рис. 2. Факторы фракционирования ¹⁸O/¹⁶O между кварцем и титанитом (а) и кварцем и ильменитом (б) в зависимости от температуры.

Сплошные линии — рассчитаны по данным настоящей работы (титанит) и (Qin et al., 2016) (кварц: 10001n β_{qtz} = 12.55277*x* – 0. 41976*x*² + 0.01979*x*³); пунктирная линия — эмпирические (природные) калибровки ([Ki]: King et al., 2001 для титанита и [BoJa]: Bottinga, Javoy, 1975 для ильменита); точечные линии — полуэмпирические калибровки методом инкрементов ([Hf]: Hoffbauer et al., 1994) и модифицированных инкрементов ([Zh]: Zheng et al., 2003). Факторы фракционирования CaAlSiO₄(OH) и CaAlFSiO₄ практически идентичны и на рисунке (а) представлены единой линией.

согласно соотношению $1000\ln\beta \approx \Sigma(1000\ln\beta_i)X_i$. Например, если титанит (ttn Σ) представляет твердый раствор CaTiSiO₅, CaAlSiO₄F и CaAlSiO₄OH, то:

$$1000 \ln \beta(ttn\Sigma) = S \times 1000 \ln \beta_{S} + A \times 1000 \ln \beta_{A} + V \times 1000 \ln \beta_{V},$$

где S, A, V — молярные содержания кислорода в CaTiSiO₅, CaAlSiO₄F и CaAlSiO₄OH соответствен-

ПЕТРОЛОГИЯ том 29 № 6 2021

но и условие нормирования записывается в виде: 1 - S = A + V. Таким образом,

$$1000 \ln \beta(\text{ttn}) =$$

$$= (8.68763 + 0.65922\text{A} + 0.83546\text{V}) x -$$

$$-(0.17388 - 0.00685\text{A} + 0.04053\text{V}) x^{2} +$$

$$+ (0.00404 - 0.00093\text{A} + 0.00133\text{V}) x^{3}.$$
(3)

Аналогичное соотношение определено и для ильменита (табл. 1):

$$1000 \ln \beta (ilm) = 6.71927x -$$

$$- 0.06874x^{2} + 0.00085x^{3} (0 < T < 1500^{\circ}C).$$
(4)

При изоморфизме $FeTiO_3 \Leftrightarrow MgTiO_3$ (гейкелит, gklt):

$$1000 \ln \beta (ilm - gklt) =$$

$$= (1 - X_{gklt}) \times 1000 \ln \beta_{FeTiO_3} + X_{gklt} 1000 \ln \beta_{gklt} =$$

$$= (6.71927 + 0.32902X_{gklt}) x -$$

$$- (0.06874 + 0.01128X_{gklt}) x^2 +$$

$$+ (0.00085 + 0.00024X_{gklt}) x^3.$$

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сравнение факторов изотопного фракционирования ¹⁸0/¹⁶0 титанита и ильменита с результатами полуэмпирических и эмпирических калибровок

Для сравнения с калибровками изотопного фракционирования кислорода титанита, полученного эмпирическими (природные калибровки, King et al., 2001) и полуэмпирическими методами (калибровки методом инкрементов, Zheng, 1993; Hoffbauer et al., 1994), в качестве единой референтной связи используется Si-O (в кварце). На рис. 2а показаны факторы фракционирования между кварцем и титанитом, определенные разными методами в зависимости от температуры. На рис. 3 демонстрируются возможные отклонения значений температуры, вычисленных с помощью различных калибровок, относительно рассчитанных в настоящей работе. Значительные расхождения могут обуславливаться, например, отсутствием равновесия и неточностью определения температуры в природных минеральных ассоциациях (природные эмпирические калибровки); отсутствием критериев достоверности и точности применения эмпирических закономерностей в полуэмпирических калибровках (Horita, Clayton, 2007).

