Обобщенные модели Калоджеро и Тоды

Ю. Черняков $^{+\nabla 1}$, С. Харчев $^{+\circ}$, А. Левин $^{+*}$, М. Ольшанецкий $^{+\circ}$, А. Зотов $^{+*\times}$

⁺Институт теоретической и экспериментальной физики им. А.И. Алиханова, НИЩ "Курчатовский институт", 117218 Москва, Россия

*Национальный исследовательский университет "Высшая школа экономики", НИУ ВШЭ, 119048 Москва, Россия

 $^{\times} Mатематический институт им. В.А. Стеклова РАН, 119991 Москва, Россия$

[°]Институт проблем передачи информации им. А.А. Харкевича РАН, 127994 Москва, Россия

∇Объединенный Институт Ядерных Исследований, Лаборатория теоретической физики им. Н.Н. Боголюбова, 141980 Дубна, Россия

> Поступила в редакцию 16 ноября 2018 г. После переработки 16 ноября 2018 г. Принята к публикации 16 ноября 2018 г.

Рассматривается система Калоджеро–Сазерленда с двумя типами взаимодействующих спиновых переменных. Система описана, используя подход Хитчина и квази-компактную структуру. Полная интегрируемость устанавливается с помощью уравнения Лакса, заданного на сингулярной кривой, а также классической г-матрицы, зависящей от спектрального параметра. Также рассмотрены обобщенные системы Тоды. Приведено описание их фазовых портретов.

DOI: 10.1134/S0370274X19020139

1. Обобщенные системы Калоджеро. Одномерные системы частиц с интегрируемым потенциалом взаимодействия широко известны в математической физике. В этой статье рассматриваются два типа таких систем – модели типа Калоджеро [1] и полные симметрические системы Тоды, обобщающие трехдиагональные системы Тоды, отвечающие потенциалам с экспоненциальной зависимостью от расстояний [2]. Мы рассматриваем частицы в системах типа Калоджеро с дополнительными внутренними степенями свободы (классическим спином), введенные в [3, 4]. Еще точнее, будут описаны обобщенные системы Калоджеро с двумя типами спинов. В случае тодовских взаимодействий рассматриваются системы с большим числом степеней свободы.

Описание системы. Модели Калоджеро [1] – это одномерные системы попарно взаимодействующих частиц с потенциалами, зависящими от расстояния между частицами или от более сложной линейной функции от координат, заданной корнями простых алгебр Ли [5]. Потенциалы могут быть рациональными, тригонометрическими либо эллиптическими функциями.

Эти модели имеют много приложений как в теоретической физике, так и в математике. Важнейшим их свойством является полная интегрируемость как на классическом, так и на квантовом уровне.

Как уже говорилось, мы рассматриваем частицы, обладающие внутренними степенями свободы, называемые спином. В оригинальных работах [3, 4] спины принадлежали орбитам О коприсоединенного действия простой комплексной группы $G^{\mathbb{C}}$. Иначе говоря, это элементы алгебры, двойственной к алгебре Ли $\mathfrak{g}^{\mathbb{C}} = \operatorname{Lie}(G^{\mathbb{C}})$, с фиксированными значениями функций Казимира. Например, для $\mathfrak{g}^{\mathbb{C}} = \mathrm{sl}(N, \mathbb{C})$ (бесследовые комплексные матрицы размера $N \times N$) элементы орбиты – бесследовые матрицы с фиксированными собственными значениями. На орбитах существует невырожденная линейная скобка Пуассона, определяемая структурными константами алгебры $\mathfrak{g}^{\mathbb{C}}$. Пусть $R = \{\alpha\}$ – система корней, отвечающая простой комплексной алгебре Ли $\mathfrak{g}^{\mathbb{C}}, \mathbf{v}, \mathbf{u} \in \mathfrak{h}^{\mathbb{C}}$ – элементы ее картановской подалгебры, которые мы отождествляем с импульсами и координатами частиц, а $S = \sum_{\alpha \in R} S_{\alpha} E_{\alpha}$ – разложение спина $S \in \mathfrak{g}^{\mathbb{C}}$ по корневому базису $\{E_{\alpha}\}$. В этих терминах квадратичный гамильтониан систем Калоджеро имеет вид:

$$H = \frac{1}{2}(\mathbf{v}, \mathbf{v}) + U(S, \mathbf{u}), \quad U(S, \mathbf{u}) = \sum_{\alpha \in R} S_{\alpha} S_{-\alpha} V(\mathbf{u}_{\alpha}),$$
(1)

где (,) – инвариантное скалярное произведение на $\mathfrak{h}^{\mathbb{C}}$, $\mathbf{u}_{\alpha} = (\alpha, \mathbf{u})$, а $V(\mathbf{u}_{\alpha})$ – некоторая рациональная,

 $^{^{1)}}$ e-mail: chernyakov@itep.ru; kharchev@itep.ru; alevin2@hse.ru; olshanet@itep.ru; zotov@mi-ras.ru

тригонометрическая [6, 7] либо эллиптическая функция. Скобки Пуассона между координатами частиц и их импульсов канонические $\{v_k, u_j\} = \delta_{jk}$, а пуассонова структура для спиновых переменных дается дираковскими скобками. Они получаются из скобки Пуассона–Ли после введения связей Project $S|_{\mathfrak{h}^{\mathbb{C}}} = 0$ и фиксации калибровки по отношению к присоединенному действию картановской подгруппы на спиновые переменные. Потенциал является гамильтонианом волчка Эйлера–Арнольда [8], построенного по группе $G^{\mathbb{C}}$ с тензором инерции, зависящим от координат взаимодействующих частиц. В частности, для $G^{\mathbb{C}} = \mathrm{SL}(N, \mathbb{C})$

$$U(S, \mathbf{u}) = \sum_{j \neq k} S_{jk} S_{kj} V(u_j - u_k).$$
⁽²⁾

Было доказано, что системы (1) являются вполне интегрируемыми по Лиувиллю.

