## Сверхтеплопроводность и электрическая активность сверхтекучих систем

С. И. Шевченко<sup>1)</sup>, А. М. Константинов

Физико-технический институт низких температур им. Б.И. Веркина, 61103 Харьков, Украина

Поступила в редакцию 2 апреля 2019 г. После переработки 30 апреля 2019 г. Принята к публикации 30 апреля 2019 г.

В работе показано, что в He-II, помещенном в магнитное поле **H**, поток тепла под действием градиента температуры  $\nabla T$  приводит к появлению электрического поля **E** ~ **H** ×  $\nabla T$ . Эффект имеет место в сверхтекучих диэлектрических системах благодаря наличию у них свойства, называемого сверхтеплопроводностью. Величина поля существенно зависит от формы образца с гелием и направления магнитного поля относительно образца. Показано, что эффект реализуется как при статическом, так и при нестационарном градиенте температуры (при распространении второго звука).

DOI: 10.1134/S0370274X19120051

Последнее время значительный интерес вызывает проблема электрической активности сверхтекучих систем. Появление этой проблемы связано с экспериментальными работами [1, 2], выполненными во ФТИНТ в Харькове около пятнадцати лет назад. В работе [1] было, в частности, обнаружено, что стоячая волна второго звука в резонаторе приводила к появлению разности потенциалов  $\Delta \varphi$  между концами резонатора, пропорциональной разности температур  $\Delta T$  между этими концами. В [2] обнаружен механоэлектрический эффект: крутильные колебания ячейки с торсионным осциллятором сопровождались колебаниями разности потенциалов между поверхностью ячейки и электродом на ее оси. Результаты работы [1] были подтверждены в нескольких экспериментах самого последнего времени [3-6].

Обнаруженные эффекты стали объектом многочисленных теоретических исследований. Была предсказана поляризация диэлектрических систем ускорением [7] (явление, аналогичное эффекту Стьюарта-Толмена в металлах). Установлено, что квантованный вихрь создает вокруг себя аксиальносимметричную поляризацию ("поляризационный еж") [8, 9], а поток сверхтекучей компоненты относительно вихря приводит к появлению у вихря дипольного момента [10]. Вычислен вектор поляризации, обусловленный дипольными моментами вихревых колец в поле сил Ван-дер-Ваальса [11, 12]. Предложена модель, объясняющая результаты экспериментов появлением дипольных моментов у атомов гелия вблизи стенок сосуда с He-II [13] и вблизи измерительных электродов [14, 15]. Однако общепринятая точка зрения на природу наблюдаемых в [1–6] явлений в настоящее время отсутствует.

Роль приповерхностных поляризованных слоев особенно велика в тонких сверхтекучих пленках. В таких пленках при наличии на краях пленки периодически изменяющейся во времени разности температур по пленке распространяется волна третьего звука. Волна сопровождается колебаниями толщины пленки, которые приводят к колебаниям индуцированного стенкой дипольного момента и появлению в окружающем пространстве осциллирующего электрического поля. Этот эффект предсказан в [16, 17].

В настоящей работе обращается внимание на механизм термополяризации, который возможен в сверхтекучих диэлектрических системах при наличии магнитного поля. Известно, что He-II характеризуется двумя уникальными свойствами, одним из которых является сверхтекучесть, а другое часто называют сверхтеплопроводностью (это название предложено в [18]). Громадное значение коэффициента теплопроводности в сверхтекучем состоянии объясняется тем, что перенос тепла в He-II связан с движением нормальной компоненты. При этом поток массы, переносимый нормальной компонентой, компенсируется потоком, переносимым сверхтекучей компонентой. Чрезвычайно важным обстоятельством является тот факт, что условие отсутствия потока массы должно выполняться лишь в среднем, т.е. должен обращаться в нуль поток массы, усредненный по площади системы. Локальный поток массы в общем слу-

