Магнито- и электрически-управляемая микроволновая интерферограмма в мета-интерферометре

Г. А. Крафтмахер¹⁾, В. С. Бутылкин, Ю. Н. Казанцев, В. П. Мальцев

Институт радиотехники и электроники им. В.А.Котельникова РАН, 125009 Москва, Россия

Поступила в редакцию 9 ноября 2018 г. После переработки 3 декабря 2018 г. Принята к публикации 11 декабря 2018 г.

В модифицированном интерферометре на основе волноводного тройника с метаструктурой "ферритовая пластина + нагруженные варакторами проводящие элементы в виде диполя или колец" в качестве управляемого разделителя пучка в диапазоне 3-6 ГГц впервые экспериментально обнаружено специфическое селективное воздействие ферромагнитного и дипольного резонансов на интерферограмму. Наблюдается зависимость формы, ширины, интенсивности и частоты интерференционной полосы от величины и знака магнитостатического поля H, взаимоположения ферромагнитного резонанса и полосы, а также от электрического напряжения $V_{\rm DC}$ на варакторах. Обнаружена невзаимность прохождения микроволи в интерференционных полосах запрета, характеризуемая изменением коэффициента прохождения T при инверсии H. Невзаимность увеличивается при возбуждении ферромагнитного резонанса вблизи полосы. В этом случае с изменением знака H наблюдается скачок T на 2 порядка до уровня полос прозрачности. Знак невзаимности зависит от взаимоположения ферромагнитного резонанса и полосы запрета и может меняться при небольшом изменении величины H. С изменением $V_{\rm DC}$ в пределах 0–10 В наблюдается селективно управляемое сужение невзаимной полосы в несколько раз и смещение на 0.2 ГГц.

DOI: 10.1134/S0370274X19040040

Неослабевающий интерес к микроволновой интерферометрии поддерживается новыми применениями и подходами в измерениях, обработке и передаче сигналов [1–3]. Управление, стимулируемое разработкой искусственных материалов и структур, могло бы расширить функциональные свойства и сферы применения интерферометрии. В настоящее время успешно развивается управляемая оптическая интерферометрия. Управление интерферограммой в оптике основано на электромеханических, электрооптических, акустических методах изменения оптического пути. Появились также работы, в которых управление достигнуто в оптическом интерферометре Маха-Цендера благодаря применению управляемого электрооптического разделителя пучка [4]. Публикации по управляемой микроволновой интерферометрии практически отсутствуют; существующие проблемы и трудности обсуждаются в [5]. В то же время, на микроволнах известны управляемые магнитоэлектрические материалы [6], метаструктуры, метаповерхности и мета-атомы, совместимые с элементами управления [7]. Методы управления в сверхвысокочастотном (СВЧ) диапазоне основаны на электромеханических [8], магнитных с использованием

ферритов [9], а также электрических эффектах с использованием полупроводниковых варакторов [10]. Возможность управления поддерживает интерес к исследованиям метаструктур в сфере практических применений для разработки управляемых поглотителей [11–13], управляемых фильтров [14–17], в том числе невзаимных [18, 19], магнито-управляемых антенн [20, 21], сенсоров [22], в селективном управлении [23], в магнитной резонансной спектроскопии [24], топологической фотонике [25, 26].

В данной работе обнаружено, что применение предложенной метаструктуры в качестве разделителя пучка в модифицированном интерферометре, названном нами "мета-интерферометр", приводит к новому проявлению невзаимных эффектов при воздействии ферромагнитного и дипольного резонансов на дисперсионные характеристики – селективно управляемой невзаимности прохождения микроволн в интерференционных полосах запрета. Продемонстрировано использование этого эффекта для управления интерферограммой внешним магнитостатическим полем и электрическим напряжением на варакторе.