В этой работе рассматривается модификация таких систем Калоджеро, сохраняющая интегрируемость. Модификация заключается в замене спиновых переменных, принадлежащих орбитам, на переменные P, являющиеся сечениями кокасательных расслоений T^*X к однородным пространствам $X = K \setminus G^{\mathbb{C}}$. Здесь K – максимальная компактная подгруппа $G^{\mathbb{C}}$. Пространство X называется симметрическим пространством. Для $G^{\mathbb{C}} = SL(2, \mathbb{C}), K = SU(2)$ и $X = SU(2) \setminus SL(2, \mathbb{C})$ – пространство Лобачевского. Кокасательное расслоение T^*X – пуассоново многообразие с невырожденной скобкой.

Ниже мы опишем классический тригонометрический случай, обобщающий вещественную спиновую модель Калоджеро–Сазерленда (КС) (2)

$$H^{CS} = \frac{1}{2} \sum_{j=1}^{N} v_j^2 + \sum_{j < k} \frac{S_{jk} S_{kj}}{\sinh^2(u_j - u_k)}.$$
 (3)

Здесь $v_j, u_k \in \mathbb{R}$, переменные $\mathbf{S} = \sum_{jk} S_{jk} E_{jk}$ в модели КС – элементы орбиты группы $SL(N, \mathbb{R})$, т.е. собственные значения матриц \mathbf{S} фиксированы. Кроме того, наложена связь diag $\mathbf{S} = 0$, и матричные элементы S_{jk} и $S_{jk} \exp(x_j - x_k)$ для всех $x_k \in \mathbb{R}$ считаются эквивалентными. До наложения связей переменные \mathbf{S} идентифицируются с угловыми моментами $SL(N, \mathbb{R})$ волчка.

Обобщение модели КС выглядит следующим образом [9–13]. Гамильтониан (3) обобщается до

$$H = \frac{1}{2} \sum_{j=1}^{N} v_j^2 + \sum_{j < k} \frac{S_{jk}^2 + T_{jk}^2 - 2S_{jk}T_{jk}\cosh(u_j - u_k)}{\sinh^2(u_j - u_k)},$$
(4)

где S_{ij}, T_{ij} – матричные элементы антисимметричных матриц S и T ($S_{jk} = -S_{kj}, T_{jk} = -T_{kj}$) со скобками Пуассона–Ли, отвечающими прямой сумме двух алгебр so(N) \oplus so(N):

$$\{S_{ij}, S_{kl}\} = -\frac{1}{2} \left(S_{il}\delta_{kj} - S_{kj}\delta_{il} - S_{ik}\delta_{lj} + S_{lj}\delta_{ik} \right),$$

$$\{T_{ij}, T_{kl}\} = \frac{1}{2} \left(T_{il}\delta_{kj} - T_{kj}\delta_{il} - T_{ik}\delta_{lj} + T_{lj}\delta_{ik} \right),$$

$$\{S_{ij}, T_{kl}\} = 0.$$

(5)

Таким образом, гамильтониан и скобки описывают, в частности, два взаимодействующих волчка Эйлера– Арнольда на группе SO(N) с моментами инерции, зависящими от координат частиц.

Размерность фазового пространства равна (N - 1)(N + 2) - 2[N/2]. Мы предъявляем необходимое для интегрируемости число независимых интегралов движения. Их инволютивность следует из существования классической *r*-матрицы, которую мы явно строим.

В случае N = 2 алгебра so(2) коммутативна, и мы можем зафиксировать значения спинов. Тогда из (4) получаем гамильтониан с двумя константами

$$H = \frac{v^2}{2} + \frac{m_1^2 + m_2^2 - 2m_1m_2\cosh(2u)}{\sinh^2(2u)}.$$
 (6)

Можно показать, что он совпадает с моделью KC типа BC_1 [5]. Его квантовая версия рассматривалась в [14].