 $<sup>^{1)}{\</sup>rm e}\mbox{-mail: shevchenko@ilt.kharkov.ua}$ 

чае не должен обращаться в нуль. Поскольку движение любого диэлектрика в магнитном поле приводит к его поляризации, то при наличии магнитного поля с локальным потоком массы, порождаемым градиентом температуры, в сверхтекучем гелии будет связан локальный дипольный момент и вне системы может возникнуть среднее электрическое поле. Можно сказать, что обсуждаемый эффект является аналогом эффекта Нернста-Эттингсхаузена в проводниках. Но оказалось, что в сверхтекучих системах величина возникающего электрического потенциала очень чувствительна к геометрии системы и ориентации магнитного поля. Так, в круговом капилляре эффект отсутствует, а в случае эллиптического капилляра с полуосями а и в величина электрического поля при  $a \gg b$  изменяется больше, чем на три порядка в зависимости от того, направлено магнитное поле вдоль большой или малой полуоси. Установлению характера зависимости электрического поля от величины и направления магнитного поля и точки наблюдения посвящено настоящее сообщение.

Будем исходить из полученного Минковским (см., например, [19], формула (76,10)) выражения для индукции **D** в диэлектрике с диэлектрической проницаемостью  $\epsilon$  и магнитной проницаемостью  $\mu$  при его движении со скоростью **v** 

$$\mathbf{D} = \epsilon \mathbf{E} + \frac{\epsilon \mu - 1}{c} \left( \mathbf{v} \times \mathbf{H} \right). \tag{1}$$

Здесь Е и **H** – напряженности стационарных электрического и магнитного полей. Выражение (1) справедливо с линейной точностью по v/c.

В случае <sup>4</sup>Не с хорошей степенью точности можно считать, что  $\mu = 1$ . Связь диэлектрической проницаемости  $\epsilon$  с поляризуемостью  $\alpha$  атома <sup>4</sup>Не и плотностью атомов *n* можно найти с помощью соотношения Клаузиуса–Моссотти

$$\frac{\epsilon - 1}{\epsilon + 2} = \frac{4\pi n\alpha}{3},\tag{2}$$

которое является следствием того факта, что атом поляризует не среднее поле **E**, а локальное электрическое поле. Для <sup>4</sup>Не плотность  $n = 2 \cdot 10^{22} \text{ см}^{-3}$ , поляризуемость  $\alpha = 2 \cdot 10^{-25} \text{ см}^3$  и произведение  $n\alpha$  существенно меньше единицы. Поэтому  $\epsilon - 1$  представляет собой разложение по степеням  $n\alpha$ , в котором достаточно удержать только первый член разложения  $4\pi n\alpha$ .

Учитывая, что индукция  $\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}$  и что поток массы  $\mathbf{j} = Mn\mathbf{v}$  (M – масса атома гелия), получаем из (1) в отсутствие электрического поля

$$\mathbf{P} = \frac{\alpha}{Mc} \left[ \mathbf{j} \times \mathbf{H} \right]. \tag{3}$$

Письма в ЖЭТФ том 109 вып. 11-12 2019

В общем случае в сверхтекучем гелии  $\mathbf{j} = \rho_n \mathbf{v}_n + +\rho_s \mathbf{v}_s$ , где  $\mathbf{v}_n$ ,  $\mathbf{v}_s$  – скорости нормальной и сверхтекучей компонент, а  $\rho_n$ ,  $\rho_s$  – их массовые плотности. Выражение (3) не зависит от способа приведения Не-II в движение. Ниже мы будем считать, что движение жидкости индуцируется градиентом температуры.