На рисунке 1 представлена схема предлагаемого мета-интерферометра, фото метаструктур на вставке (Port 1 – вход, Port 2 – выход, Port 3 – закороченное

 $^{^{1)}\}text{e-mail: gkraft@ms.ire.rssi.ru}$

Рис. 1. (Цветной онлайн) Схема мета-интерферометра

h-плечо длиной 250 мм). Исследуются три разных разделителя пучка. Один из них - это ферритовая пластина железо- иттриевого граната $(21 \times 14 \times 2 \text{ мм})$. Другим разделителем пучка является метаструктура в виде сэндвича ферритовая пластина + нагруженный варактором диполь "Бабочка" (22 × 10 мм) на текстолитовой подложке толщиной 2 мм, возбуждаемый микроволновым электрическим полем E, и третий – это метаструктура ферритовая пластина + ряд из 3 нагруженных варакторами дважды разомкнутых колец (диаметр 6.6 мм), возбуждаемых микроволновым магнитным полем h. Размеры проводящих элементов выбраны так, чтобы резонансный отклик коэффициента прохождения Т наблюдался в диапазоне 3-6 ГГц панорамного измерителя КСВН. Используется варактор MA46H120 (MACOM), емкость которого меняется от 1 до 0.15 пФ при подаче напряжения обратного смещения $V_{\rm DC}$ от 0 до 10 В. Метаструктуру располагаем вдоль оси входного прямоугольного волновода 1 (48×24 мм) напротив закороченного *h*-плеча. Измеряем частотную зависимость Т при разных величинах поперечного магнитостатического поля Н и противоположных направлениях $(H^+ \, \mathrm{u} \, H^-)$ и разных величинах напряжения V_{DC} .

На рисунке 2а, b приведены результаты измерений T с ферритовой пластиной при разных величинах H^+ и H^- . При H = 0 наблюдается интерференционная зависимость T от частоты с узкими

полосами запрета F₁, F₂, F₃, F₄, F₅ (stop-bands F_i, i – номер полосы) и широкими полосами прозрачности (pass-bands P_i). С наложением H и возбуждением ферромагнитного резонанса (Ferromagnetic resonance – FMR) в ферритовой пластине в спектре T появляется резонансный минимум, связанный с FMR. При этом зависимость $T(H^-)$, жирная кривая, существенно отличается от $T(H^+)$, что может свидетельствовать о проявлении невзаимности прохождения T как в области FMR, так и в области полос F_i. Для анализа воспользуемся параметром невзаимности $\delta = T(H^-) - T(H^+)$, определяемом как разность коэффициентов прохождения T при противоположных направлениях поля H.

На рисунке 2а приведены результаты измерений при $H_{1b} = 740$ Э, когда FMR возбуждается на частоте $f = 3.52 \, \Gamma \Gamma$ ц, вблизи полосы F₁ (3.619 $\Gamma \Gamma$ ц) со стороны низких частот. В поле H_{1b} – прохождение T в полосе F_1 (-8.6 дБ) существенно больше, чем в поле H_{1b} + (-17 дБ). В этом случае параметр невзаимности $\delta FMR = -10 \, dB$, а параметры невзаимности $\delta F_1^{1b} = +8, \, \delta F_2^{1b} = +15, \, \delta F_3^{1b} = +14.5, \, \delta F_4^{1b} = +14, \, \delta F_5^{1b} = +15 \, dB$. В обозначениях измеренных параметров невзаимности используем индексы. Верхние индексы относятся к приложенному магнитному полю, цифры отмечают номер полосы, вблизи которой возбуждается FMR. Нижние индексы соответствуют номеру исследуемой интерференционной полосы. Параметр δF_1^{2b} означает, что речь идет о невзаимности в полосе F₁ при наложении поля, возбуждающего FMR вблизи полосы F₂, ниже частоты F₂ ("below", приписываем индекс "b"). Параметр δF_1^{2a} означает, что речь идет о невзаимности в полосе F₁ при наложении поля, возбуждающего FMR вблизи полосы F₂, выше частоты F₂ ("above", приписываем индекс "a").

