Особенности электронной структуры топологического изолятора Bi₂Se₃, дискретно легированного атомами 3*d*-переходных металлов¹⁾

Э. Т. Кулатов^{+*}, В. Н. Меньшов[×], В. В. Тугушев^{*}, Ю. А. Успенский^{* 2)}

+Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия

*Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия

[×] Donostia International Physics Center (DIPC), 20018 San Sebastian, Basque Country, Spain

Поступила в редакцию 12 октября 2018 г. После переработки 19 ноября 2018 г. Принята к публикации 21 ноября 2018 г.

Методом функционала плотности рассчитаны электронные и оптические спектры топологического изолятора Bi₂Se₃, селективно легированного атомами V, Cr, Mn, Fe и Co. Показано, что вставка магнитных атомов в отдельные дельта-слои (один на 2–9 пятислойников Bi₂Se₃) многократно усиливает магнитные эффекты. Наиболее подробно изучено легирование Mn, при котором реализуется ферромагнитное упорядочение спинов. Отмечена чувствительность спинового порядка к концентрации и расположению магнитных атомов. Изучение аналитической модели, где электроны Bi₂Se₃ резонансно рассеиваются на атомном слое переходного металла, также указывает на существование спин-поляризованных состояний в области щели Bi₂Se₃. Как показывают наши первопринципные расчеты, наличие конгруэнтных ветвей электронного спектра вблизи уровня Ферми приводит к особенностям оптической проводимости при $\hbar\omega \approx 0.15-0.3$ эB, к появлению инфракрасного плазмона и к углу Керра $\theta_K > 12^\circ$ в инфракрасной области спектра.

DOI: 10.1134/S0370274X19020061

Введение. Неупорядоченные сплавы на основе узкощелевых полупроводников – халькогенидов висмута и сурьмы со структурой тетрадимита типа $(Bi,Sb)_2(Se,Te)_3$, легированных 3*d*-магнитными переходными металлами (Cr, Mn, Fe, Co), - изучаются достаточно давно (см, например, [1, 2]). На начальном этапе исследований главное внимание теоретиков и экспериментаторов привлекали магнитные и магнито-транспортные аспекты их поведения (в первую очередь, формирование магнитных моментов, механизмы магнитного упорядочения и спинового транспорта) как необычных представителей группы разбавленных магнитных полупроводников (РМП). В последнее время, однако, центр тяжести сместился в область квантовых транспортных явлений, обусловленных принадлежностью многих систем на основе $(Bi,Sb)_2(Se,Te)_3$ к классу трехмерных (3М) магнитных топологических изоляторов (МТИ) [3, 4]. Изучение взаимосвязи топологического и магнитного порядка в 3М МТИ стало одним из актуальных направлений физики твердого тела в свете

обнаружения в них таких экзотических квантовых явлений, как квантовый аномальный эффект Холла (КАЭХ) [5–7] и топологический магнитоэлектрический эффект [8–10], перспективных для спинтроники [11].

Попытки использования тонких пленок ЗМ МТИ в форме РМП для реализации в них КАЭХ выявили ряд принципиальных ограничений, приводящих к нестабильности и крайне низкой температуре существования КАЭХ (см. [12, 13]). В работе [14] был предложен новый тип структур для реализации КАЭХ на основе ЗМ МТИ, основанный на использовании магнитных дискретных сплавов (МДС). В процессе эпитаксиального роста обогащенные ионами Cr ультратонкие слои (магнитные дельта-вставки) регулярно встраивались в пленку (Bi,Sb)₂(Se,Te)₃ с помощью селективного легирования. Благодаря локально высокой концентрации ионов Cr в дельта-вставках и уменьшению сплавного беспорядка, удалось усилить обменное расщепление в электронном спектре МДС по сравнению с РМП и поднять температуру наблюдения КАЭХ до 2 К. Сделанные на образцах [14] магнитооптические измерения зафиксировали топологический магнитоэлектрический эффект [15]. Недавно технология се-

 $^{^{1)}\}mathrm{Cm.}$ дополнительные материалы к данной стать
е на сайте нашего журнала www.jetpletters.ac.ru

²⁾e-mail: uspenski@lpi.ru

лективного легирования была успешно использована для создания ассимметричных МДС со слоями, обогащенными ионами либо Cr, либо V. В этих структурах при перемагничивании во внешнем поле наблюдалось плато с нулевой проводимостью Холла как признак состояния аксионного изолятора [16–18].