Рассмотрим задачу о стационарном тепловом потоке в He-II, заполняющем капилляр, между концами которого поддерживается малая разность температур  $\Delta T$ . При ламинарном движении (анализом которого мы ограничимся) скорости  $\mathbf{v}_n$  и  $\mathbf{v}_s$  не зависят от продольной координаты (вдоль капилляра) и уравнения двухжидкостной гидродинамики имеют вид

$$\eta_n \nabla^2 \mathbf{v}_n = \frac{\rho_n}{\rho} \nabla P + \rho_s S \nabla T, \qquad (4)$$

$$\nabla P = \rho S \nabla T. \tag{5}$$

Здесь  $\eta_n$  – коэффициент вязкости нормальной компоненты,  $\rho = \rho_n + \rho_s$  – полная массовая плотность,  $\nabla P$  и  $\nabla T$  – градиенты давления и температуры, S – удельная энтропия. Второе из этих уравнений, называемое уравнением Лондона, есть следствие механического равновесия, возникающего при протекании сверхтекучей жидкости между концами капилляра. Из (4) и (5) следует уравнение

$$\eta_n \nabla^2 \mathbf{v}_n = \nabla P, \tag{6}$$

которое эквивалентно уравнению Пуазейля в классической гидродинамике.

Скорость сверхтекучего движения не может зависеть от поперечной координаты, так как  $\nabla \times \mathbf{v}_s = 0$ . Ее значение можно найти из условия отсутствия полного потока массы, т.е. из условия  $\rho_n \langle \mathbf{v}_n \rangle + \rho_s \mathbf{v}_s =$ = 0. Здесь  $\langle \mathbf{v}_n \rangle$  – скорость нормальной компоненты, усредненная по площади поперечного сечения капилляра. С учетом этого условия получаем из (3)

$$\mathbf{P} = \frac{\alpha \rho_n}{Mc} \left[ \left( \mathbf{v}_n - \langle \mathbf{v}_n \rangle \right) \times \mathbf{H} \right].$$
(7)

Мы видим, что при наличии магнитного поля поляризация локально отлична от нуля, а полный дипольный момент обращается в нуль вместе с обращением в нуль полного потока массы. Электрический потенциал вне системы определяется выражением

$$\varphi(\mathbf{r}_0) = \int \frac{\mathbf{P} \cdot (\mathbf{r}_0 - \mathbf{r})}{\left|\mathbf{r}_0 - \mathbf{r}\right|^3} d^3 r, \qquad (8)$$

где  $\mathbf{r}_0 = (r_0, \theta_0, z_0)$  – радиус-вектор точки наблюдения. Поэтому обращение в нуль полного дипольного момента в общем случае не приводит к отсутствию электрического поля снаружи системы. Решение уравнения (6) зависит от геометрии задачи. Кажется естественным выбрать в качестве капилляра цилиндрическую трубку кругового сечения. Однако расчет показывает, что в этом случае потенциал вне капилляра тождественно равен нулю. Результат является следствием высокой симметрии такой системы. Учет нелинейных по  $n\alpha$  членов в разложении выражения для  $\epsilon$  не изменяет симметрию задачи, поэтому аксиально симметричное течение по цилиндрическому капилляру не сопровождается появлением электрического поля вне капилляра и при учете нелинейной зависимости  $\epsilon(n)$ . Потенциал  $\varphi(\mathbf{r}_0)$ отличен от нуля, если перейти от капилляра кругового сечения к капилляру, например, эллиптического сечения.

Рассмотрим случай капилляра эллиптического сечения, между концами которого создана малая разность температур  $\Delta T$ . Пусть полуоси эллипса *a* и *b* лежат вдоль осей  $\hat{\mathbf{x}}$  и  $\hat{\mathbf{y}}$  соответственно. Выражение для скорости нормальной компоненты можно найти в [20]. Подставляя в (7) эту скорость нормальной компоненты и считая, что магнитное поле **H** направлено вдоль оси  $\hat{\mathbf{y}}$ , находим поляризацию

$$\mathbf{P}(x,y) = -P_0 \frac{a^2}{a^2 + b^2} \left(\frac{1}{2} - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right) \hat{\mathbf{x}}.$$
 (9)

Здесь использовано обозначение

$$P_0 = \frac{\alpha \rho_n H}{Mc} \frac{\rho S \Delta T}{2\eta_n L} b^2, \qquad (10)$$

где L – длина капилляра.