Так же, как и модель КС (2), двухспиновое обобщение переносится на произвольные простые алгебры Ли с сохранением полной интегрируемости. У произвольной простой комплексной алгебры Ли $\mathfrak{g}^{\mathbb{C}}$ имеется единственная с точностью до изоморфизма вещественная форма $\mathfrak{g}^{\mathbb{R}} \subset \mathfrak{g}^{\mathbb{C}}$ и максимальная компактная подалгебра $\mathfrak{k} \subset \mathfrak{g}^{\mathbb{C}}$ [15]. Максимальная компактная подалгебра алгебры $\mathfrak{g}^{\mathbb{R}}$ – алгебра $\mathfrak{u} = \mathfrak{k} \cap \mathfrak{g}^{\mathbb{R}}$. Пусть $\mathfrak{h}^{\mathbb{R}}$ – картановская подалгебра алгебры $\mathfrak{g}^{\mathbb{R}}$, и R^+ – система положительных корней по отношению $\mathfrak{h}^{\mathbb{R}}$. Тогда интегрируемое обобщение гамильтониана (4) имеет вид

$$H = \frac{1}{2}(\mathbf{v}, \mathbf{v}) + 2\sum_{\alpha \in R^+} \frac{S_{\alpha}^2 + T_{\alpha}^2 - 2S_{\alpha}T_{\alpha}\cosh(\mathbf{u}_{\alpha})}{(\alpha, \alpha)\sinh^2(\mathbf{u}_{\alpha})}.$$
 (7)

Скобки Пуассона–Ли для угловых моментов **S**, **T** определены на компактной подалгебре **u** (нижняя строка табл. 1).

	A_{N-1}	\mathbf{B}_N		C_N		D_N	
$\mathfrak{g}^{\mathbb{C}}$	$\mathrm{sl}(N,\mathbb{C})$	$\operatorname{so}(2N+1,\mathbb{C})$		$\operatorname{sp}(N,\mathbb{C})$	so(2)	$\operatorname{so}(2N,\mathbb{C})$	
$\mathfrak{g}^{\mathbb{R}}$	$\mathrm{sl}(N,\mathbb{R})$	so	O(N, N+1)	$\operatorname{sp}(N,\mathbb{R})$) so($\operatorname{so}(N,N)$	
ŧ	su(N)	$\operatorname{so}(2N+1)$		$\operatorname{sp}(N)$	so	so(2N)	
u	so(N)	$so(N+1) \oplus so(N)$		$\mathrm{u}(N)$	so(N)	$\mathrm{so}(N) \oplus \mathrm{so}(N)$	
	G_2		F_4	E_6	E_7	E_8	
$\mathfrak{g}^{\mathbb{C}}$	$\mathrm{g}_2^\mathbb{C}$		$\mathbf{f}_4^{\mathbb{C}}$	$e_6^{\mathbb{C}}$	$\mathrm{e}_7^\mathbb{C}$	$\mathbf{e}_8^\mathbb{C}$	
$\mathfrak{g}^{\mathbb{R}}$	$\mathrm{g}_2^\mathbb{R}$		$\mathbf{f}_4^\mathbb{R}$	$e_6^{\mathbb{R}}$	$\mathrm{e}_7^\mathbb{R}$	$\mathbf{e}_8^\mathbb{R}$	
ŧ	$\mathrm{g}_2^\mathbb{R}$		$\mathbf{f}_4^\mathbb{R}$	$e_6^{\mathbb{R}}$	$\mathrm{e}_7^{\mathbb{R}}$	$\mathrm{e}_8^\mathbb{R}$	
u	$su(2) \oplus su(2)$		$sp(3) \oplus su(2)$	sp(4)	su(8)	so(16)	

Таблица 1. Нормальные формы $\mathfrak{g}^{\mathbb{R}}$ и компактные подалгебры $\mathfrak{k},$ и простых комплексных алгебр $\mathfrak{g}^{\mathbb{C}}$

Можно показать, что эта модель эквивалентна следующей модели с квадратичным Гамильтонианом

$$H = \frac{1}{2} \sum_{j=1}^{N} v_j^2 + \sum_{\alpha \in R^+} \frac{\mathbf{P}_{\alpha} \mathbf{P}_{-\alpha}}{\sinh^2(\mathbf{u}_{\alpha})}.$$
 (8)

Здесь по-прежнему $v_j, u_k \in \mathbb{R}$ – координаты и импульсы частиц, а переменные \mathbf{P} – сечение кокасательного расслоения $T^*\mathcal{X}^{\mathbb{R}}$, где $\mathcal{X}^{\mathbb{R}} = U \backslash G^{\mathbb{R}}$ – симметрическое пространство. Это фактор пространство группы $G^{\mathbb{R}}$ (Lie $G^{\mathbb{R}} = \mathfrak{g}^{\mathbb{R}}$) – нормальной вещественной формы группы $G^{\mathbb{C}}$. Группа U есть ее максимальная компактная подгруппа (Lie $U = \mathfrak{u}$). Сечения \mathbf{P} могут быть определены как сопряжения элемента $\zeta \in \mathfrak{g}^{\mathbb{R}}$

$$\mathbf{P} = \mathrm{Ad}_{a}^{-1} \zeta.$$

Здесь $g \in \mathcal{X}^{\mathbb{R}}$. Пусть σ – инволютивный автоморфизм группы $G^{\mathbb{R}}$, чьи неподвижные точки – подгруппа U. Тогда g может быть представлена в виде $g = ff^{\dagger}$, где $\dagger = \sigma^{-1}$, $f \in G^{\mathbb{R}}$. Кроме того, наложены связи $\mathbf{P}|_{\mathfrak{h}^{\mathbb{R}}} = 0$, $\zeta|_{\mathfrak{u}} = 0$.