Наблюдавшаяся в [14] зависимость КАЭХ от расположения дельта-вставок в образце была объяснена в теоретической работе [19]. В ней было показано, что спиновая поляризация топологических состояний чувствительна к расположению магнитных вставок в топологическом изоляторе (ТИ), причем оптимальная для КАЭХ конфигурация зависит от параметров ТИ, его толщины и скачка потенциала на интерфейсах. При этом игнорировалась возможность формирования квазидвумерных спин-поляризованных электронных состояний, локализованных вблизи дельта-вставок [20]. Такие состояния могут возникнуть за счет гибридизации 3dорбиталей атомов дельта-вставки и 5(s, p)-орбиталей матрицы ЗМ МТИ. Наличие двух разных групп взаимодействующих электронных состояний, одна из которых отвечает за топологический, а другая – за магнитный порядок, является важной спецификой МДС на основе ЗМ ТИ, определяющей магнитные, спинтранспортные и магнитооптические свойства этой системы.

В настоящей работе, демонстрирующей одну из начальных попыток количественного описания подобных структур, мы выполняем расчет системы из "первых принципов", что дает понимание ряда особенностей ее электронного спектра и оптических свойств. Рассматривается структура, в которой пятислойники Bi₂Se₃, легированные ионами 3д-магнитного переходного металла (магнитные дельта-вставки), периодически встраиваются в матрицу нелегированного Bi₂Se₃. Номинальный химический состав структуры дается формулой $(Bi_{2(1-x)}Me_{2x}Se_3)/(Bi_2Se_3)_n$. Тип металла Me = (V, V)Cr, Mn, Fe, Co), концентрация магнитных атомов в дельта-вставках 0 < x < 1 и число нелегированных пятислойников матрицы $n = 1, 2, 3, \ldots$ считаются параметрами задачи, а вопрос об устойчивости самой структуры не обсуждается. Эти исследования аналитическим изучением дополняются спинполяризованных электронных состояний вблизи дельта-вставки, выполненным в рамках модельного гамильтониана.

Электронный спектр МДС на основе **Bi**₂Se₃. Электронные свойства МДС $(Bi_{2(1-x)}Me_{2x}Se_3)/(Bi_2Se_3)_n$ с x = 0.5 и 1.0, n = 1-5,8 и Me=V, Cr, Mn, Fe, Со были вычислены с помощью кодов VASP и WIEN2k в рамках теории функционала плотности (приближение GGA) с учетом спиновой поляризации электронов и спин-орбитального взаимодействия (COB). Более подробное описание техники расчетов дано в дополнительных материалах. Расчеты показали, что замещение атомов Ві на атомы металла уменьшает толщину легированного пятислойника на ~ 30 %. Это хорошо заметно на рис. 1, где представлены

Рис. 1. (Цветной онлайн) Суперячейки МДС $(Mn_2Se_3)/(Bi_2Se_3)_n$ до (выше) и после релаксации (ниже): (а) – n = 2; (b) – n = 5. Атомы Ві показаны фиолетовыми кружками, Se – зелеными, Mn – синими. Ось *z* направлена по горизонтали

структуры МДС $(Mn_2Se_3)/(Bi_2Se_3)_n$ с n = 2 и 5 до и после атомной релаксации. Такой же эффект наблюдался и при релаксации остальных структур с x = 0.5, 1.0 и n = 1, 3, 4, 8.