Электрический потенциал вне жидкости может быть получен подстановкой (9) в (8). Однако интегрирование не удается выполнить при произвольных координатах точки наблюдения  $x_0$  и  $y_0$ . Аналитическое выражение можно получить при  $y_0 = 0$ . Но даже в этом случае ответ оказывается весьма громоздким. Мы приведем ответ лишь для двух частных случаев. Введем обозначение  $\gamma = b/a$ . Тогда потенциал на поверхности капилляра при  $x_0 = a$  равняется

$$\varphi = \frac{2\pi b P_0}{3} \frac{1 - \gamma}{(1 + \gamma^2) (1 + \gamma)^2}.$$
 (11)

При  $\gamma = 1$ , т.е. при a = b, когда эллипс превращается в окружность, выражение (11) обращается в нуль в соответствии со сделанным выше утверждением.

При  $\gamma \ll 1$  (в этом случае система моделирует щель, причем магнитное поле приложено поперек щели)

$$\varphi(x_0, 0) = \frac{2\pi b P_0}{3} \left\{ \sqrt{x_0^2 - 1} + x_0 \left[ 4x_0 \left( x_0 - \sqrt{x_0^2 - 1} \right) - 3 \right] \right\}.$$
 (12)

Здесь  $x_0$  измеряется в единицах a.

При  $\gamma \gg 1$  система снова моделирует щель, но магнитное поле приложено вдоль щели. В этом случае потенциал на несколько порядков меньше, чем при  $\gamma \sim 1$  и  $\gamma \ll 1$ .

При произвольных  $x_0$  и  $y_0$  численное интегрирование позволяет найти потенциал  $\varphi$  при движении от точек с координатами  $(x_0, y_0 = 0)$  к точкам  $(x_0 = 0, y_0)$ . Можно было бы ожидать монотонное убывание потенциала  $\varphi(x_0, y_0)$ . Оказывается, что это не так. Ниже приведены графики зависимостей потенциала  $\varphi$  на поверхности капилляра от полярного угла  $\theta = \arctan(y_0/x_0)$  для  $\gamma \sim 1$  и  $\gamma \ll 1$  (см. рис. 1 и 2).



Рис. 1. Угловые зависимости потенциала  $\varphi$  на поверхности капилляра при  $\gamma \sim 1$ . Кривая 1 отвечает магнитному полю, направленному вдоль малой оси эллипса, кривая 2 – полю вдоль большой оси эллипса



Рис. 2. Угловая зависимость потенциал<br/>а $\varphi$ на поверхности капилляра при $\gamma=0.05$ 

Анализ показывает, что наиболее благоприятным для получения большого потенциала  $\varphi$  является случай  $\gamma \ll 1$  (магнитное поле приложено поперек щели). Максимальное значение потенциала достигается при малых углах  $\theta$ . В частности, при  $\theta = 0$  и  $x_0 = 1$ потенциал равен

Письма в ЖЭТФ том 109 вып. 11-12 2019

$$\varphi = \frac{\pi b^3}{3} \frac{\alpha \rho_n H}{Mc} \frac{\rho S \Delta T}{\eta_n L}.$$
 (13)

Зависимость потенциала  $\varphi$  от температуры определяется зависимостью от температуры нормальной плотности  $\rho_n$ , вязкости  $\eta_n$ , а также удельной энтропии *S*. Зависимостью от температуры полной плотности  $\rho$  и поляризуемости  $\alpha$  можно пренебрегать. Кажется, что величину потенциала  $\varphi$  можно существенно изменять с помощью изменения величины *b*. Однако такое изменение возможно лишь в некоторых пределах. Причина в том, что с ростом *b* ламинарное движение жидкости переходит в турбулентное.