По нашим данным, в сочетании с известными 1000lnβ кварца (Qin et al., 2016) фактор изотопного фракционирования кислорода между кварцем и титанитом без изоморфных примесей:

$$1000 \ln \alpha_{qtz-ttn} = 1000 \ln \beta_{qtz} - 1000 \ln \beta_{ttn} =$$

= 3.86514x - 0.24588x² + 0.01575x³. (5)

При T > 400-500°C соотношение (5) соответствует эмпирическим (King et al., 2001) и полуэмпирическим зависимостям, полученным методом "модифицированных" инкрементов (Zheng et al., 2003) с отклонениями, не превышающими 0.2– 0.3‰ (рис. 2а). В то же время в широкой области температур наблюдаются значительные (около 1‰) расхождения с другими полуэмпирическими калибровками (Hoffbauer et al., 1994). Необходимо отметить существенное влияние CaAl-ttn компоненты на изотопное фракционирование титанита (рис. 2а). Интервал применимости полуэмпирических калибровок (Zheng et al., 2003) ограничен, и при T < 400°C сопоставление калибровок недостоверно.

Величина изотопного фракционирования кислорода между кварцем и ильменитом определяется соотношением:

$$\frac{1000 \ln \alpha_{qtz-ilm} = 1000 \ln \beta_{qtz} - 1000 \ln \beta_{ilm} =}{= 5.83350x - 0.35102x^2 + 0.01894x^3}.$$
 (6)

Полученные значения отличаются от известных калибровок температурных зависимостей 10001n $\alpha_{qtz-ilm}$, полученных методом модифицированных инкрементов, на величины до 2‰ при $T \approx 400-600$ °C (Zheng et al., 2003). Расхождение оценок температуры, полученных согласно теоретическим калибровкам относительно полуэмпирических/эмпирических зависимостей в температурном интервале 400–600°C, меняется от 40 до –10°C, при повышении температуры уменьшается до –40...–60°C (рис. 3).

Отметим, что вхождение Zr в структуру титанита, которое применяется в качестве термометра (Hayden et al., 2008), в соответствии с реакцией CaTiSiO₅ + zrn = CaZrSiO₅ (Zr-ttn) + rt + qtz оказывает влияние на соответствующее изотопное равновесие только при значительных концентрациях Zr. Тем не менее, учитывая большое содержание ZrO₂ в титаните из пород щелочных магматических серий (до 15.3 мас. % ZrO₂, Chakhmouradian et al., 2003), замещение Ti => Zr может приводить к заметным изменениям фактора изотопного фракционирования между титанитом и другими фазами. При этом значения величины β изоморфной смеси ttn и Zr-ttn определяются по соотношению:

$$1000\ln\beta(ttn) = (1 - X_{Zr}) \times 1000\ln\beta(ttn) + X_{Zr} \times 1000\ln\beta(Zr-ttn),$$
(7)

где 1000ln β (ttn) и 1000ln β (Zr-ttn) — β -факторы соответствующих миналов (табл. 1), а X_{Zr} — мольная доля Zr в титаните (ttn + Zr-ttn = 1).

Рис. 3. Различие оценок температуры, вычисленных с использованием разных калибровок относительно результатов DFT (настоящая работа). Условные обозначения см. рис. 2.

Влияние давления на изотопное фракционирование

Влияние давления на β-факторы можно определить посредством равенства:

$$\left(\frac{\partial \ln \beta}{\partial P}\right)_{T} = \left(\frac{\partial \ln \beta}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial P}\right)_{T} \approx -\frac{V}{K_{T}} \left(\frac{\Delta \ln \beta}{\Delta V}\right)_{T}, \quad (8)$$

где K_T — изотермический модуль объемной упругости, V — объем ячейки, P — давление, ГПа. Таким образом, определение влияния давления на величину β -фактора сводится к определению β -факторов для разных объемов решетки минералов (что полностью согласуются с расчетами влияния давления непосредственно по изменениям отдельных частот колебаний: Polyakov, Kharlashina, 1994; Polyakov, 1998). В качестве оценок K_T приняты значения, рассчитанные в рамках квазигармонического приближения (CRYSTAL17, Erba, 2014) (табл. 2) и соответствующие известным экспериментальным данным (например, Kunz et al., 2000).