Зонная структура ТИ Ві2Se3 характеризуется наличием прямой диэлектрической щели шириной 0.2 эВ в точке Г (рис. 2а). В МДС (Mn₂Se₃)(Bi₂Se₃)₂ валентная зона и зона проводимости, соответствующие электронам со спином вверх, перекрываются: максимум валентной зоны поднимается выше уровня Ферми ($E_{\rm F}$), а минимум зоны проводимости опускается на уровень Ферми. Для электронов со спином вниз диэлектрическая щель сохраняется (небольшая плотность состояний со спином вниз наводится в щели за счет СОВ), т.е. $(Mn_2Se_3)(Bi_2Se_3)_2$ обладает спектром полуметаллического ферромагнетика (half-metallic ferromagnet) (рис. 2b, c). Анализ плотности 3*d*-электронных состояний Mn (рис. 2d) показывает, что 3d↑- и 3d↓зоны имеют ширину $\sim 2 \, \mathrm{sB}$, а их центры отстоят от $E_{\rm F}$ на -3.1 эВ и +1.2 эВ соответственно, т.е. обменное расщепление $\Delta_{xc} = 4.3$ эВ. В ферромагнитном (ФМ) состоянии 3*d*↑-зона (Mn₂Se₃)(Bi₂Se₃)₂ заполнена почти полностью, что отвечает полному магнитному моменту $M_{\rm tot} = 8 \,\mu_{\rm B}/{\rm cell}$. Те же особенности электронного спектра характерны для структу-

Рис. 2. (Цветной онлайн) Зонный спектр и плотность состояний (ПС): (a) – кристалла Bi₂Se₃; (b), (c) – МДС (Mn₂Se₃)/(Bi₂Se₃)₂ в окрестности уровня Ферми (размер кружков на дисперсионных кривых характеризует вклад 3*d*-состояний Mn). (d) – ПС в (Mn₂Se₃)/(Bi₂Se₃)₂: черная линия – полная ПС, красная и синяя области – вклады в ПС 3*d*-состояний Mn со спином вверх и вниз, соответственно

ры $(Mn_2Se_3)(Bi_2Se_3)_5$ (рис. 3с) и для более сложных ДМС $(Bi_{2(1-x)}Mn_{2x}Se_3)/(Bi_2Se_3)_n$ с варьируемыми x и n.

Замена в дельта-слоях атомов Mn на другой переходный элемент Me=V, Cr, Fe, Co приводит к существенному изменению электронной структуры МДС $(\text{Bi}_{2(1-x)}\text{Me}_{2x}\text{Se}_3)/(\text{Bi}_2\text{Se}_3)_n$ (см. дополнительные материалы, рис. S2). В случае ванадия, центры 3д-зон со спином вверх (вниз) располагаются существенно выше, чем при легировании Mn, на энергиях -0.3 эВ (+1.8 эВ) относительно $E_{\rm F}$. При замене атомов Mn на хром (Me = Cr) эти зоны располагаются все еще достаточно высоко на энергиях -1.0 эB (+1.8 эВ). В этих случаях, как и при легировании Ві₂Se₃ атомами Mn, электронные спектры МДС в ФМ состоянии имеют характер полуметаллического ферромагнетика (ПМФМ). Легирование атомами Fe и Со сдвигает центры 3*d*-зон со спином вверх (вниз) значительно ниже, до энергий -2.2 эВ (-0.2 эВ) и -1.2 эВ (-0.8 эВ), соответственно. В результате 3*d*зоны оказываются почти целиком в области энергий валентной зоны Bi₂Se₃, что ведет к их почти полному заполнению и уширению до 3.0–3.5 эВ. Меняется и характер электронного спектра, который в случаях Me = Fe, Co имеет металлический тип.

Расчет спинового упорядочения в МДС $(\mathrm{Bi}_{2(1-x)}\mathrm{Me}_{2x}\mathrm{Se}_3)/(\mathrm{Bi}_2\mathrm{Se}_3)_n$ требует рассмотрения более сложных конфигураций замещения атомов Ві атомами переходного металла. Чтобы вычислить разность полных энергий коллинеарных ферро- и антиферромагнитных (ФМ и АФМ) состояний $\Delta E = E_{AFM} - E_{FM}$, характеризующую магнитную энергию структуры, нужна суперячейка, содержащая не менее 2 атомов Ме. Для этой цели мы использовали суперячейку, содержащую 6 пятислойников. В простейшем случае оба атома Ме расположены в разных слоях Ві одного и того же пятислойника. Они отделены друг от друга по z

Рис. 3. (Цветной онлайн) ПС $(Mn_2Se_3)/(Bi_2Se_3)_n$: (a) – n = 3; (b) – n = 4, (c) – n = 5. Обозначения те же, что на рис. 2d

