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On the accuracy of conductance quantization in spin-Hall insulators
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Transverse conductance in an ordinary quantum

Hall effect is quantized with metrological accuracy.

In the effective Landauer-Büttiker description [1] this

is interpreted as a conductance quantization of one-

dimensional (1D) edge channels. Such edge channels are

protected by chirality thereby their four-terminal resis-

tance vanishes. By contrast, conventional 1D systems in-

evitably suffer from contact effects [2] and even the best

ones exhibit poor quantization [3] and non-vanishing

four-terminal resistance [4].

Somewhat intermediate case is realized in quantum

spin-Hall (QSH) insulators [5, 6]. Here, the electric cur-

rent is carried by a pair of 1D helical edge channels with

opposite spin and chirality, thereby the backscattering

is easier than in the quantum Hall case and more diffi-

cult compared to the conventional 1D case. In spite of

the expected immunity to a non-magnetic disorder in a

phase-coherent helical edge channel [7], the mean-free

path in experiments is relatively small and longer chan-

nels behave as quasi-classical diffusive conductors [8, 9].

The shorter, ballistic, channels exhibit four-terminal re-

sistance which is poorly quantized and additive. Often

the resistance randomly drops below the quantum value

g−1
0 = h/e2 in local measurements [6] and below the ex-

pected fraction of g−1
0 in non-local measurements. This

indicates that the measured signal is not the 1D con-

ductance and is influenced by contact effects. Backscat-

tering of helical electrons at a contact can be revealed

in transport [10] and noise measurements as well as in

spin injection and photogalvanic experiments.

In this work, we elaborate the role played by the

leads and ohmic contacts in resistance measurements

in ballistic helical edge channels. A simple model of a

phase-incoherent transport taking spin relaxation in the

leads and contacts into account is presented for a re-

alistic experimental setup. We observe that the four-

terminal resistance is always below g−1
0 and vanishes
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in the absence of spin relaxation. Similarly, a non-

additivity of the edge resistances is observable in a two-

terminal measurement. We bridge our results with the

model of disordered contacts [10] and estimate the spin

relaxation resistance contribution in HgTe-based QSH

devices.

To begin with, we develop an experimentally rele-

vant model of a multi-terminal bar for QSH measure-

ments. In a typical experimental setup [6], a lithographic

gate covers the inner part of the mesa, excluding the

leads. All the leads are assumed identical and are repre-

sented by regions of two-dimensional electron gas. The

leads have finite resistance and interconnect helical edge

channels with the ohmic contacts. The ohmic contacts

have negligible resistance and serve as macroscopic equi-

librium reservoirs, connecting the device to external

electric circuit. We will consider the idealized case of bal-

listic topologically protected edge states, such that the

spin relaxation occurs only in the leads and the ohmic

contacts. In addition, we assume that the edge channels

are perfectly coupled to the leads. This means that the

chemical potentials of the outgoing edge channels coin-

cide with those of the same-spin electrons in the leads

nearby the bulk-edge transition point. All the leads are

assumed to be quasi-1D, such that any dependence of

the chemical potentials within the cross-section of the

lead is neglected. The lead conductance is denoted gL.

The spin relaxation in the leads is taken into account via

the total spin relaxation conductance as Gs = gs+gL/4,

which takes into account two contributions, from a di-

rect spin- relaxation (gs term) and from an indirect re-

laxation via out-diffusion into the ohmic contact (gL/4

term).

Our main result is the expression for a four-terminal

resistance of the helical edge channel, determined as the

ratio of the measured voltage drop between the ohmic

contacts on either side of the channel to the current in

the channel. Such resistance reads:

R4T =
1

g0

[
Gs

Gs + g0

]
. (1)
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Equation (1) dictates that the measured R4T is al-

ways smaller than the quantum resistance g−1
0 . In the

limit of large lead resistance and negligible spin relax-

ation (Gs → 0) the R4T is suppressed down to zero,

similar to zeroing of the longitudinal resistance in the

ordinary quantum Hall regime. Thus, apparently, the

requirement of quantum phase-coherence in the leads

raised in [7] is excessive as long as the spin relaxation is

suppressed.

In the opposite limit Gs ≫ g0 the spin relaxation is

strong and we obtain a small correction to the resistance

quantum R4T ≈ g−1
0 −G−1

s . It is interesting to compare

with [10], which addresses a QSH measurement with dis-

ordered current/voltage probes. Relevant to our case,

that calculation predicts R4T = g−1
0 (1−D) / (1 +D),

where D is a reflection probability at a contact(formula

(17) with all D the same [10]). This coincides with the

result (1) given D = (1 + 2Gs/g0)
−1, thereby bridging

the model of disordered probes [10] with the spin relax-

ation in the leads in typical experiments.

We also calculate a two-terminal resistance between

the neighboring contacts in an N -terminal bar, with the

following result:

R2T =
2

gL
+

1

2g0
+

(N − 2) (Gs + 2g0)

(NGs + 2g0) (Gs + g0)

Gs

2g0
. (2)

The first two terms in (2) are, respectively, the in-

evitable contribution of the lead resistance and the re-

sistance of two helical edges in parallel. The last term

takes a non-additivity of the helical edge resistances into

account, given the spin relaxation is finite. In the limit

Gs → 0, as well as for N = 2, this term vanishes and

we recover a result equivalent to the ordinary (spin-

degenerate) quantum Hall effect. In the opposite limit

Gs ≫ g0 the edge resistances become completely addi-

tive and R2T is a sum of the lead resistance and the

edge resistances g−1
0 and (N − 1)g−1

0 connected in par-

allel. In a multi-terminal bar with N → ∞ we have

R2T ≈ 2g−1
L + g−1

0 + (2Gs)
−1, i.e., the first-order cor-

rection here is opposite in sign compared to the R4T

case.

Finally, we estimate the contribution of the spin re-

laxation resistance G−1
s in experiments, based on the

measurements of the weak anti-localization in HgTe

quantum wells. We obtain, roughly, G−1
s ∼ 100Ω, such

that the expected contribution of the spin relaxation re-

sistance to R4T and R2T is within a few percent. This

estimate is consistent with the rule of thumb that the

edge resistances are additive in the experiments, as well

as with numerous observations of R4T below the quan-

tum value g−1
0 = h/e2 in local measurements [6] and

below the expected fraction of g−1
0 in non-local mea-

surements.

In summary, we have shown how the spin relaxation

in the current/voltage leads affects the resistance mea-

surements of ballistic QSH helical edge channels in ex-

perimentally relevant geometries. Negligible relaxation

results in a vanishing four-terminal resistance and non-

additive edge resistances in a two-terminal setup even if

the quantum phase-coherence is not preserved, similar

to the case of ordinary quantum Hall effect. Available

experiments are in the opposite limit of strong spin re-

laxation, which explains a poor quality of the resistance

quantization as well as the edge resistances smaller than

expected ballistic value.
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