Оценки изменения 1000ln в зависимости от давления по соотношению (8), выраженные в виде кубического полинома от $x = 10^6/T^2$, представлены в табл. 2. При пониженных температурах влияние величины давления на β-факторы больше, чем влияние давления той же величины при высоких температурах. Например, при $T = 100^{\circ}$ C $1000\Delta \ln\beta/\Delta \ln V \approx -83$, при $T = 500^{\circ}$ C $1000\Delta \ln\beta/\Delta \ln V \approx -22.5$, a πρи $T = 1000^{\circ}$ C 1000 Δ lnβ/ Δ lnV≈ -8.6. Наши вычисления при различных объемах ячеек титанита и ильменита показывают, что при сверхвысоких давлениях β-факторы могут значительно меняться. Например, при температуре 300°С и давлении более 2 ГПа 1000 $\ln\beta_{ttn}$ и 10001n _{βilm} могут увеличиваться более чем на 0.5-0.6. При очень низком градиенте 5°С/км уве-

ПЕТРОЛОГИЯ том 29 № 6 2021

Соотничания	V (Å 3)	Κ ΓΠα	AK /AP	$\Delta 1000 \ln \beta / \Delta P$			
Соединение	$V(A^2)$	K ₁ , 111a	0147/01	a _P	b _P	c _P	
Титанит	375.6	140	3.7	0.11080	-0.00467	0.00014	
AlF-титанит	355.4	129	3.8	0.10945	-0.00367	0.00009	
Вуагнатит	352.6	107	3.7	0.09090	-0.00034	0.00012	
Ильменит	108.3	173	4.2	0.10018	-0.00162	0.00002	
Рутил	61.6	242	5.2	0.09901	-0.00233	0.00005	

Таблица 2. Влияние давления на β-факторы

Примечание. Расчеты изотермического модуля объемной упругости (K_T) и $\partial K_T/\partial P$ выполнены в рамках квазигармонического приближения с использованием автоматизированного алгоритма (Приложение Б, Erba, 2013). V (Å³) – оптимизированный объем ячейки в стандартных условиях. Поправка на давление вычисляется согласно соотношению (8): $\Delta 1000 \ln \beta \approx P (\Gamma \Pi a) \times (a_P x + b_P x^2 + c_P x^3)$. Для удобства функция $\Delta 1000 \ln \beta = 1000 \ln \beta (P) - 1000 \ln \beta$ (1 бар) приведена в виде кубического полинома в зависимости от $x = 10^6/T^2$ (K⁻²).

личение давления до 3 ГПа возможно при *T* около 500°C (что также может привести к увеличению 1000 ln β на $\approx 0.5-0.6$), а при умеренном градиенте (10°C/км) такое же давление достигается только при T > 1000°C (с возможным увеличением 1000 ln $\beta \approx$ на 0.2). Чем ниже геотермический градиент, тем существеннее может быть отклонение значения β (в зависимости от *P*). Однако изменение β -факторов практически одинаково для титанита, ильменита и рутила (табл. 2) и даже при экстремальных условиях (за пределами нормального или даже ультранизкого геотермического градиента) взаимно компенсируется и не оказывает какого-либо существенного влияния на фракционирование изотопов *межсду* фазами.

ЗАКЛЮЧЕНИЕ

Впервые без каких-либо эмпирических допущений на основе теории функционала плотности гармоническом приближении определены β-факторы ¹⁸O/¹⁶O титанита и ильменита. В сочетании с известными В-факторами рутила, определенного тем же методом (Крылов, Кузнецов, 2019), или любых других равновесных с титанитом фаз (например, кварца, который использован в качестве референтной фазы при сопоставлении с эмпирическими и полуэмпирическими калибровками) полученные результаты могут применяться в геотермометрии, что может быть особенно актуально при отсутствии изотопных анализов других фаз в изотопном равновесии с Ті-содержащими минералами. Факторы изотопного фракционирования CaTiSiO₅ практически не меняются при фазовых преобразованиях $C2/c \Leftrightarrow A2/a \Leftrightarrow P2_1/c$. Экстремальные давления могут приводить к некоторым изменениям β-факторов отдельных Тісодержащих минералов, однако не оказывают какого-либо значимого влияния на фракционирование изотопов *между* титанитом, ильменитом и рутилом.