расстоянием $\Delta z = 4.57$ Å. Если атомы Ме находятся в соседних пятислойниках, расстояние между ними может составлять $\Delta z = 5.71$ Å, 9.86 Å и 13.6 Å. Были рассмотрены также варианты, когда атомы Ме разделялись одним пятислойником Bi_2Se_3 ($\Delta z = 19.3$ Å) и двумя пятислойниками ($\Delta z = 28.7 \,\text{\AA}$). Из результатов расчетов, собранных в табл. 1, видно, что максимальное по модулю значение ΔE , составляющее десятки или даже сотни мэВ/яч, почти всегда наблюдается при наименьшем расстоянии между магнитными атомами $\Delta z = 4.57$ Å, тогда как при больших расстояниях Δz магнитная энергия, как правило, составляет всего несколько мэВ/яч (см. графическую иллюстрацию табл. 1 в дополнительных материалах, рис. S1). Тип магнитного упорядочения, отвечающий наименьшей энергии МДС, существенно зависит как от расстояния между магнитными атомами Δz , так и от легирующего 3*d*-переходного элемента. Наши расчеты показывают, что ФМ упорядочение наиболее стабильно при замещении Bi на Mn. В конфигурации с $\Delta z = 4.57$ Å величина ΔE достигает +452 мэВ, что указывает на возможность ФМ состояния такой структуры при комнатной температуре. При замещении висмута атомами других переходных металлов превалирует тенденция к образованию АФМ состояния, поэтому именно замещение марганцем было исследовано нами особенно подробно. Отметим также, что при ФМ упорядочении спинов полный магнитный момент, приходящийся на один 3d-атом, в МДС $({\rm Bi}_{2(1-x)}{
m Me}_{2x}{
m Se}_3)/({
m Bi}_2{
m Se}_3)_n$ с Me = V, Cr и Mn не зависит от конкретного расположения магнитных атомов. Такая нечувствительность обусловлена электронным спектром ПМФМ типа в этих МДС.

Для структур $(Mn_2Se_3)/(Bi_2Se_3)_n$ с n = 1-5, 8была проанализирована зависимость ΔE от n, т.е. от толщины буферной прослойки между магнитными пятислойниками. Из-за небольших изменений ПС

Таблица 1. Магнитные свойства МДС (Me₂Se₃)/(Bi₂Se₃)_n с Me = V, Cr, Mn, Fe, Co: разность энергий АФМ и ФМ состояний $\Delta E = E_{\rm AFM} - E_{\rm FM}$ и полный магнитный момент $M_{\rm tot}$, рассчитанный для конфигурации с $\Delta z = 4.57$ Å

Δz (Å)	$\Delta E~({ m M} m { m B}/ m { m su})$				
	Me = V	Me = Cr	Me = Mn	Me = Fe	Me = Co
4.57	-70.0	-24.0	+452.0	+22.0	-2.0
5.71		+1.3	+32.2	-6.9	-5.1
9.86		+3.4	+8.4	-2.7	-12.5
13.6		+3.5	+14.2	-6.0	-1.8
19.3		+4.2	+8.0	+5.1	-
28.7		-4.3	-0.6	+3.8	-0.9
$M_{ m tot}~(\mu_{ m B}/{ m cell})$	4	6	8	4	2

вблизи $E_{\rm F}$ при варьировании n, которые можно заметить при сравнении рис. 2d и рис. 3a, она оказалась нерегулярной. При n = 1-5 и 8 соответствующие значения ΔE (в мэВ) равны: +448, +452, +45, +62, +366 и +368. Провал ΔE при n = 3, 4 может быть объяснен появлением в этих МДС локального пика ПС со спином вверх на уровне Ферми (рис. 3a, b), что повышает энергию ФМ состояния и снижает его устойчивость.