В пионерской работе [21] показано, что при достижении тепловым потоком  $W = \rho_s ST |\mathbf{v}_n - \mathbf{v}_s|$  критической величины W<sub>c1</sub> ламинарное движение разрушается путем появления в сверхтекучей жидкости квантованных вихрей и вихревых колец, образующих вихревой клубок (состояние Т-1). Дальнейшие исследования показали, что существует второй критический тепловой поток  $W_{c2}$ , при превышении которого вихревая плотность существенно увеличивается (состояние Т-2). Переход от состояния Т-1 к состоянию T-2 связывается с переходом в турбулентное состояние нормальной компоненты (см., например, [22, 23]). Результат существенно зависит от формы канала. Два перехода имеют место в эллиптических каналах с размерами  $a \approx b$ . При  $a \gg b$  происходит только один переход в состояние Т-2 [24].

В состоянии T-1 кольца с радиусом порядка размера капилляра *b* являются критическими. Для появления таких колец разность  $|\mathbf{v}_n - \mathbf{v}_s|$  должна стать порядка  $(\hbar/Mb) \ln (b/\xi)$ , где  $\xi$  – радиус вихревого кора [25]. Переход в турбулентное состояние T-2 должен происходить при достижении нормальной компонентой критической скорости  $R_n\eta_n/\rho_n b$  ( $R_n$  – число Рейнольдса). Существование критических скоростей определяет максимально допустимый размер *b*, при котором сохраняется ламинарное движение жидкости. Тем самым накладывается ограничение на величину электрического потенциала (13).

Приведем ограничения на величину электрического потенциала в режиме ламинарного протекания жидкости. При  $\gamma \sim 1$  это ограничение связано с выполнением условия  $|\mathbf{v}_n - \mathbf{v}_s| < (\hbar/Mb) \ln (b/\xi)$ 

$$\varphi < \frac{4\pi\hbar}{3M} \frac{\alpha H}{Mc} \frac{\rho_s \rho_n}{\rho} \ln\left(\frac{b}{\xi}\right) \equiv \varphi_{c1}.$$
 (14)

При  $\gamma \ll 1$  ограничение накладывается на скорость нормальной компоненты  $\langle v_n \rangle < R_n \eta_n / \rho_n b$ . Отсюда следует, что

$$\varphi < \frac{4\pi}{3} \frac{\alpha H}{Mc} R_n \eta_n \equiv \varphi_{c2}.$$
 (15)

Письма в ЖЭТФ том 109 вып. 11-12 2019

Рассматривая область температур, в которой  $\rho_s \sim \rho_n \sim \rho$ , находим, что  $\varphi_{c2} > \varphi_{c1}$ . Так для H = 10 Тл,  $\alpha = 2 \cdot 10^{-25}$  см<sup>3</sup>,  $R_n = 2 \cdot 10^3$ ,  $\eta_n = 2$  мкП и  $\rho = 10^{-1}$  г/см<sup>3</sup> имеем  $\varphi_{c1} = 2 \cdot 10^{-8}$  В и  $\varphi_{c2} = 5 \cdot 10^{-7}$  В. Таким образом, для получения наибольшего потенциала  $\varphi$  нужно использовать не капилляр кругового сечения, а щель, причем магнитное поле должно быть направлено поперек щели. Найдем поперечный размер щели  $b_c$ , соответствующий наибольшему потенциалу  $\varphi_{c2}$ . Для капилляра длиной L = 1 см, между концами которого создана разность температур  $\Delta T = 10^{-3}$  К, из (13), в указанной области температур, находим  $b_c = 10^{-3}$  см.

До сих пор считалось, что перепад температур между концами капилляра не зависит от времени. Однако эффект возможен и в случае, когда такой перепад периодически зависит от времени, т.е. в условиях распространения в He-II второго звука.