Обобщенные модели КС как системы Хитчина. Обобщенную КС систему можно построить, используя подход Хитчина [16, 17]. Оператор Лакса интегрируемых систем Хитчина удовлетворяет так называемым уравнениям Хитчина. Эти уравнения возникают из уравнения самодуальности в четырех измерениях после редукции на двумерную риманову поверхность Σ . А именно, вместо \mathbb{R}^4 рассматривается четырехмерное пространство $\mathbb{R}^2 \times \Sigma$, где Σ играет роль базовой спектральной кривой. Состав полей системы Хитчина определяется четырехмерными вектор-потенциалами, принимающими значение в компактной алгебре su(N) (\mathfrak{k} в общем случае, см. табл. 1). Они зависят только от координат на Σ . После редукции два из четырех вектор-потенциалов превращаются в скалярные поля – поля Хиггса. Фазовое пространство систем Хитчина, т.е. простран-

Письма в ЖЭТФ том 109 вып. 1-2 2019

ство модулей решений уравнений Хитчина, есть гиперкэлерово многообразие. В частности, координаты частиц и их импульсы описывают модули решений уравнения Хитчина. Отметим также, что уравнения Хитчина появляются естественным образом в четырехмерной твистованной суперсимметричной $\mathcal{N} = 4$ теории Янга–Миллса [18].

Спиновые переменные есть вычеты поля Хигтса в особых точках. С точки зрения четырехмерной теории, особые точки – это точки пересечения римановой поверхности Σ с двумерными поверхностями C, трансверсальными к Σ . Спиновые переменные же в этом подходе – это переменные в сигма-модели $C \rightarrow O$, взаимодействующей с системой Хитчина [19]. Фазовое пространство такой сигма-модели тоже гиперкэлерово. Это означает, что отвечающие этой сигма-модели так называемые поверхностные операторы (*surface operators*) не нарушают $\mathcal{N} = 4$ суперсимметрию.

На самом деле для построения фазового пространства интегрируемых систем вместо пространства модулей решений уравнений Хитчина используется пространство модулей расслоений Хиггса. Расслоение Хиггса описывается антиголоморфной компонентой вектор потенциала и голоморфной компонентой поля Хиггса, принимающими значение в комплексной алгебре $\mathfrak{g}^{\mathbb{C}}$. Эти два пространства модулей почти эквивалентны, и мы рассматриваем второе из них. В таком подходе поле Хиггса оказывается оператором Лакса интегрируемой системы. Кроме того, такая конструкция позволяет ввести зависимость оператора Лакса от спектрального параметра L = L(z) ($z \in \Sigma$). В свою очередь, с помощью оператора Лакса можно строить полный набор интегралов движения.

Важным ингредиентом нашей конструкции является так называемая квази-компактная структура калибровочной группы. Ее наличие означает, что калибровочные преобразования в сингулярных точках базовой кривой редуцируются к унитарной группе (в стандартном подходе системы Хитчина могут иметь квази-параболического структуру, т.е. в сингулярных точках калибровочные преобразования редуцируются к борелевским подгруппам). В результате мы заменяем описанную выше сигма-модель на модель $C \to T^* \mathcal{X}^{\mathbb{C}}$, где $\mathcal{X}^{\mathbb{C}}$ – симметрическое пространство $\mathrm{SU}(N)\backslash\mathrm{SL}(N,\mathbb{C}).$ В общем же случае это симметрическое пространство $\mathcal{X}^{\mathbb{C}} = K \backslash G^{\mathbb{C}}$, где $K \subset G^{\mathbb{C}}$ – максимальная компактная подгруппа. Фазовое пространство этой сигма-модели не является гиперкэлеровым, что приводит к нарушению суперсимметрии в соответствующей четырехмерной теории.

С точки зрения динамических систем, фазовое пространство систем с квазикомпактной структурой плохо определено, так как часть описывающих его переменных, относящаяся к сигма-модели, вещественная, а другая часть – комплексная. Мы переходим к вещественным переменным, используя подход, предложенный для гладких кривых [20]. Предположим, базовая спектральная кривая Σ допускает антиголоморфную инволюцию, которая в локальных координатах выглядит как $i : z \to \overline{z}$. Одновременно рассмотрим инволютивный автоморфизм σ алгебры $\mathfrak{g}^{\mathbb{C}}$ ($\sigma^2 = 1$) такой, что инвариантная подалгебра инволюции является вещественной нормальной формой **g**^ℝ алгебры Ли **g**^ℂ. Эти подалгебры приведены в табл. 1. Рассмотрим одновременное действие этих инволюций $L(z) \to L^{\sigma}(\bar{z})$. Инвариантное подмножество такого действия определяет оператор Лакса вещественной интегрируемой системы. Его аргументом является вещественная кривая S – инвариант действия *i*. Таким образом, мы переходим к вещественной интегрируемой системе.

