Особенности пиннинга волны зарядовой плотности в квазидвумерных соединениях

А. В. Φ ролов⁺, А. П. Орлов^{+*}, А. А. Синченко^{+×1)}, П. Монсо^{\circ 2)}

+Институт радиотехники и электроники им. В.А. Котельникова РАН, 125009 Москва, Россия

*Институт нанотехнологий микроэлектроники РАН, 115487 Москва, Россия

 $^{ imes}$ Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия

° Universté Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38042 Grenoble, France

Поступила в редакцию 23 ноября 2018 г. После переработки 29 ноября 2018 г. Принята к публикации 30 ноября 2018 г.

Исследованы эффекты коллективного движения (скольжения) волны зарядовой плотности в квазидвумерном проводнике TbTe₃ в широком интервале температур. Непосредственно после охлаждения до температур ниже температуры пайерлсовского перехода, $T_{CDW} = 336$ K, пороговое поле инициации скольжения волны зарядовой плотности, E_t , демонстрирует зависимость от температуры, близкую к линейной. Экспозиция образцов при фиксированной температуре $T_0 < T_{CDW}$ в течение нескольких часов приводила к существенной модификации эффекта скольжения волны зарядовой плотности. Пороговое поле значительно возрастало, а зависимость $E_t(T)$ становилась немонотонной, демонстрируя сильный максимум при $T = T_0$. Наблюдаемый эффект связывается с формированием при экспозиции упорядоченной структуры (решетки) дефектов волны зарядовой плотности и с изменением режима пиннинга при ее плавлении.

DOI: 10.1134/S0370274X19030123

Коллективное движение (скольжение) волн зарядовой плотности является наиболее интересным свойством низкоразмерных соединений, обнаруживающих данный тип электронного упорядочения. Впервые предсказанное Фрелихом [1] как бездиссипативный электронный транспорт, данное скольжение оказалось возможным только при достижении электрическим полем конечного значения вследствие неидеальности реальных систем. Примеси, дефекты, межцепочечное взаимодействие или соизмеримость с основной решеткой фиксируют (пиннингуют) фазу волны зарядовой плотности (ВЗП), и в малых электрических полях проводимость демонстрирует омическое поведение вследствие квазичастичных возбуждений. Чтобы преодолеть энергию пиннинга и инициировать скольжение ВЗП, необходимо приложить электрическое поле, превышающее некоторое характеристическое пороговое электрическое поле, E_t , определяемое пиннингом [2, 3]. Эффект скольжения ВЗП, проявляющийся в резком возрастании проводимости в полях $E > E_t$, ранее наблюдался и хорошо изучен во многих как неорганических, так и в органических квази-одномерных соединениях [3].

В течение многих лет изучение возможности скольжения ВЗП в квазидвумерных соединениях было безуспешным. Лишь недавно данный эффект удалось наблюдать в квазидвумерных соединениях трителлуридов редкоземельных элементов RTe₃ (R: La, Ce, Pr, Nd, Gd, Tb, Dy, Er, Tm) [4, 5]. Эти слоистые соединения имеют слабую орторомбическую кристаллическую структуру (пространственная группа C_{mcm}), и состоят из двойных плоскостей Te, разделенных гофрированными плоскостями RTe. В данной пространственной группе ось b перпендикулярна плоскостям Те. Все соединения данного семейства демонстрируют переход в состояние с несоразмеримой ВЗП с волновым вектором $\mathbf{Q}_{CDW1} = (0, 0; \sim \frac{2}{7}c^*)$ при пайерлсовской температуре существенно выше 300 К для легких редкоземельных атомов (La, Ce, Nd). Для тяжелых R-элементов (Dy, Ho, Er, Tm) при низких температурах происходит второй ВЗП переход с волновым вектором $\mathbf{Q}_{CDW2} = (\sim \frac{2}{7}a^*, 0, 0)$, перпендикулярным **Q**_{CDW1}. Резкость сверхструктурных масимумов в рентгеновской дифракции указывает на существование дальнего порядка трехмерного упорядочения [6].

¹⁾e-mail: aasinch@mail.ru

²⁾P. Monceau.