Для МДС (Bi_{2(1-x)}Mn_{2x}Se₃)/(Bi₂Se₃)₂ мы исследовали влияние x (концентрации Mn) на магнитную энергию $\Delta E = E_{\rm AFM} - E_{\rm FM}$. Для этого была сконструирована суперячейка $2 \times 2 \times 1$ (с удвоением вдоль направлений x и y) и с замещением половины атомов Bi на Mn в одной плоскости (x = 0.5). При этом, как оказалось, ΔE становится отрицательной, равной –14 мэВ. То есть некомпенсированное AФM (ферримагнитное) состояние с $M_{\rm tot} = 2 \,\mu_{\rm B}$ /cell становится выгоднее ферромагнитного с $M_{\rm tot} = 8 \,\mu_{\rm B}$ /cell. При полном же замещении атомов Bi на Mn в одной плоскости пятислойника ферромагнетизм оказывается энергетически предпочтительным, $\Delta E = +113$ мэВ. Более низкая концентрация x = 0.22

Рис. 4. (Цветной онлайн) Оптические спектры МДС $(Mn_2Se_3)/(Bi_2Se_3)_n$. (a) – Действительная и мнимая части диэлектрической проницаемости: $\varepsilon_1(\omega)$ (синяя) и $\varepsilon_2(\omega)$ (красная линия). (b) – Функция характеристических потерь – EELS. (c) – Магнитооптический полярный эффект Керра

может быть получена при использовании суперячейки (с утроением вдоль направлений x и y) и с замещением двух атомов Bi (из девяти) на атомы Mn в одной Bi-плоскости. В этом случае ФМ состояние с магнитным моментом $M_{\rm tot} = 8\,\mu_{\rm B}/{\rm cell}$ также оказывается более выгодным $\Delta E = +23$ мэB.

Для понимания механизма взаимодействия топологических и магнитных степеней свободы в МДС $(Bi_{2(1-x)}Me_{2x}Se_3)/(Bi_2Se_3)_n$ мы рассмотрели модельную систему, в которой атомный слой из примесей Андерсона вставлен в матрицу Bi_2Se_3 . Гамильтониан системы имеет вид:

$$H = \sum_{\mathbf{k}} [\Xi - bk^2) \tau_z + A \tau_x \otimes (\boldsymbol{\sigma} \cdot \mathbf{k})] p^+_{\boldsymbol{\sigma} \tau \mathbf{k}} p_{\boldsymbol{\sigma} \tau \mathbf{k}} + H_{dd} + H_{pd} + W_{pp'}.$$
(1)

Первый член (1) описывает движение *p*-электронов в матрице Bi₂Se₃. Волновой вектор $\mathbf{k} = (\boldsymbol{\kappa}, k_z)$ имеет компоненты, параллельные и перпендикулярные (вдоль оси *z*) к плоскости вставки. При условии $B\Xi > 0$ зоны имеют инвертированный порядок вблизи точки $\mathbf{k} = 0$, что соответствует топологической природе Bi₂Se₃. Матрицы σ_{α} и τ_{α} ($\alpha = x, y, z$) являются матрицами Паули, действующими в спиновом и орбитальном пространстве. Им отвечают индексы $\tau, \tau' = +, -$ и $\sigma, \sigma' =\uparrow, \downarrow$. Остальные члены гамильтониана H_{dd} , H_{pd} и $W_{pp'}$ описывают соответственно: *d*-электроны в примесном слое, имеющие расщепленные по спину энергии $\varepsilon_{\sigma}^d = \varepsilon^d + U\langle n_{-\sigma}^d \rangle$; гибридизацию *p*- и *d*-электронов; рассеяние *p*-электронов на возмущении кристаллического потенциала вблизи дельта-вставки.

Рассмотрим ситуацию, когда $\varepsilon^d < E_{\rm F} < \varepsilon^d + U \langle n_{\perp}^d \rangle$ и спиновое расщепление U достаточно сильное, больше ширины примесной *d*-зоны, что соответствует легированию Bi₂Se₃ атомами V, Cr и Mn. Если в (1) пренебречь членом $W_{pp'}$, спектр электронов можно оценить аналитически. При слабой *p*-*d* гибридизации от валентной зоны и зоны проводимости Bi₂Se₃ отщепляются две пары состояний, располагающиеся очень близко к краям щели ТИ. При сильной гибридизации внутри запрещенной зоны возникают четыре дисперсионные ветви $\omega_{\sigma\tau}(\kappa)$ с параболическим законом дисперсии вблизи $\kappa = 0$. При сравнительно больших импульсах κ эти ветви переходят в дираковский спектр $\omega_{\uparrow\tau}(\kappa) = -A\kappa$ и $\omega_{\downarrow\tau}(\kappa) = A\kappa$. Включение $W_{pp'}$ сдвигает уровни $\omega_{\sigma\tau}(0)$ по энергии и может "вытолкнуть" индуцированные состояния из щели в континуум, как это имеет место для интерфейсных состояний на границе между ТИ и нормальным изолятором (см. [7] в дополнительных материалах). Более подробный анализ нашей модельной системы дан в дополнительных материалах.