ПЕТРОЛОГИЯ том 29 № 6 2021

Однако существенное влияние на величину константы равновесия может оказывать вхождение изоморфных примесей. В том числе замещения CaAlSiO₄F (характерные для высокобарических условий) и CaAlSiO₄OH необходимо учитывать при определениях температуры. Другие конечные члены изоморфных замешений в титаните также могут быть учтены (например, по соотношениям 3 или 7, учитывая β-факторы крайних членов изоморфных замещений, табл. 1), но их влияние менее заметно либо из-за близости β-факторов $(CaFe^3 + SiO_4OH)$, либо ввиду обычно незначительных концентраций (CaZrSiO₄O). Представляется перспективным применение определенных факторов изотопного фракционирования при изучении, в частности различных стадий кристаллизации кальций-щелочных плутонов, метаморфических ("ttn-петрохронология", Kohn, 2017), гидротермальных и метасоматических пород, обогащенных Ті-содержащими минералами.

Благодарности. Автор выражает глубокую признательность рецензентам Е.О. Дубининой и В.Б. Полякову за конструктивные замечания, которые во многом способствовали улучшению статьи. Вычислительные ресурсы предоставлены РЦ "ВЦ СПбГУ" (http://cc.spbu.ru).

Источники финансирования. Работа выполнена при поддержке РФФИ (грант № 19-05-00175) и темы НИР FMUW-2021-0003.

ПРИЛОЖЕНИЕ А.

Расчет колебательных спектров

Частоты колебаний вычисляются, исходя из сил взаимодействия между всеми атомами кристаллической решетки (вторая производная энергии по величинам смещений атомов). Для определения действующих на какой-либо атом сил по методу "замороженных фононов" (реализованному в программе CRYSTAL) производится смещение этого атома относительно равновесного положения, и энергия фонона вычисляется как функция величины смещения в зависимости от различия энергии решетки со смещенным атомом от энергии идеальной решетки. Вычисление методом замороженных фононов для общего волнового вектора осуществляется с помощью построения расширенных ячеек, для которых волновой вектор *а* является вектором обратной решетки, линейные размеры которой должны быть не менее чем $2\pi/|q|$ (Baroni et al., 2001). Для представления атомов использованы наборы гауссовых полноэлектронных базисов (Krüger et al., 2015, http://www.crystal.unito.it): Ti (86-51(3d)G), Al (88-311G), Ca (86-511G21), Si (86-311G1), O (8-411G1), F (73-11G1) (Krüger et al., 2015), H (3-1p1G), Fe (TVZP, тройной зетабазис с поляризацией, Peintinger et al., 2013) и Мg (8-511G). Для вычисления взаимодействия между атомами применен функционал B3LYP.

Вычисления включали два этапа: оптимизацию параметров решетки и определение частот колебаний изотопологов (аналогичные параметры вычислений использованы ранее, Крылов, 2019). В процессе оптимизации геометрии (по квази-ньютоновскому алгоритму) определялись координаты ядер атомов и параметры решетки с минимальной энергией. Сходимость в процессе оптимизации оценивалась по среднеквадратичному отклонению (RMS) и абсолютному значению наибольшей компоненты градиентов и смещений ядер для всех атомов. Для максимальных и среднеквадратичных (RMS) градиентов выбраны значения (0.00012, 0.00003 a.u). Достоверность проведенных DFT вычислений подтверждается сравнением вычисленных в результате оптимизации геометрических параметров ячеек с экспериментальными. Отклонения от параметров решетки. полученных экспериментально (Gutmann et al., 2013) для кристаллографических параметров примитивной ячейки, не превышают 2-3%.