В нашем случае, как и в случае системы КС, кривая Σ сингулярна. На рисунке 1 изображена базовая спектральная кривая для обобщенной системы КС. Это комплексная проективная кривая $\mathbb{C}P^1$, в которой отождествлены точки 0 и ∞ . Для модели КС сингулярная точка это точка z = 1 на $\mathbb{C}P^1$. Отличие системы КС от обобщенной системы КС в том, что вычет оператора Лакса в точке z = 1 в первом случае лежит в коприсоединенной орбите группы $G^{\mathbb{C}}$, а во втором – в кокасательном пространстве $\mathcal{X}^{\mathbb{C}} = K \backslash G^{\mathbb{C}}$. Отметим, что системы Хитчина на особых кривых (и, в частности, система КС) изучались ранее в [21, 22].

При переходе к вещественной интегрируемой системе кривая Σ на рис. 1 заменяется на окружность S^1 , а оператор Лакса L(x) в точке x = 1 имеет полюс с коэффициентом, принадлежащем вещественному симметрическому пространству $\mathcal{X}^{\mathbb{R}} = U \backslash G^{\mathbb{R}}$. Алгебры Ли групп $G^{\mathbb{R}}$ и U приведены во второй и последней строчках табл. 1.

2. Фазовые портреты обобщенной системы Тоды. Система Тоды (или цепочка Тоды) впервые была рассмотрена в работах [2, 23], в работе [24] были найдены n функционально независимых интегралов движения, а в работах [25-27] была доказана инволютивность этих интегралов. Известно (см. [28, 29]), что система Тоды имеет в качестве обобщения интегрируемую систему на произвольной полупростой группе Ли. Эта система называется обобщенная (полная симметричная) система Тоды. Об интегрируемости

Рис. 1. Базовая спектральная кривая $\Sigma = \mathbb{C}P^1$

этой системы см. [30, 31]; схема Адлера–Костанта– Симса была развита в [32–34].

Можно поставить вопрос о геометрических свойствах такой системы на произвольной группе. В частности, в нашей работе [35] был описан фазовый портрет такой системы на действительной специальной линейной группе (в более абстрактных терминах, на действительных формах A_n серий). Было также показано, что он может быть идентифицирован с диаграммой Хассе порядка Брюа на соответствующей группе Вейля. Этот результат обобщает, в некотором смысле, классический результат работы [36]; он появился, как попытка дать точную математическую интерпретацию результатов [37] (см. также [38, 39]).

Вопрос описания фазового портрета заключается в исследовании асимптотического поведения системы. Аналогия – абсолютно упругое столкновение двух бильярдных шаров, один из которых покоится, а другой движется с импульсом р. После столкновения шары обмениваются импульсами. То же явление происходит и в трехдиагональной системе Тоды. Например, в случае матрицы Лакса ранга 2, матрица Лакса вырождается в диагональную матрицу $(+\lambda, -\lambda)$ при $t \to -\infty$, а после взаимодействия при $t \to +\infty$ в диагональную матрицу $(-\lambda, +\lambda)$, где λ – импульсы. В случае матрицы Лакса более высокого ранга, вопрос асимптотического поведения системы уже не такой простой, и в этом и заключается задача - получить картину всех возможных траекторий системы. Для решения этой задачи мы будем использовать свойства обобщенной системы Тоды: во-первых, градиентность потока на соответствующем многообразии флагов, существование функции Морса и невырожденных критических точек, и, во-вторых, существование достаточно большого количества полуинвариантов – координат Плюккера. Заметим, что, когда матрица Лакса вырождается в диагональную матрицу собственных значений, такая матрица отвечает критической точке в фазовом пространстве. Идея решения этой задачи заключается в следующем. Так как система градиентная, имеет функцию Морса, значит каждая траектория должна идти от одной критической точки к другой, следовательно, для каждой критической точки мы можем описать локальное пространство входящих и исходящих траекторий. Чтобы понять, какие траектории связывают две критические точки, мы высаживаем нашу систему на минорные поверхности – полуинварианты с нулевым значением (M = 0, см. [40]),сохраняющиеся потоком Тоды. То есть траектории будут лежать на этих поверхностях или их пересечении. Оказывается, этих минорных поверхностей достаточно, чтобы выделить одну траекторию между двумя критическими точками, но бывает и так, что две критические точки вообще не соединяются никакой траекторией. В систематизации траекторий и состоит задача. И, повторим, оказывается, что траектории соединяют критические точки в соответствии с диаграммой Хассе порядка Брюа на соответствующей группе Вейля. О порядке Брюа см. [41, 42].

3. Фазовые портреты потоков Тоды на $Sp(4,\mathbb{R})$, на действительной форме G_2 и на вырожденных орбитах. Настоящая заметка основывается на наших работах [42, 43]. Наши рассуждения строятся на немного измененных методах, которые мы использовали в предыдущей работе [35], однако, применение этих методов к группам, отличающимся от $SL(n, \mathbb{R})$, оказывается довольно сложным. Причина этого состоит в том факте, что определение системы Тоды на группах Ли обычно основывается на рассмотрении корней и базисов Шевалье, в то время как наше исследование фазового портрета основано на большом множестве инвариантных относительно потоков подпространств, которые могут быть описаны в терминах пространства флагов и матричных представлений групп.