На рисунке 2b видно, что при $H_{1a} = 780 \ {\rm g}$ с возбуждением FMR на $3.64 \ {\rm \Gamma}{\rm \Gamma}$ п вблизи ${\rm F}_1$, но со стороны высоких частот, наблюдается уменьшение T практически до полного запрета в поле H_{1a} - $(-32 \ {\rm g}{\rm B})$. При изменении знака H происходит скачок T до уровня полос прозрачности в поле H_{1a} +. В этом случае наблюдается смена знака и увеличение невзаимности ${\rm F}_1$ ($\delta {\rm F}_1^{1a} = -27 \ {\rm g}{\rm B}$) при небольшом сдвиге частоты, а также смена знака и уменьшение невзаимности FMR ($\delta {\rm FMR} = +1.1 \ {\rm g}{\rm B}$). Невзаимность же остальных полос меняется незначительно ($\delta {\rm F}_2^{1a} =$ $= +12.5, \ \delta {\rm F}_3^{1a} = +12.5, \ \delta {\rm F}_4^{1a} = +14, \ \delta {\rm F}_5^{1a} = +14 \ {\rm g}{\rm B}$). Аналогичные эффекты наблюдались при возбуждении FMR вблизи ${\rm F}_2$, ${\rm F}_3$, ${\rm F}_4$, ${\rm F}_5$. Например, когда FMR возбуждался при $H_{2b} = 830 \ {\rm G}$ (ниже частоты ${\rm F}_2$), невзаимность полос составляла $\delta {\rm F}_1^{2b} = -5$,

Рис. 2. (Цветной онлайн) Измеренные частотные зависимости коэффициента прохождения T, дБ при использовании ферритовой пластины в качестве разделителя пучка при разных величинах H^+ , H^- (a, b): 740 Э в сравнении с H = 0 (a), 780 Э (b)

 $\delta F_2^{2b} = +18, \delta F_3^{2b} = +16, \delta F_4^{2b} = +16, \delta F_5^{2b} = +14 д B,$ а если выше F_2 ($H_{2a} = 880 \exists$), то происходила смена знака и увеличение невзаимности прохождения в полосе F_2 . При этом относительно $H_{2b} = 830 \exists$ невзаимность других полос менялась незначительно. Параметры невзаимности прохождения составляли $\delta F_1^{2a} = -9, \delta F_2^{2a} = -27, \delta F_3^{2a} = +14, \delta F_4^{2a} = +17, \delta F_5^{2a} = +16 д B.$ Данные о состоянии интерферограммы (частота f, глубина T (T_{\min}), невзаимность δ полос запрета при разных величинах поля H^+ и H^- в сравнении H = 0) приведены в табл. 1.

Таким образом, при возбуждении FMR вблизи полосы запрета невзаимность увеличивается. Отрицательный знак δ наблюдается для полос F_i при возбуждении FMR выше их частоты (в поле H_a). При возбуждении же FMR ниже частоты F_i (в поле H_b) наблюдается положительный знак δ . При этом FMR может оказывать влияние на каждую полосу поочередно при сближении с соответствующей полосой по мере продвижения к высоким частотам с увеличением поля. При небольшом изменении H с переходом FMR через частоту полосы F_i в поле H_{ia} наблюдается смена знака при сохранении невзаимности других полос в сравнении со спектром в поле H_{ib} . В этом случае наблюдается скачок T на 2 порядка от полного запрета до уровня полос прозрачности с изменением знака H.

Динамика свойств мета-интерферометра, реализованного добавлением к ферритовой пластине нагруженного варактором диполя "Бабочка", представлена на рис. 3, фото диполя см. на вставке 1 рис. 3. При H = 0 и $V_{\rm DC} = 0$ возбуждается дипольный резонанс (dipole resonance – DR) на частотах около ЗГГц. Это приводит к изменению вида интерференционных полос, полосы F_i становятся шире, а полосы прозрачности P_i сужаются. С наложением поля Н и возбуждением FMR полосы F_i становятся невзаимными и могут управляться как полем H, так и напряжением $V_{\rm DC}$. На рисунке За приведены частотные зависимости T при наложени
и $H_{4\mathrm{a}}-~=~H_{4\mathrm{a}}+~=~1000\, \mathrm{\Im}$ в отсутствие V_{DC}. В этом случае FMR возбуждается выше F_4 (и заодно выше F_1 , F_2 , F_3), наблюдается отрицательный знак δ для полос F_i и усиление невзаимности T в полосе F₄. Действительно, прохождение $T_{\rm Fi}$ в поле $H_{4\rm a}$ – существенно меньше, чем в поле $H_{4a}+$. При этом, $T_{F1}(H_{4a}-) = -14 \, \text{дБ},$ $T_{\rm F1}(H_{4\rm a}+) = -11\,{\rm gB}; \ T_{\rm F2}(H_{4\rm a}-) = -24\,{\rm gB},$