Нахождение частот фононов в точке $\Gamma = (0, 0, 0)$ сводится к диагонализации взвешенной на массы атомов матрицы вторых производных энергии по смещениям атомов (Pascale et al., 2004; Dovesi et al., 2013):

$$W_{ij}\left(0\right) = \sum_{G} \frac{H^{0G}_{\alpha i,\beta j}}{\sqrt{M_{i}M_{j}}},$$

где H_{ij}^{0G} — это вторая производная энергии V(u) в равновесии относительно атома α в ячейке 0 и атома β из ячейки G, M — массы атомов. Совокупность собственных значений матрицы W, κ_n представляет квадраты частот колебаний ω^2 . В общем случае (q может быть отлична от Γ) вычисления производятся по расширенным ячейкам, размеры которых определяются набором точек зоны Бриллюэна, обеспечивающих необходимую представительность суммирования по q-векторам и точность результатов (ω). Расширенные ячейки ("суперячейки") строились посредством линейных преобразований единичных векторов примитивных ячеек (Dovesi et al., 2018). В настоящей работе вычисления проведены по расширенным ячейкам с Nq = 1 (исходная ячейка), 2, 4 и 8. Сходимость результатов для ttn и ilm с точностью <0.01% достигнута при Nq = 8.

Точность вычислений в программе CRYSTAL контролировалась набором параметров, в том числе TOLINTEG (сходимость кулоновских и обменных интегралов) со значениями 8 8 8 9 30 и критерием сходимости энергии самосогласованного поля (SCF), установленном на уровне 10^{-12} Хартри. Точность суммирования по узлам обратной решетки определяется факторами сжатия IS = 6(титанит) и IS = 8 (ильменит), что соответствует 112 независимым *а*-векторам неприводимой части зоны Бриллюэна (IBZ) титанита и 90 независимым *q*-векторам IBZ ильменита. При расчетах матричных элементов обменно-корреляционного потенциала применена прецизионная сетка из 75 радиальных и 974 угловых точек (параметр XLGRID). Лостоверность полученных значений для параметров решетки и частот колебаний подтверждается сравнением с экспериментальными данными (Malcherek, Fischer, 2018), при этом отклонения от параметров единичной ячейки, полученных экспериментально, менее 2%.

Для вычисления свойств тел в квазигармоническом (QHA) приближении в программе CRYSTAL17 реализован полностью автоматический алгоритм, основанный на непосредственной нахождении фононных частот ω_{kp} в зависимости от объема (V). Для заданной T равновесный объем, V(T), находится минимизацией свободной энергии Гельмгольца (Erba, 2014): $F^{\text{QHA}}(T, V) = U_0(V) + F_{\text{vib}}^{\text{QHA}}(T, V)$ относительно V при фиксированной T. Зависимый от температуры модуль объемного сжатия, $K_T(T)$, определяется как вторая производная F^{QHA} по объему:

$$K_T(T) = V(T) \left(\frac{\partial^2 F^{\text{QHA}}(V,T)}{\partial V^2} \right).$$

ПРИЛОЖЕНИЕ Б.

Использование масштабного множителя для согласования расчетных и экспериментальных частот фононов

Для устранения систематической ошибки в ряде случаев выполняется согласование расчетных частот нормальных колебаний с соответствующими наблюдаемыми частотами (Рамановских, ИК-спектров, Meheut et al., 2007, 2009 и др.). Для этого используется умножение значений рассчитанных частот на масштабный множитель (SF) –

Параметр	CaTiSiO ₄ O ⁽¹⁾	CaAlSiO ₄ F ⁽²⁾	CaAlSiO ₄ OH ⁽³⁾	ttn (средние)	FeTiO ₃ ⁽⁴⁾			
Sω, см ⁻¹	11.99	7.18	5.09	_	11.47			
R^2	0.9993	0.9999	0.9997	—	0.9952			
$\mathrm{SF}(\omega_i^{\mathrm{exp}}/\omega_i)$	1.01190	1.00748	0.99410	_	0.97167			
σ_{SF}	0.005	0.003	0.003		0.026			
Коэффициенты полинома ax + bx ² + cx ³ для вычисления 10001nβ с поправкой на масштабный множитель								
a	8.75965	9.47955	9.41496	8.76364	6.34439			
b	-0.15355	-0.17086	-0.21050	-0.17602	-0.06147			
с	0.00289	0.00318	0.00526	0.00408	0.00072			