Чтобы решить эту задачу, нужно было найти подходящую переформулировку системы Тоды, чтобы матричное представление группы могло быть использовано. Оказалось, что такая переформулировка действительно существует; она была дана, в частности, в работе [29]. Фактически, можно показать, что существует вложение полупростой группы G в специальную линейную группу подходящей размерности, такое, что G сохраняется системой Тоды на $SL(n, \mathbb{R})$; тогда система Тоды на G эквивалентна ограничению системы, определенной на $SL(n, \mathbb{R})$. Есть много способов, которыми система Тоды может быть определена на классических простых группах или, скорее, на соответствующих алгебрах Ли (фактически можно говорить об индуцированной системе на соответствующих пространствах флагов G/B^+). Например, можно дать точные формулы для матриц L и M в терминах канонической системы корней (см. [29]): для любого базиса Картана-Вейля $H_1, \ldots, H_r, E_{\alpha_1}, \ldots, E_{\alpha_{n-r}}$, где $r = \operatorname{rk} \mathfrak{g}$, $n = \dim \mathfrak{g}$, пусть Δ^+ определяет подмножество положительных корней (относительно данного базиса), тогда

$$L = \sum_{i=1}^{r} a_i H_i + \sum_{\alpha \in \Delta^+} b_\alpha (E_\alpha + E_{-\alpha}),$$

$$M = \sum_{\alpha \in \Delta^+} b_\alpha (E_\alpha - E_{-\alpha}),$$

$$L' = [L, M].$$
(9)

Другой возможный подход состоит в том, чтобы применить схему Адлера–Костанта–Симса, мы получим следующие матричные представления:

$$L = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix},$$
(10)

где L₊ и L₋ – верхняя и нижняя диагональные части L, соответственно, а $B = L_{+} - L_{-}$. В настоящей работе мы выбираем такую точку зрения на обобщенную систему Тоды, которая была использована в работе [38] (см. также [29]). Она основана на следующей идее, обобщающей схему Адлера-Костанта-Симса: если мы вкладываем группу G в подходящую $SL(n, \mathbb{R})$ так, что подалгебра Картана отображается в диагональные матрицы и корневые вектора соответствуют верхней и нижней треугольным матрицам, так что матрицы, соответствующие $+\alpha$ и $-\alpha$ векторам транспонируются друг в друга, тогда матрица Лакса L дается формулой (10) и принадлежит пересечению симметрической матрицы и образа $\mathfrak{g} \subset \mathfrak{sl}_n$, а M дается ограничением процедуры антисимметризации на L.

Как уже говорилось, важным свойством системы Тоды является то, что она также имеет структуру градиентного потока. Есть много способов описать это (см., например, [28, 44]). Рассмотрим вложение (вещественную форму) G в $SL(n, \mathbb{R})$, как объяснялось выше. Тогда максимальная компактная подгруппа в G будет отображена внутрь группы ортогональных матриц $SO(n, \mathbb{R})$. Кроме того, из уравнения (9) следует, что собственные значения матрицы Лакса сохраняются потоком Тоды. Поскольку каждая вещественная симметрическая матрица L может быть представлена в форме $\Psi \Lambda \Psi^t$, где Ψ – ортогональная и Л – диагональная матрица собственных значений, мы можем использовать это же разложение. Тогда Ψ будет матрицей из максимальной компактной подгруппы $K_G \subset G$, и Λ будет матричной формой подгруппы Картана группы G. Так как матрица Λ не меняется под действием потока Тоды, фиксируя ее, мы получим динамическую систему на Ψ

$$\frac{d\Psi}{dt} = M\Psi, \ M = (\Psi\Lambda\Psi^t)_+ - (\Psi\Lambda\Psi^t)_-.$$
(11)

Эта система (11), в определенном смысле, эквивалентна потоку Тоды (поток Тоды получен из присоединенного действия $\Psi(t)$ на Λ). Можно рассмотреть эту систему на пространстве флагов, ассоциированном с G, которое эквивалентно F(G) = $= K_G/(K_G \cap H)$, где H есть выбранная максимальная коммутативная подгруппа. Теперь можно показать, что уравнения (11) в самом деле заданы градиентным потоком на K_G (или на F(G)). Для этого введем инвариантную евклидову структуру на \mathfrak{so}_n (подходящая деформация формы Киллинга), и продолжим ее до римановой на $SO(n, \mathbb{R})$; эта структура является тогда ограничением на K_G , вложенным в ортогональную группу, как объяснялось выше. Тогда можно показать, что уравнение (11) имеет форму градиентного потока следующей функции относительно выбранной римановой структуры $F_G(\Psi) =$ $= Tr(\Psi \Lambda \Psi^t N)$, где Λ – матрица собственных значений, и *N* – подходящая диагональная матрица (представляющая элемент в выбранной подгруппе Картана). Список таких элементов для различных групп можно найти, например, в работе [28].

Другим важным свойством системы (11) является то, что может быть найдено много многообразий в $SO(n, \mathbb{R})$, сохраняющихся этой системой. Важное большое семейство таких инвариантных многообразий образовано так называемыми *минорными поверхностями* (подробнее см. в [40]).