Пусть Не-ІІ заполняет цилиндр кругового сечения радиуса R и второй звук распространяется вдоль оси цилиндра z. Известно, что в пренебрежении тепловым расширением в волнах первого звука имеют место колебания давления и плотности, а в волнах второго звука испытывают колебания только температура и энтропия. При учете теплового расширения возникает зацепление между колебаниями второго и первого звуков и в результате при распространении второго звука возникают колебания давления. Эти колебания приводят к отличному от нуля потоку массы  $j_z$ , который связан с осциллирующей частью температуры T'. В случае  $R \gg \lambda$ , где  $\lambda$  – длина волны второго звука, зависимостью  $j_z$  от радиальной координаты r можно пренебречь, и поток  $j_z$  связан с T' соотношением (см., например, [26])

$$j_z = -\frac{\beta \rho u_1^2 u_2}{u_1^2 - u_2^2} T',$$
(16)

где  $u_1$  и  $u_2$  – скорость первого и второго звуков соответственно,  $\beta$  – коэффициент теплового расширения. Если внешнее магнитное поле направлено поперек цилиндра (вдоль оси y), то в гелии, согласно (3), возникает электрическая поляризация  $P_x =$  $= -\alpha H j_z/Mc$ . Электрический потенциал снаружи цилиндра получается подстановкой этой поляризации в (8). Подробности вычисления возникающего интеграла можно найти в работе [17]. Учитывая, что при T > 0.8 К выполняется условие  $u_1 \gg u_2$  и, полагая, что высота цилиндра L существенно превышает длину волны второго звука  $\lambda$ , находим выражение для электрического потенциала в точке с координатами  $(r_0, \theta_0, 0)$ 

$$\varphi(r_0, \theta_0, t) = 4\pi\beta\rho u_2 \frac{\alpha HR}{Mc} I_1(kR) K_1(kr_0) \times T_a' \cos\theta_0 \cos(u_2kt).$$
(17)

Здесь k – волновое число,  $T_a'$  – амплитуда температуры в волне второго звука,  $I_1$  и  $K_1$  – модифицированные функции Бесселя первого порядка первого и второго рода, соответственно.

При получении (17) предполагалось, что  $R \gg \lambda$ и мы пренебрегали зависимостью потока  $j_z$  от радиальной координаты r. Однако если радиус цилиндра порядка длины волны второго звука, такое допущение оказывается неоправданным. В этом случае для корректного решения задачи о распространении второго звука следует использовать полную систему гидродинамических уравнений для сверхтекучей жидкости, дополненную граничными условиями. При решении этой системы удобно воспользоваться подходом, развитым в работе [27]. В случае выполнения условий  $u_1 \gg u_2$  и  $\lambda \gg R \gg \lambda_{\eta}$ , где  $\lambda_{\eta} = \sqrt{2\pi\eta_n/\nu\rho_n}$  – длина вязкой волны ( $\nu$  – частота второго звука), получаем для потока массы

$$j_{z} = -\left(\beta\rho u_{2} + \frac{\rho_{s}S}{u_{2}}\frac{J_{0}(k_{\eta}r)}{J_{0}(k_{\eta}R)}\right)T',$$
 (18)

где  $J_0$  – функция Бесселя первого рода нулевого порядка,  $k_\eta$  – волновое число вязкой волны. С помощью (3) и (18) находим из (8) выражение для электрического потенциала в точке с координатами  $(r_0, \theta_0, 0)$ 

$$\varphi(x_0, \theta_0, t) = 4\pi \frac{\alpha HR}{Mc} K_1(kr_0) \left[\beta \rho u_2 I_1(kR) - \frac{\rho_s S}{u_2} \frac{\lambda_\eta}{\lambda} \cos\left(\frac{\pi}{8}\right)\right] T_a' \cos \theta_0 \cos\left(u_2 k t\right).$$
(19)

Этот потенциал, как и потенциал в (17), зависит от полярного угла точки наблюдения по закону косинуса и обращается в нуль при  $\theta_0 = \pi/2$ . Другими словами, на плоскости, параллельной магнитному полю **H** и проходящей через ось цилиндра, потенциал тождественно равен нулю.