Таблица Б1. Сравнение вычисленных (DFT) и наблюдаемых (Рамановские и ИК-спектры) частот

Примечание. S ω – среднее квадратическое отклонение: S $\omega = \sqrt{\sum (\omega_i i - \omega_i^{exp})^2 / n}$; *R* – коэффициент корреляции между вы-

численной и наблюдаемой частотой, SF(ω_i^{exp}/ωi) – масштабный множитель, σ_{SF} – стандартная ошибка SF. Экспериментальные данные: ⁽¹⁾Zhang et al. (2013), ⁽²⁾Krüger et al. (2013), ⁽³⁾база данных RRUFF, Lafuente et al. (2015), ⁽⁴⁾Hofmeister (1993).

коэффициент линейной регрессии между рассчитанными и наблюлаемыми частотами.

В табл. Б1 приведены показатели погрешности вычисленных частот относительно известных экспериментальных данных, рассчитанные масштабные множители и коэффициенты полинома для вычисления 1000ln β с учетом поправки SF, который, по сути, является мерой систематического отклонения от экспериментальных данных. Для титанита применение SF приводит к незначительному увеличению 1000ln β (например, около 0.7 при $T = 0^{\circ}$ С и 0.1 при $T = 500^{\circ}$ С), тогда как для ильменита применение SF вызывает гораздо более существенные изменения 1000ln β (около 4.0 при $T = 0^{\circ}$ С и 0.6 при $T = 500^{\circ}$ С). Отклонение SF от единицы по абсолютной величине близко к статистической ошибке (σ_{sF}) в определении SF. Это свидетельствует о том, что вопрос об использовании SF для согласования результатов расчетных и наблюдаемых частот для ильменита требует дополнительного исследования. По этой причине в настоящей работе SF не использовался для корректировки рассчитываемых величин В-факторов.

СПИСОК ЛИТЕРАТУРЫ

Крылов Д.П. Кислородные и кремниевые β-факторы циркона, определенные из первых принципов // Петрология. 2019. Т. 27. № 4. С. 420-430.

Крылов Д.П., Кузнецов А.Б. Фракционирование изотопов кислорода в полиморфах TiO₂ (рутил, анатаз, брукит), определенное из "первых принципов" // Докл. АН. 2019. Т. 489. № 1. С. 57–59. https://doi.org/10.1134/S1028334X19110047

Baroni S., de Gironcoli S., Dal Corso A., Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory // Rev. Modern Physics. 2001. V. 73.

ПЕТРОЛОГИЯ том 29 Nº 6 2021 № 2. P. 515-562.

https://doi.org/10.1103/RevModPhys.73.515

Bottinga Y., Javoy M. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks // Rev. Geoph. Space Physics. 1975. V. 13. № 2. P. 401-418. https://doi.org/10.1029/RG013i002p00401

Chacko T., Cole D.R., Horita J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems // Rev. Mineral. Geochem. 2001. V. 43. № 1. P. 1–81.

https://doi.org/10.2138/gsrmg.43.1.1

Chakhmouradian A., Reguir E., Mitchell R.H. Titanite in carbonatitic rocks: Genetic dualism and geochemical significance // Periodico di Mineralogia. 2003. V. 72. P. 107–113. Dovesi R., Ferrari A.V., De La Pierre V., Orlando R. Structure and vibrational spectra // Compr. Inorg. Chem. II. 2013. V. 9. P. 971–987.

https://doi.org/10.1016/B978-0-08-097774-4.00941-4

Dovesi R., Erba A., Orlando R. et al. Quantum-mechanical condensed matter simulations with CRYSTAL // WIREs Computational Molecular Sci. 2018. V. 8. № 4. e1360. https://doi.org/10.1002/wcms.1360