Система на $Sp(4,\mathbb{R})$. Напомним, что $Sp(2n,\mathbb{R})$ – группа линейных преобразований \mathbb{R}^{2n} , сохраняющих

ориентацию, – сохраняет данную невырожденную антисимметрическую билинейную форму Ј. Если мы хотим вложить $Sp(4,\mathbb{R})$ в $SL(4,\mathbb{R})$ так, чтобы положительные корни перешли в верхние треугольные матрицы, нам следует выбрать J антидиагональной. Вследствие этого вложения подалгебра Картана алгебры **я**р(4, ℝ) диагональна. Матрица Лакса – симметрическая матрица в $\mathfrak{sp}(4, \mathbb{R})$: $L = U\Lambda U^{-1}$. Здесь Λ – диагональная матрица собственных значений L, а U – матрица из $U(2) = Sp(4, \mathbb{R}) \cap SO(4, \mathbb{R})$, максимальная компактная подгруппа группы $Sp(4, \mathbb{R})$. M матрица из уравнения (9) равна $M = (U\Lambda U^{-1})_{>0} -(U\Lambda U^{-1})_{<0}$. Зафиксируем собственные значения L как $0 < \lambda_1 < \lambda_2$, так что соответствующий элемент в алгебре Картана есть $\lambda_1 h_1 + \lambda_2 h_2$. Поскольку система Тоды на $Sp(4, \mathbb{R})$ дается ограничением уравнения (9) из $SL(4, \mathbb{R})$, можно описать критические точки потока на пространстве флагов; они даются классами эквивалентности ортогональных матриц в $Sp(4, \mathbb{R})$, т.е. из пересечения $SO(4,\mathbb{R}) \cap Sp(4,\mathbb{R}) = U(2)$, которые сохраняют подалгебру Картана $Sp(4, \mathbb{R})$. Существует восемь перестановочных матриц \tilde{s}_i , которые попадают в U(2). Используем формулы из [29], которые выражают функцию Морса системы Тоды на симплектических флагах в терминах корней $Sp(n, \mathbb{R})$. Вычисляем квадратичную часть функции Морса F_n на $Sp(n,\mathbb{R})$ в особых точках в терминах локальных координат, перенесенных из алгебры Ли. Чтобы восстановить точную картину траекторий, соединяющих особые точки, делаем перечень минорных поверхностей, к которым они принадлежат, см. [43]. Сравнивая индексы Морса точек и множества точек внутри различных инвариантных подмногообразий (минорных поверхностей), получим следующий рисунок:

Эта диаграмма 1-параметрических семейств траекторий, соединяющих особые точки, которые соответствуют \tilde{s}_i . Как можно видеть, она совпадает с диа-

граммой порядка Брюа для группы Вейля группы $Sp(4, \mathbb{R})$, см. [41]. Также отметим, что индексы особых точек совпадают с длинами соответствующих элементов Вейля; такой факт также имел место во всех предыдущих ситуациях, которые мы рассматривали в работе [35].

Случай G₂. Наименьшей спорадической группой из классификационного списка простых групп Ли является группа G_2 . Существует много способов ввести ее. Например, как подгруппу в $SL(7, \mathbb{R})$, которая сохраняет данную симметрическую 2-форму и кубическую форму на \mathbb{R}^7 . Наше рассмотрение основано на описании G_2 , данном Гроссом в [45]. Нужно вложить эту группу в $SL(7,\mathbb{R})$ так, чтобы все необходимые для анализа условия, перечисленные выше, оставались в силе. Схема в этом случае похожа на схему в предыдущем случае, трудность была в выборе правильного представления для корневых векторов, что было достигнуто определенным выбором ортогональной матрицы сопряжения P, подробности см. в [43]. Алгебра Картана в этом случае (мы получаем ее, сопрягая алгебру Картана, рассмотренную в [45], матрицей P) состоит из диагональных матриц, и можно получить точные матричные представления элементов группы Вейля в этом представлении, что и было сделано. После вычисления функции Морса и анализа минорных поверхностей, мы получили рис. 2. Этот рисунок совпадает с диаграммой Хассе порядка Брюа группы G₂ с точностью до перестановок элементов.

Рис. 2. (Цветной онлайн) 1-мерные траектории, соединяющие две особые точки, которые не накрываются траекториями высших размерностей

Рис. 3. (Цветной онлайн) 1-мерные траектории на $SO(4)/(SO(2) \times SO(2))$

Система на $Gr_2(4,\mathbb{R})$. Рассмотрим две пары совпадающих собственных значений матрицы Лакса ранга 4. Тогда динамическая система (11) на $\Psi \in SO(4, \mathbb{R})$ определена на грассманиане $Gr_2(4, \mathbb{R})$, так как Ψ определена с точностью до действия тора. В этом случае рассмотрим расслоение с базой $SO(4)/(SO(2) \times SO(2))$ и слоем, изоморфным тору. Пространство расслоения – SO(4). Наверху (над базой) количество особых точек – 24, на базе – 6. Каждая особая точка на базе – проекция (результат слияния) целого непрерывного множества (тора) точек из SO(4), которое соответствует диагональной матрице с двумя парами совпадающих собственных значений (одной из 6). Граничные точки этого множества наверху – 4 особые точки, связанные преобразованием из $SO(2) \times SO(2)$. В работе [42] мы показываем, что все необходимые свойства такой системы Тоды для анализа фазового портрета сохраняются, и в результате мы получаем рис. 2, который совпадает с диаграммой Хассе для порядка Брюа на перестановках с повторениями.