Рис. 3. (Цветной онлайн) Измеренные частотные зависимости коэффициента прохождения T, дБ с метаструктурой ферритовая пластина + диполь "Бабочка", H = 1000 Э: (a) – $V_{\rm DC} = 0$ В; H^+ , H^- , вставка 1 (insert 1): фото метаструктуры (феррит + диполь), вставка 2 (insert 2): частотные характеристики диполя; (b) – $V_{\rm DC} = 0$; 5; 10 В; H^-

С подачей напряжения V_{DC} происходит электрическое управление невзаимным интерференционным спектром (смещение и изменение вида интерференционных полос), обусловленное специфическим воздействием резонанса в диполе (дипольным резонансом – DR), в зависимости от его электрически управляемых свойств (ширины, интенсивности и частоты резонанса). При увеличении напряжения V_{DC} и, соответственно, уменьшении емкости варактора дипольный резонанс смещается к высоким частотам внутри диапазона 3-6 ГГц (см. частотные характеристики диполя, помещенного вдоль оси прямоугольного волновода, – вставка 2 рис. За). Поскольку для DR характерна довольно широкая полоса, его влияние охватывает несколько полос, при этом разные полосы подвергаются разному влиянию DR и управляются по-разному. Динамика показана на рис. 3b в условиях $H_{4a} - = 1000 \, \Im$. С изменением V_{DC} меняется частота, глубина и ширина полос запрета. В таблице 2 приведены соответствующие данные при наложении напряжения $V_{\rm DC} = 0, 5, 10 \, \text{B}$. Частота полосы $(f, \Gamma\Gamma \mu)$ определяется частотой минимального про-

хождения T_{min}, глубина – величиной T_{min}, дБ, ширина $(\nabla f, \Gamma \Gamma \mu)$ – разностью частот в соответствующей полосе на уровне $T = -15 \, \text{дБ}$. В отсутствие напряжения ($V_{\rm DC} = 0$) полосы F_1, F_2, F_3, F_4 наблюдаются соответственно на частотах 3.4, 3.72, 4.06, 4.43 ГГц. При $V_{\rm DC} = 5 \, {\rm B}$ полоса F₁, углубляется и смещается на $0.21\Gamma\Gamma$ ц к частоте $f(F_1^{5V}) = 3.61\Gamma\Gamma$ ц. При этом полоса F₂ расширяется и смещается на 0.17 ГГц к $f(\mathbf{F}_2^{5\mathbf{V}}) = 3.89 \, \Gamma \Gamma \mathbf{\mu}$, полоса \mathbf{F}_3 расширяется и смещается незначительно на $0.07 \, \Gamma \Gamma$ ц к $f(F_3^{5V}) = 4.1 \, \Gamma \Gamma$ ц, а полоса F_4 практически не смещается, $f(F_4^{5V}) =$ = 4.45 ГГц. Отметим, что в этом случае полосы запрета F_1^{5V} , F_2^{5V} , F_3^{5V} занимают частотное положение полос прозрачности $P_1^{0V} P_2^{0V} P_3^{0V}$, соответствующее $V_{\rm DC} = 0$. При дальнейшем повышении напряжения ($V_{\rm DC} = 10 \, {\rm B}$) существенно увеличивается прохождение T в полосе F_1^{10V} , полоса F_2^{10V} сужается в несколько раз и незначительно смещается на $0.05\,\Gamma\Gamma$ ц к $f(F_2^{10\mathrm{V}})=3.94\,\Gamma\Gamma$ ц, полоса
 $\mathrm{F}_3^{10\mathrm{V}}$ незначительно смещается на $0.05 \Gamma \Gamma \mu \kappa f(F_3^{10V}) = 4.18 \Gamma \Gamma \mu$, а полоса F₄^{10V} практически остается без изменений. Таким образом, из табл. 2 и рис. За, b видно, что с изменением V_{DC} наблюдается синхронное, но неодинаковое, изменение формы, интенсивности, ширины, частоты нескольких полос F_i и переключение полос F_i на полосы P_i. Состояние интерферограммы, меня-