Оптические свойства. Расчеты тензора диэлектрической проницаемости (ДП) $\varepsilon_{\alpha\beta}(\omega) = \varepsilon_{1,\alpha\beta}(\omega) + i\varepsilon_{2,\alpha\beta}(\omega)$ были проведены для МДС (Mn₂Se₃)/(Bi₂Se₃)_n с n = 2, 4 и 8 в пироком интервале энергий фотонов $\hbar\omega < 21.8$ эВ. Метод расчета ДП и оптических свойств кристаллов подробно описан в нашей статье [21]. Зонные энергии и электронные волновые функции рассчитывались с учетом эффектов СОВ, а интегрирование по неприводимой части зоны Бриллюэна выполнялось методом тетраэдров с использованием ~ 500 **k**-точек. На рисунке 4 представлены результаты расчетов следующих величин: $\varepsilon_{1,xx}(\omega), \ \varepsilon_{1,zz}(\omega), \ \varepsilon_{2,xx}(\omega)$ и $\varepsilon_{2,zz}(\omega)$, а также функции характеристических потерь (EELS) и угла магнитооптического вращения Керра $\theta_K(\omega)$. На всех трех зависимостях $\varepsilon_{2,xx}(\omega)$ виден максимум с $\hbar\omega \approx 0.3$ эВ, особенно заметный в МДС с n = 4 (рис. 4а). Данный максимум обусловлен электронными переходами между конгруэнтными ветвями электронного спектра, центрированными около точки Г (рис. 2b, c). Эти же межзонные переходы и внутризонные переходы электронов со спином вверх служат причиной изменения знака $\varepsilon_{1,xx}(\omega)$ при $\hbar \omega \approx 0.1 - 0.2$ эВ. Нулевому значению $\varepsilon_{1,xx}(\omega)$ соответствует плазменный пик функции характеристических потерь (рис. 4b), минимум коэффициента отражения и наибольшая глубина проникновения света в образец. Именно максимальная глубина проникновения определяет большое значение $\theta_K(\omega)$ на этой частоте, достигающее огромной величины $\theta_K = -12^\circ$ в ДМС с n = 4 (рис. 4с). Отметим, что второй нуль функции $\varepsilon_{1,xx}(\omega)$, приходящийся на энергию $\hbar\omega \approx 2.5$ эВ, попадает в область сильного поглощения. Он приводит лишь к плавному увеличению характеристических потерь и слабо проявляется в эффекте Керра.

Заключение. Наши первопринципные расчеты показали, что в МДС $(\text{Bi}_{2(1-x)}\text{Me}_{2x}\text{Se}_3)/(\text{Bi}_2\text{Se}_3)_n$ с Me = V, Cr и Mn 3*d*-электроны со спином вниз практически отсутствуют. Эти МДС при ФМ упорядочении спинов имеют спектр, типичный для полуметаллических ферромагнетиков (щель – для электронов со спином вниз). В них полный магнитный момент, приходящийся на один 3*d*-атом, всегда равен целому числу μ_B , не зависит от деталей расположения магнитных дельта-вставок и от концентрации в них магнитных атомов. В МДС же с Me = Fe и Со, 3*d*-зоны со спином вверх и вниз почти полностью заполнены и сильно гибридизованы с валентной зоной Bi_2Se_3 , так что электронный спектр имеет металлический характер. Расчеты магнитной энергии $\Delta E = E_{AFM} - E_{FM}$, выполненные для большого числа МДС $(\text{Bi}_{2(1-x)}\text{Me}_{2x}\text{Se}_3)/(\text{Bi}_2\text{Se}_3)_n$, свидетельствуют, что величина и знак ΔE чувствительны к расположению магнитных атомов и к легирующему 3d-элементу. ФМ упорядочение наиболее стабильно в МДС с Me = Mn. При расстоянии между слоями марганца $\Delta z \approx 0.46$ нм, величина $\Delta E = 452$ мэВ/яч, что указывает на ФМ упорядочение даже при комнатной температуре. Если же магнитные слои отстоят друг