Работа выполнена при частичной поддерж-РФФИ # 18-02-01081 грантами (А. Левин, ке Ю. Черняков), М. Ольшанецкий, # 18-01-00926(А. Зотов) и #18-01-00460 (С. Харчев). Работа А. Левина выполнена при поддержке Лаборатории зеркальной симметрии НИУ ВШЭ, грант Правительства РФ, Договор #14.641.31.0001. Исследование А. Зотова финансировалось в рамках государственной поддержки ведущих университетов Российской Федерации "5-100".

- 1. F. Calogero, J. Math. Phys. 10, 2191 (1969).
- 2. M. Toda, J. Phys. Soc. Japan 22(2), 431 (1967).

- J. Gibbons and T. Hermsen, Physica D: Nonlinear Phenomena 11, 337 (1984).
- 4. S. Wojciechowski, Phys. Lett. A 111, 101 (1985).
- M. A. Olshanetsky and A. M. Perelomov, Inventiones mathematicae 37(2), 93 (1976).
- 6. B. Sutherland, Phys. Rev. A 4(5), 2019 (1971).
- 7. B. Sutherland, Phys. Rev. A 5(3), 1372 (1972).
- В. И. Арнольд, Математические методы классической механики, Наука, М. (1979).
- L. Fehér and B. G. Pusztai, Nuclear Physics B 734[FS], 304 (2006).
- L. Fehér, An application of the reduction method to Sutherland type many-body systems, Geometric Methods in Physics, Birkhauser, Basel (2013), p. 109.
- 11. L. Fehér, arXiv:1809.01529 [math-ph].
- S. Kharchev, A. Levin, M. Olshanetsky, and A. Zotov, JETP Lett. **106**(3), 179 (2017).
- S. Kharchev, A. Levin, M. Olshanetsky, and A. Zotov, J. Math. Phys. **59**(10), 103509 (2018).
- 14. Н. Я. Виленкин, Специальные функции и теоря представлений групп, Наука, М. (1991), гл VI.5.
- 15. S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic press, San Diego (1978).
- N. Hitchin, Proceedings of the London Mathematical Society 1, 59 (1987).
- 17. N. Hitchin, Duke Math. J. **54**(1), 91 (1987).
- A. Kapustin and E. Witten, arXiv hep-th/0604151 (2006).
- 19. S. Gukov and E. Witten, arXiv hep-th/0612073 (2006).
- D. Baraglia and L. P. Schaposnik, Adv. Theor. Math. Phys. 20(3), 525 (2016); arXiv:1309.1195 [math.AG].
- 21. N. Nekrasov, Commun. Math. Phys. 180, 587 (1996).
- D. V. Talalaev and A.V. Chervov, Theoret. and Math. Phys. 140(2), 1043 (2004).
- 23. M. Toda, J. Phys. Soc. Japan
 ${\bf 23}(3),\, 501$ (1967).
- 24. M. Henon, Phys. Rev. B 9, 1921 (1974).

- 25. H. Flaschka, Phys. Rev. B **9**(4), 1924 (1974).
- H. Flaschka, On the Toda lattice. II. Prog. Theor. Phys. 51(3), 703 (1974).
- 27. С.В. Манаков, ЖЭТФ 40(2), 269 (1975).
- A. M. Bloch, R. W. Brockett, and T. S. Ratiu, Comm. Math. Phys. 147, 57 (1992).
- Y. Kodama and J. Ye, Comm. Math. Phys. 178(3), 765 (1996).
- P. Deift, L. C. Li, T. Nanda, and C. Tomei, CPAM 39, 183 (1986).
- N. Ercolani, H. Flaschka, and S. Singer, Integrable Systems, v. 115 of Progress in Mathematics, Birkhauser, Boston (1993), p. 181.
- 32. M. Adler, Invent. Math. 50, 219 (1979).
- 33. B. Kostant, Adv. in Math. **34**, 195 (1979).
- 34. W. W. Symes, Invent. Math. 59(1), 13 (1980).
- Yu.B. Chernyakov, G.I. Sharygin, and A.S. Sorin, Commun. Math. Phys. **330**, 367 (2014).
- P. Deift, T. Nanda, and C. Tomei, SIAM J. Numer. Anal. 20, 1 (1983).
- 37. P. Fre and A.S. Sorin, Nucl. Phys. B 815, 430 (2009).
- P. Fre, A. S. Sorin, and M. Trigiante, JHEP **1204**, 015 (2012).
- 39. Y. Kodama and L. Williams, arXiv:1308.5011.
- Yu. B. Chernyakov and A. S. Sorin, Lett. Math. Phys. 104, 1045 (2014).
- A. Bjorner and F. Brenti, Combinatorics of Coxeter groups, Springer, N.Y. (2005).
- Yu.B. Chernyakov, G.I. Sharygin, and A.S. Sorin, SIGMA 12, 084 (2016).
- Yu. B. Chernyakov, G. I. Sharygin, and A. S. Sorin, Theor. Math. Phys. **193**(2), 1574 (2017).
- F. De Mari and M. Pedroni, J. Geom. Anal. 9(4), 607 (1999).
- K. I. Gross, Transactions Amer. Math. Soc. 132, 411 (1968).