Erba A. On combining temperature and pressure effects on structural properties of crystals with standard ab initio tech-niques // J. Chem. Phys. 2014. V. 141. № 12. P. 124115. https://doi.org/10.1063/1.4896228

Frost B.R., Chamberlain K.R., Schumacher J.C. Sphene (titanite) phase relations and role as a geochronometer // Chemical Geol. 2000. V. 172. Is. 1–2. P. 131–148. https://doi.org/10.1016/S0009-2541(00)00240-0

Gutmann M.J., Refson K., Zimmermann M.V. et al. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO₅ // J. Phys. Condens. Matter. 2013. V. 25. № 31. P. 315-402.

https://doi.org/10.1088/0953-8984/25/31/315402

Hayden L.A., Watson E.B., Wark D.A. A thermobarometer for sphene (titanite) // Contrib. Mineral. Petrol. 2008. V. 155. P. \mathbb{N} 3. P. 529–540.

https://doi.org/10.1007/s00410-007-0256-y

Hoffbauer R., Hoernes S., Fiorentini E. Oxygen isotope thermometry based on a refined increment method and its applications to granulite-grade rocks from Sri Lanka // Precambrian Res. 1994. V. 66. № 1-4. P.199-220. https://doi.org/10.1016/0301-9268(94)90051-5

Hofmeister A.M. IR reflectance spectra of natural ilmenite: Comparison with isostructural compounds and calculation of thermodynamic properties // Eur. J. Mineral. 1993. V. 5. № 2. P. 281–295

Horita J., Clayton R.N. Comment on the studies of oxygen isotope fractionation between calcium carbonates and water at low temperatures by Zhou and Zheng (2003; 2005) // Geochim. Cosmochim. Acta. 2007. V. 71. № 12. P. 3131-3135

https://doi.org/10.1016/j.gca.2005.11.033

Lafuente B., Downs R.T., Yang H., Stone N. The power of databases: The RRUFF project // Highlights in Mineralogical Crystallography. Eds. T. Armbruster, R.M. Danisi. 2015. Berlin. P. 1–30.

https://doi.org/10.1515/9783110417104-003

Kapp P., Maning C.E., Tropper P. Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria // J. Metamorph. Geol. 2009. V. 27. P. 509–521.

https://doi.org/10.1111/j.1525-1314.2009.00836.x

King E., Valley J.W., Davis D.W., Kowallis B.J. Empirical determination of oxygen isotope fractionation factors for titanite with respect to Zircon and Quartz // Geochim. Cosmochim. Acta. 2001. V. 65. № 18. P. 3165-3175.

https://doi.org/10.1016/S0016-7037(01)00639-1

Kohn M.J. Titanite petrochronology // Rev. Mineral. Geochem. 2017. V. 83. P. 419-441.

https://doi.org/10.2138/rmg.2017.83.13

Krüger H., Többens D., Tropper P. et al. Single-crystal structure and Raman spectroscopy of synthetic titanite analog CaAlSiO₄F // Mineral. Petrol. 2015. V. 109. \mathbb{N} 5. P. 631–641. https://doi.org/10.1007/s00710-015-0393-3

Kunz M., Arlt T., Stolz J. In situ powder diffraction study of titanite (CaTiOSiO₄) at high pressure and high temperature //Amer. Mineral. 2000. V. 85. Is. 10. P. 1465–1473.

https://doi.org/10.2138/am-2000-1016

Malcherek T., Fischer M. Phase transitions of titanite CaTiSiO₅ from density functional perturbation theory // Physical Rev. Materials. 2018. V. 2. 023602.

https://doi.org/10.1103/PhysRevMaterials.2.023602

Meheut M., Lazzeri M., Balan E., Mauri F. Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory // Geochim. Cosmochim. Acta. 2007. V. 71. № 13. P. 3170-3181. https://doi.org/10.1016/j.gca.2007.04.012