	<i>H</i> =	= 740 Э	780)	830 Э	880Э	H = 0
	$f_{\rm FM}$	$_{\rm R}, \Gamma \Gamma$ ц	$f_{\rm FMR}, \Gamma \Gamma$ ц	$f_{\rm FMR}$	$f_{\rm FMR}$	
	3.52		3.64	3.81	3.95	
\mathbf{F}_1	f	3.6	3.55	3.6	3.6	3.61
	T^{-}	-8.6	-32	-11	-7	
	T^+	-17	-5	-6	-16	-12
	δ	+8	-27	-5	-9	
F_2	F	3.9	3.9	3.92	3.84	3.89
	T^{-}	-8	-8.5	-7	-5	
	T^+	-23	-21.5	-25	-32	-14
	δ	+15	+12.5	+18	-27	
F_3	f	4.2	4.2	4.2	4.2	4.2
	T^{-}	-9.5	-8.5	-9	-9	
	T^+	-24	-21	-25.5	-23	-16
	δ	+14.5	+12.5	+16.5	+14	
F_4	f	4.6	4.6	4.6	4.6	4.6
	T^{-}	-5.5	-5.7	-6	-5	
	T^+	-19.5	-20	-22.5	-22	-13.5
	δ	+14	+14.3	+16.5	+17	
\mathbf{F}_{5}	f	5	5	5	5	5
	T^{-}	-4.5	-5	-5	-5	
	T^+	-19.5	-19	-19	-21	-9.5
	δ	+15	+14	+14	+16	

Таблица 1. Состояние интерферограммы (частота f, глубина T^- и T^+ , невзаимность δ полос запрета) при разных величинах поля H^+ и H^- в сравнении с H = 0

Таблица 2. Состояние интерферограммы (частота f, глубина T^- и T^+ , невзаимность δ , ширина ∇f полос запрета) при наложении H^+ и $H^- = 1000 \ \exists (V_{\rm DC} = 0 \ \exists)$ и $H^- = 1000 \ \exists (V_{\rm DC} = 5 \ u \ 10 \ \exists)$

	0 B		$5 \mathrm{B}$	10 B
F_1	f	3.4	3.61	
	T^{-}	-14	-22	
	T^+	-11		
	δ	-3		
	∇f		0.06	
F_2	f	3.72	3.89	3.94
	T^{-}	-24	-24	-23
	T^+	-11		
	δ	-13		
	∇f	0.024	0.21	0.04
F_3	f	4.06	4.13	4.18
	T^{-}	-24	-24	-23
	T^+	-8		
	δ	-16		
	∇f	0.01	0.11	0.13
F_4	f	4.43	4.45	4.44
	T^{-}	27.5	-29	-27
	T^+	-6		
	δ	-22		
	∇f	0.01	0.01	0.05

ющееся с изменением $V_{\rm DC}$, зависит от взаимоположения ферромагнитного и дипольного резонансов. При сближении их частот возникает режим связанных резонансов и проявляется влияние $V_{\rm DC}$ на FMR.

При использовании метаструктуры ферритовая пластина + три нагруженных варакторами дважды разомкнутых магнито-возбуждаемых кольца появляется возможность электрического управления одной полосой, поскольку в кольцах возбуждается довольно узкий магнитный резонанс в отличие от диполя "Бабочка". При подаче $V_{\rm DC}$ может меняться поочередно форма и ширина отдельной полосы F_i без смещения и изменения практически спектра других полос (рис. 4).

Рис. 4. (Цветной онлайн) Измеренные частотные зависимости коэффициента прохождения T, дБ с метаструктурой ферритовая пластина + ряд дважды разомкнутых колец, H = 0 Э: $V_{\rm DC} = 0$; 6; 10 В

Потери (4–5 дБ) связаны с потерями в феррите, в варакторе при низких напряжениях, и во многом с большими отражениями в сторону генератора. К уменьшению отражения, помимо согласования, может привести поиск среди большого разнообразия метаструктур более подходящих.