Коллективный электронный транспорт в данных соединениях оказывается возможным только вдоль направления волнового вектора ВЗП. Обнаруживая все характерные признаки скольжения ВЗП, свойства данного транспорта имеют принципиальные отличия от свойств скольжения ВЗП в квазиодномерных соединениях. Прежде всего, это отсутствие предшествующего началу скольжения ВЗП крипа (движения ВЗП, обусловленного преодлением пиннинга из-за термических флуктуаций) [7]; независимый от температуры аномально малый вклад движения ВЗП в общий электронный транспорт, определяемый отношением $\Delta R/R$ (ΔR – относительное изменение сопротивления при скольжении, R, – полное сопротивление), указывающий на очень низкую скорость ее движения в заданном электрическом поле, и линейная зависимость $E_t(T)$ [5]. Отметим, что в квази-одномерных соединениях температурная зависимость порогового поля демонстрирует принципиально другое поведение: экспоненциальный рост при понижении температуры и расхождение при $T \longrightarrow$ $\longrightarrow T_{CDW}$ [8]. Данные результаты указывают на существование принципиального различия в механизмах скольжения, а значит и в механизмах пиннинга, в одномерных и в двумерных соединениях. В настоящей работе сообщается о наблюдении в соединении TbTe3 еще одного нового эффекта в скольжении ВЗП, аналогичного пик-эффекту в сверхпроводниках [9], никогда не наблюдавшегося в квазиодномерных системах с ВЗП.

Соединение ТbTe3 демонстрирует переход в состояние с ВЗП при температуре существенно выше комитатной $T_{CDW} = 336 \,\mathrm{K}$ [6]. Монокристаллы TbTe₃ выращивались в атмосфере чистого аргона по методике, описанной ранее [4]. Тонкие монокристаллические образцы прямоугольной формы и с толщиной менее 1 мкм были получены путем микромеханического утончения относительно толстых кристаллов, предварительно подклеенных на сапфировой подложке. Качество кристаллов и пространственная оринтация кристаллографических осей контролировалось рентгеновской дифракцией. Методом травления фокусированным ионным пучком из отобранных и утоненных кристаллов были приготовлены мостиковые структуры, ориентированные вдоль направления волнового вектора ВЗП, длиной 250 мкм и шириной 50–100 мкм [10]. Зависимости сопротивления и вольтамперные характеристики (ВАХ) структур измерялись четырехконтактным методом.

На рисунке 1 приведены дифференциальные вольт-амперные характеристики одного из мостиков, измеренные с шагом $\Delta T = 10 \,\mathrm{K}$ в диапазоне

температур 180–330 К. Зависимости dV/dI(V) на рис. 1а соответствуют обычному режиму: образец

Рис. 1. (Цветной онлайн) Дифференциальные вольтамперные характеристики, dV/dI(V), микро-мостика на основе TbTe₃, измеренные при различной температуре с шагом $\Delta T = 10$ K: (a) – после охлаждения образца от T = 355 K; (b) после длительной экспозиции при $T_0 = 300$ K

нагревался до температуры, превышающей T_{CDW} , а именно, до $T = 355 \,\mathrm{K}$, после чего охлаждался до низких температур, и измерения ВАХ проводились при повышении температуры. Кривые на рис. 1b также измерялись при повышении температуры, но образец предварительно выдерживался в паейрлсовском состоянии при $T_0 = 300 \,\mathrm{K}$ в течение 20 ч. Как видно, зависимости на рис. 1а находятся в согласии с известными результатами [5]: пороговое поле монотонно возрастает с понижением T, показывая линейную зависимость при T < 300 К. Картина качественно меняется после экспозиции образца при $T_0 = 300 \, \text{K}$. Пороговое поле существенно возрастает во всем диапазоне температур, исключая узкую область вблизи $T_{CDW} = 336 \, \text{K}$. Зависимость $E_t(T)$ становится немонотонной с сильным максимумом при $T = T_0$. Соответствующие температурные зависимости порогового напряжения, $V_t(T)$, приведены на рис. 2.

На рисунке 3 показаны температурные зависимости электросопротивления, R, для обоих режимов. Значения сопротивления получены из ВАХ, приведенных на рис. 1, при нулевом напряжении смещения. Видно, что экспозиция образца не изменяет его сопротивление в пределах погрешности эксперимента.