Meheut M., Lazzeri M., Balan E., Mauri F. Structural control over equilibrium silicon and oxygen isotopic fractionation: A first-principles density-functional theory study // Chem. Geol. 2009. V. 258. № 1. P. 28–37. https://doi.org/10.1016/j.chemgeo.2008.06.051

Pascale F., Zicovich-Wilson C.M., Lopez Gejo F. et al. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code // J. Comput. Chem. 2004. V. 25. № 6. P. 888–897.

https://doi.org/10.1002/jcc.20019

Peintinger M.F., Oliveira D.V., Bredow T. Consistent gaussian basis sets of Triple-Zeta valence with polarization quality for solid-State Calculations // J. Comput. Chem. 2013. V. 34. № 6. P. 451–459.

https://doi.org/10.1002/jcc.23153

Polvakov V.B. On anharmonic and pressure corrections to the equilibrium isotopic constants for minerals // Geochim. Cosmochim. Acta. 1998. V. 62. № 18. P. 3077-3085.

https://doi.org/10.1016/S0016-7037(98)00220-8

Polvakov V.B., Kharlashina N.N. Effect of pressure on equilibrium isotopic fractionation // Geochim. Cosmochim. Acta. 1994. V. 58. № 21. P. 4739–4750.

https://doi.org/10.1016/0016-7037(94)90204-6

Oin T., Wu F., Wu Z., Huang F. First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon // Contrib. Mineral. Petrol. 2016. V. 171. № 11. P. 1–14.

https://doi.org/10.1007/s00410-016-1303-3

Tropper P., Manning C.E. The current status of titanite-rutile thermobarometry in ultrahigh-pressure metamorphic rocks: The influence of titanite activity models on phase equilibrium calculations // Chem. Geol. 2008. V. 254. № 1. P. 123-132.

https://doi.org/10.1016/j.chemgeo.2008.03.010

Zhang M., Salje E.K.H., Redfern S.A.T. et al. Intermediate structures in radiation damaged titanite (CaTiSiO₅): A Raman spectroscopic study // J. Phys. Condens. Matter. 2013. V. 25. P. 115402

https://doi.org/10.1088/0953-8984/25/11/115402

Zheng Y.-F., Zhao Z-F., Li S-G., Gong B. Oxygen isotope equilibrium between ultrahigh-pressure metamorphic minerals and its constraints on Sm-Nd and Rb-Sr chronometers // Geol. Soc. London. Spec. Publ. 2003. V. 220. P. 93-117. https://doi.org/10.1144/GSL.SP.2003.220.01.06

β-Factors of Titanite and Oxygen Isotope Fractionation among Titanite-Ilmenite-Rutile

D. P. Krylov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia

 $^{18}O/^{16}O\beta$ -factors have been originally calibrated against temperature by the frozen-phonon approach of the density functional theory for titanite (considering the principal isomorphic substitutions Al + F \Leftrightarrow Ti + O, Ti + O \Leftrightarrow Al + OH, Ti + O \Leftrightarrow Fe^{3 +} + OH) and ilmenite (considering Fe \Leftrightarrow Mg substitution). The equilibrium oxygen isotope fractionation factors between titanite (CaTiSiO₅), ilmenite (FeTiO₃) and rutile (TiO₂) are expressed as:

 $1000 \ln \alpha_{\text{ttn-ilm}} = 1000 \ln \beta_{\text{ttn}} - 1000 \ln \beta_{\text{ilm}} = 1.96836x - 0.10514x^2 + 0.00319x^3,$ $1000 \ln \alpha_{\text{ttn-rt}} = 1000 \ln \beta_{\text{ttn}} - 1000 \ln \beta_{\text{rt}} = 1.80155x - 0.09262x^2 + 0.00288x^3, x = 10^6/T^2 \text{ (K}^{-2}\text{)}.$

The results can be applied for geothermometry, especially to study calc-silicate and calc-alkaline rocks of magmatic, metamorphic, and metasomatic origins.

Keywords: β -factors, oxygen isotope fractionation, titanite, ilmenite, rutile, isotope geothermometry