Влияние внешних факторов можно пояснить, вводя для описания метаструктуры S-матрицу с элементами $S_{mn} = s_{mn} \exp(i\varphi_{mn})$, модули $|S_{mn}| = s_{mn}$ и фазы φ_{mn} которых могут зависеть от частоты излучения и параметров воздействующих магнитного поля и напряжения. Примем во внимание, что метаинтерферометр, по существу, является модификацией интерферометра Майкельсона в сочетании с интерферометром Фабри–Перо (переотражения между короткозамыкателем (*short*) и метаструктурой). Коэффициент отражения от короткозамыкателя (*short*) $R = r \exp(i\varphi_R)$; далее $\varphi_R = \pi$.

Нетрудно получить нормированную амплитуду сигнала на выходе интерферометра (коэффициент передачи по амплитуде)

$$T = \left[S_{21} + \frac{S_{23}RS_{31}\exp(-2ik_3L_3)}{1 - RS_{33}\exp(-2ik_3L_3)}\right]\exp(-ik_2L_2).$$
(1)

Здесь $k_m = k'_m - ik''_m$ – волновое число *m*-го плеча интерферометра, L_m – путь, пройденный в нем излучением. В качестве примера рассмотрим ситуацию, когда в закороченном плече отражение от метаструктуры мало ($|S_{33}| \ll 1$). В этом случае коэффициент передачи по мощности равен

$$|t|^{2} = T = (s_{21} + s_{23}s_{31}r\exp(-2k_{3}''L_{3}))^{2} - 4s_{21}s_{23}s_{31}r\exp(-2k_{3}''L_{3})\cos^{2}\Phi,$$
(2)

где $\Phi - k'_3 L_3 = (\varphi_{21} - \varphi_{31} - \varphi_{23})/2 = \delta \varphi/2$. Из (2) следует, что при неизменных абсолютных величинах элементов S-матрицы у коэффициента передачи вблизи частот, удовлетворяющих условию

$$\omega n_3'(\omega) L_3/c + \delta \varphi(\omega, V_{\rm DC}, H)/2 = \pi p, \qquad (3)$$

могут наблюдаться минимумы, а вблизи частот, определяемых из

$$\omega n_3'(\omega) L_3/c + \delta \varphi(\omega, V_{\rm DC}, H)/2 = \pi (p + 1/2), \quad (4)$$

– максимумы (p – целое число; n'_3 – показатель замедления 3-го волновода; $V_{\rm DC}$, H – напряжение на варакторе и приложенное магнитостатическое поле).

При этом максимальные и минимальные значения T, соответственно, есть

$$T_{\max/\min} = [s_{21} \pm s_{23}s_{31}r \exp(-2k_3''L_3)]^2.$$
 (5)

Письма в ЖЭТФ том 109 вып. 3-4 2019

Из (1), (2) следует, что вид интерферограммы зависит от частотной дисперсии элементов S-матрицы и от воздействия на них внешних факторов (электрического напряжения на варакторах, включенных в мета-атомы, или магнитостатического поля на феррит). В рассмотренном примере отметим возможность смещения минимумов и максимумов, а также изменения контрастности интерференционной картины, определяемой отношением $T_{\rm max}/T_{\rm min}$, см. (3)– (5).

Таким образом, предложен мета-интерферометр, в котором достигнуто управление интерферограммой с помощью магнитного поля и электрического напряжения благодаря проявлению селективно управляемого невзаимного прохождения микроволн в интерференционных полосах запрета при воздействии ферромагнитного и дипольного резонансов на дисперсионные характеристики. Возможна роль магнитоэлектрических взаимодействий, проявление которых обнаруживается в виде зависимости магнитных свойств (невзаимности прохождения микроволн) от электрического поля, аналогично тому, как изменение угла фарадеевского вращения под действием электрического поля объясняется проявлением магнитоэлектрических взаимодействий в оптике [6].