Заметим, что выражения для потенциала  $\varphi$  при распространении второго звука, как и в статическом случае, получены в предположении ламинарного режима. К сожалению, нам не известны аналитические критерии перехода от ламинарного режима к турбулентному в случае распространения второго звука. В экспериментах радиус цилиндрического образца обычно лежит в интервале R = 0.1 - 1 см (см., например, [24]). При этом амплитудное значение температуры, соответствующее ламинарной области, не превышает нескольких милликельвин. Для T = 1.5 К, H = 10 Тл,  $\nu = 400$  Гц,  $T_a' = 10^{-3}$  К и R = 0.5 см потенциал на поверхности цилиндра в точке с координатами  $r_0 = R$ ,  $\theta_0 = 0$  равняется  $\varphi = 4 \cdot 10^{-8}$  В.

В заключение отметим, что в экспериментах со вторым звуком следует различать электрические поля, предсказываемые в данной работе, от разности потенциалов между концами образца, о которой сообщается в [1]. Потенциалы (17) и (19) имеют характерную угловую зависимость. Кроме того, речь идет об электрических полях снаружи образца, в то время, как в [1] измеряется разность потенциалов внутри образца.

- 1. А.С. Рыбалко, ФНТ **30**, 1321 (2004).
- 2. А.С. Рыбалко, С.П. Рубец, ФНТ **31**, 820 (2005).
- 3. T. V. Chagovets, Low Temp. Phys. 42, 176 (2016).
- 4. T. V. Chagovets, Physica B 488, 62 (2016).
- 5. T.V. Chagovets, J. Low Temp. Phys. 187, 383 (2017).
- H. Yayama, Y. Nishimura, H. Uchiyama, H. Kawai, J.-P. van Woensel, and A.G. Hafez, Low Temp. Phys. 44, 1386 (2018).
- 7. L. A. Melnikovsky, J. Low Temp. Phys. 148, 559 (2007).
- 8. В. Д. Нацик, ФНТ **31**, 1201 (2005).
- 9. С.И. Шевченко, А.С. Рукин, ФНТ 36, 186 (2010).
- S. I. Shevchenko and A. M. Konstantinov, J. Low Temp. Phys. **185**, 384 (2016).
- 11. И. Н. Адаменко, Е. К. Немченко, ФНТ 41, 635 (2015).
- 12. И. Н. Адаменко, Е. К. Немченко, ФНТ 42, 335 (2016).
- С. И. Шевченко, А.С. Рукин, Письма в ЖЭТФ 90, 46 (2009).
- 14. Е.Д. Гутлянский, ФНТ 35, 956 (2009).
- 15. M. D. Tomchenko, Phys. Rev. B 83, 094512 (2011).
- С.И. Шевченко, А.М. Константинов, Письма в ЖЭТФ 104, 518 (2016).
- S. I. Shevchenko and A. M. Konstantinov, J. Low Temp. Phys. **194**, 1 (2019).
- W. H. Keesom, A. P. Keesom, and B. F. Saris, Physica 5, 281 (1938).
- 19. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Физматлит, М. (2005), гл. 9.
- 20. Л. Д. Ландау, Е. М. Лифшиц, *Гидродинамика*, Физматлит, М. (2001), гл. 2.
- 21. W.F. Vinen, Proc. R. Soc. Lond. A 240, 114 (1957).
- D. J. Melotte and C. F. Barenghi, Phys. Rev. Lett. 80, 4181 (1998).
- S. Yui and M. Tsubota, J. Phys. Conf. Ser. 568, 012028 (2014).
- 24. J. T. Tough, Progress in Low Temp. Phys. 8, 133 (1982).
- W. F. Vinen and J. J. Niemela, J. Low Temp. Phys. 128, 167 (2002).
- И. М. Халатников, Теория сверхтекучести, Наука, М. (1971).
- И.Н. Адаменко, М.И. Каганов, ЖЭТФ 53, 615 (1967).