Характер изменения пороговых характеристик иллюстрирует рис. 4, на котором приведены дифференциальные ВАХ при T = 300 К для обоих режимов. Из рисунка 4 видно, что, наряду с возрастанием

Рис. 2. (Цветной онлайн) Зависимости порогового напряжения инициации скольжения ВЗП для режимов, показанных на рис. 1а (красные квадраты) и рис. 1b (синие кружки)

Рис. 3. (Цветной онлайн) Температурные зависимости электросопротивления для режимов, показанных на рис. 1a (красные квадраты) и рис. 1b (синие кружки)

более чем в три раза величины порогового поля, для экпонированного образца изменение сопротивления при достижении порога, определяющее вклад скольжения ВЗП в электронный транспорт, более чем в два раза меньше по сравнению с обычным режимом. Вклад коллективного движения ВЗП в общий транспортный ток определяется числом сконденсированных в это состояние носителей и скоростью движения ВЗП. В нашем случае число сконденсированных в ВЗП носителей, определяемое только температурой, одинаково для обоих режимов. Следовательно, скорость скольжения ВЗП, определяемая эффектами трения, для экспонированных образцов оказыва-

Рис. 4. (Цветной онлайн) Зависимости dV/dI(V), микро-мостика на основе TbTe₃ при температуре T == 300 K для экспонированного $T_0 = 300$ K (синие квадраты) и равновесного (красные кружки) образцов

ется существенно ниже по сравнению с обычным режимом.

Нагрев образца до температуры выше T_{CDW} , приводит к восстановлению прежних величин порогового поля. В этом случае характеристики, показанные на рис. 1а полностью воспроизводятся. Также воспроизводятся и характеристики на рис. 1b, если снова выдержать образец при фиксированной T_0 в пайерлсовском состоянии в течении 20 ч. Отметим, что экспозиция образцов в течении большего времени не приводила к изменению его характеристик.

В настоящей работе приведены данные для значений температуры $T_0 = 300$ К. Качественно аналогичный эффект наблюдался нами и для $T_0 < 300$ К. При этом амплитуда максимума на зависимости $E_t(T)$ монотонно уменьшается с понижением температуры T_0 . Выяснение характера температурной и временной эволюции эффекта является предметом дальнейших исследований.

Таким образом, если пороговые характеристики образца измеряются непосредственно после перехода в состояние с ВЗП, пороговое поле демонстрирует известную линейную зависимость от температуры, назовем ее равновесной. Экспозиция образцов при фиксированной температуре T_0 в пайерлсовском состоянии в течении 20 ч приводит к существенному возрастанию E_t при $T < T_0$, к появлению сильного максимума порогового поля при $T = T_0$ и к стремлению E_t к равновесному значению при $T > T_0$.

Основным фактором, определяющим величину и поведение порогового поля ВЗП, является пиннинг

199

на дефектах. Соответственно, причиной наблюдаемого эффекта, наиболее вероятно, является изменение характера пиннинга со временем, которое в ходе изотермической экспозиции образца может быть обусловлено только перестройкой дефектной структуры. В случае существования температурной зависимости волнового вектора ВЗП можно было бы предположить реализацию "подстройки" дефектов структуры под ВЗП при экспозиции. Интуитивно, результатом такой подстройки будет усиление пиннинга именно при $T = T_0$, а при отклонении от данной температуры как в сторону увеличения, так и уменьшения T, в силу изменения волнового вектора ВЗП, ослабление пиннинга, что проявлялось бы на зависимости E(T) в появлении максимума при $T = T_0$. В данном сценарии дефекты, которые могут быть подверженными такой перестройке должны быть достаточно подвижными, но таких подвижных дефектов в соединениях RTe₃ пока не наблюдалось. Кроме того, для того, чтобы взаимодействовать с ВЗП, данные дефекты должны быть заряжены. Но соединения класса RTe₃ являются хорошими металлами, даже в пайерлсовском состоянии, с концентрацией носителей $\sim 10^{23} \, \mathrm{cm}^{-3}$, и заряженные примеси, если таковые и есть, всегда экранированы. Наконец тот факт, что сопротивление образца не изменяется после экспонирования, указывает на то, что дефектами, ответственными за наблюдаемый эффект, являются дефекты именно подсистемы ВЗП, а не дефекты структуры соединения.