от друга на $\Delta z > 1.5$ нм, их магнитное взаимодействие очень слабое, $\Delta E \approx 1-5$ мэВ/яч. Ориентация спинов в таких слоях легко меняется внешним магнитным полем, что использовалось в экспериментах [14, 16]. В целом, знак ΔE сложно зависит от концентрации и распределения 3d-атомов, однако МДС с V, Cr, Fe и Co чаще имеют АФМ порядок. Аналитическое рассмотрение модели изолированной магнитной дельта-вставки в матрице ТИ с параметрами, соответствующими легированию Mn, указывает на существование спин-поляризованных состояний в щели ТИ, что согласуется с первопринципными расчетами МДС с V. Cr и Mn. Наши первопринципные расчеты показали, что переходы между конгруэнтными ветвями электронного спектра МДС $(Mn_2Se_3)/(Bi_2Se_3)_n$ индуцируют ИК особенности оптических спектров, в частности, очень высокую магнитооптическую активность в ИК области. Мы надеемся, что эти интересные для спинтроники результаты стимулируют экспериментальные исследования.

Исследование выполнено за счет грантов Российского фонда фудаментальных исследований (проекты # 16-02-00612a, 16-02-00024a, 17-02-00725a) и программ Президиума РАН (координаторы А.Ф. Андреев, В.М. Пудалов и С.М. Стипов). Авторы выражают благодарность за обсуждение результатов расчетов Л.А. Асланову (химфак МГУ им. М.В. Ломоносова). Работа была выполнена с использованием суперкомпьютерных ресурсов Межведомственного Суперкомпьютерного Центра РАН (МСЦ РАН).

- Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).
- L. Cheng, Z.-G. Chen, S. Ma, Z.-D. Zhang, Y. Wang, H.-Yi Xu, L. Yang, G. Han, K. Jack, G. (Max) Lu, and J. Zou, J. Am. Chem. Soc. **134**, 18920 (2012).
- M.Z. Hasan, and C.L. Kane, Rev. Mod. Phys. 82, 3045(2010).
- X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057(2011).
- X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
- Garate and M. Franz, Phys. Rev. Lett. 104, 146802(2010).
- R. Yu, W. Zhang, H. J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science **329**, 61(2010).
- X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
- J. Wang, B. Lian, X. L. Qi, and S. C. Zhang, Phys. Rev. B 92, 081107 (2015).

- T. Morimoto, A. Furusaki, and N. Nagaosa, Phys. Rev. B 92, 085113 (2015).
- D. Pesin and A.H. MacDonald, Nat. Mater. 11, 409 (2012).
- V. N. Men'shov, V. V. Tugushev, and E. N. Chulkov, Europhys. Lett. **114**, 37003 (2016).
- M. Winnerlein, S. Schreyeck, S. Grauer, S. Rosenberger, K. M. Fijalkowski, C. Gould, K. Brunner, and L. W. Molenkamp, Phys. Rev. Materials 1, 011201 (2017).
- M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K.S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. **107**, 182401 (2015).
- K. N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, N. Ogawa, M. Kawasaki, and Y. Tokura, Nat. Commun. 7, 12245 (2016).

- M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa, K.S. Takahashi, M. Kawasaki, and Y. Tokura, Nat. Mater. 16, 516 (2017).
- M. Mogi, M. Kawamura, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Sci. Adv. 3, eaao1669 (2017).
- D. Xiao, J. Jiang, J.-H. Shin, W. Wang, F. Wang, Y.-F. Zhao, C. Liu, W. Wu, M. H. W. Chan, N. Samarth, and C.-Z. Chang, Phys. Rev. Lett. **120**, 056801 (2018).
- В. Н. Меньшов, В. В. Тугушев, Е. В. Чулков, Письма в ЖЭТФ 104, 480 (2016).
- 20. V. N. Men'shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. **96**, 445 (2012) [Письма в ЖЭТФ **96**, 492 (2012)].
- Yu. A. Uspenskii, E. T. Kulatov, and S. V. Halilov, Phys. Rev. B 54, 474 (1996).