Обращает на себя внимание почти полная аналогия наблюдаемой температурной зависимости порогового поля экспонированных образцов с известной в сверхпроводимости зависимостью критического тока от магнитного поля или от температуры в магнитном поле, впервые обнаруженной в работе [9] и получившей название пик-эффекта. Критический ток в сверхпроводнике второго рода может значительно возрастать с ростом температуры или магнитного поля в узком диапазоне ниже верхнего критического магнитного поля $B_{c2}(T)$. Пик-эффект наблюдался как в традиционных [11–13], так и высокотемпературных сверхпроводниках [14, 15]. Объяснение данного эффекта основано на представлении о плавлении вихревой решетки Абрикосова, и связанным с этим изменением режима пиннинга от слабого коллективного к сильному индивидуальному [16, 17]. И пороговое поле в ВЗП, и критический ток в сверхпроводниках определяются пиннингом. Основываясь на анлогию с пик-эффектом в сверхпроводниках, можно ожидать реализацию аналогичного механизма и в двумерных ВЗП. В таком представлении наблюдаемый резкий максимум $E_t(T)$ будет результатом плавления решетки дефектов ВЗП. Какова природа таких дефектов, в настоящий момент не ясно. Такими дефектами, возможно, являются дислокации ВЗП. В ходе длительной экспозиции они могут эволюционировать и, возможно, упорядочиваются, образуя своего рода решетку. Данный сценарий подразумевает наличие определенного взаимодействия между такими дефектами, характер которого, как и тип самих дефектов предстоит определить в ходе дальнейших исследований.

Авторы благодарны П.Д. Григорьеву и П. Кемери (Р. Quemerais) за полезное обсуждение экспериментальных результатов и В.А. Шахунову за помощь в проведении экспериментов. Работа выполнена при поддержке РФФИ (грант #18-02-00295).

- 1. H. Fröhlich, Proc. Roy. Sos. A **223**, 296 (1954).
- G. Gruner, *Density Waves in Solids*, Addison–Wesley, Reading, Massachusetts (1994).
- 3. P. Monceau, Advances in Physics 61, 325 (2012).
- A. A. Sinchenko, P. Lejay, and P. Monceau, Phys. Rev. B 85, 241104(R) (2012).
- A. A. Sinchenko, P. Lejay, O. Leynaud, and P. Monceau, Solid State Commun. 188, 67 (2014).
- N. Ru, C.L. Condron, G.Y. Margulis, K.Y. Shin, J. Laverock, S.B. Dugdale, M.F. Toney, and I.R. Fisher, Phys. Rev. B 77, 035114 (2008).
- D. Le Bolloc'h, A.A. Sinchenko, V.L.R. Jacques, L. Ortega, J.E. Lorenzo, G. Chahine, P. Lejay, and P. Monceau, Phys. Rev. B 93, 165124 (2016).
- 8. K. Maki, Phys. Rev. B **33**, 2852 (1986).
- M. A. R. LeBlanc and W. A. Little, in *Proceedings of* the VII International Conference on Low Temperature Physics, University of Toronto Press, Toronto (1960), p. 198.
- А.В. Фролов, А.П. Орлов, П.Д. Григорьев, В.Н. Зверев, А.А. Синченко, Р. Монсо, Письма в ЖЭТФ 107, 507 (2018).
- T. G. Berlincourt, R. R. Hake, and D. H. Leslie, Phys. Rev. Lett. 6, 671 (1961).
- 12. P. H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983).
- A. C. Marley, M. J. Higgins, and S. Bhattacharya, Phys. Rev. Lett. **74**, 3029 (1995).
- X. S. Ling and J. I. Budnick, in *Magnetic Susceptibility* of *Superconductors and Other Spin Systems*, ed. by R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Plenum Press, N.Y. (1991), p. 377.
- W. K. Kwok, J. A. Fendrich, C. J. van der Beek, and G. W. Crabtree, Phys. Rev. Lett. **73**, 2614 (1994).
- A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).
- A. I. Larkin, M. C. Marchetti, and V. M. Vinokur, Phys. Rev. Lett. **75**, 2992 (1995).