Обнаружены особенности невзаимности прохождения микроволн, связанные с влиянием взаимоположения FMR и полосы запрета (усиление и смена знака невзаимности при возбуждении FMR вблизи полосы). Продемонстрировано селективное управление величиной и знаком невзаимности. Показано изменение знака невзаимности не путем перемагничивания, как обычно, а с помощью небольшого изменения величины поля, необходимого для изменения взаимоположения FMR и полосы запрета, что может повысить быстродействие. Продемонстрировано селективное электрическое управление невзаимным спектром (сужение и смещение полосы).

Полученные результаты могут быть полезны при разработке управляемых многополосных фильтров, востребованных в многоканальных многофункциональных телекоммуникационных системах.

- И. А. Устинова, А. А. Никитин, А. В. Кондрашов, Д. А. Попов, А. Б. Устинов, Е. Lähderanta, Письма в ЖТФ **42**(17), 20 (2016) [I. A. Ustinova, A. A. Nikitin, A. V. Kondrashov, D. Popov, A. Ustinov, and E. Lähderanta, Tech. Phys. Lett. **42**(9), 891 (2016)].
- V. M. Muravev, A. A. Fortunatov, A. A. Dremin, and I. V. Kukushkin, Письма в ЖЭТФ 103, 428 (2016) [V. M. Muravev, A. A. Fortunatov, A. A. Dremin, and

I.V. Kukushkin, JETP Lett. **103**(6), 380 (2016)]; DOI: 10.7868/S0370274X16060035.

- G. Kraftmakher, V. Butylkin, Yu. Kazantsev, and V. Mal'tsev, J. of Radioelectronics (ZHURNAL RADIOELEKTRONIKI) 9, 1684 (2018); DOI: 10.30898/1684-1719.2018.9.19.
- X. S. Ma, S. Zotter, N. Tetic, A. Qarry, T. Jennewein, and A. Zellinger, Opt. Express 19(23), 22723 (2011).
- M. P. Fok and J. Ge, Photonics 4(4), 45 (2017); DOI: 10.3390/photonics4040045.
- А.П. Пятаков, А.К. Звездин, УФН 182, 593 (2012)
 [А.Р. Руатакоv and А.К. Zvezdin, Physics-Uspekhi 55, 557 (2012)]; DOI:10.3367/UFNr.0182.201206b.0593.
- S.A. Tretyakov, Topical Review, J. Opt. 19, 013002 (2017); DOI:10.1088/2040-8986/19/1/013002.
- K. Entesari and G. M. Rebeiz, IEEE Trans. Microwave Theory Tech. 53(3), 1103 (2005).
- В. С. Бутылкин, Г. А. Крафтмахер, Письма в ЖТФ **32**(17), 88 (2006) [V.S. Butylkin and G.A. Kraftmakher, Tech. Phys. Lett. **32**(9), 775 (2006)].
- I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, Electron. Lett. 40(21), 1347 (2004); DOI: 10.1049/el:20046389.
- H. Yuan, B.O. Zhu, and Y. Feng, J. of Appl. Phys. 117(17), 173103 (2015); DOI: 10.1063/1.4919753.
- W. Wang, J. Wang, M. Yan, J. Wang, H. Ma, M. Feng, and Sh. Qu, J., Phys. D: Appl. Phys. 51, 315001 (2018).
- D. Zhirihin, C. Simovski, P. Belov, and S. Glybovski, IEEE Antennas and Wireless Propagation Letters 16, 2626 (2017); DOI: 10.1109/LAWP.2017.2736506.
- R. J. Cameron, C. M. Kudsia, and R. R. Mansour, *Microwave Filters for Communication Systems: Fundamentals, Design, and Applications*, 2-nd ed., John Wiley & Sons, Inc., Hoboken, NJ, USA (2018), p. 928.
- 15. Y.J. Zhao, B.C. Zhou, Z.K. Zhang, R. Zhang, and

B.Y. Li, Optoelectronics Letters **13**(2), 120 (2017); DOI: 10.1007/s11801-017-7008-7.

- A. R. Brown and G. M. Rebeiz, IEEE Trans Microwave Theory Tech. 48(7), 1157 (2000); DOI: 10.1109/22.848501.
- A. Genc and R. Baktur, Microw. Opt. Technol. Lett. 51(10), 2394 (2009); DOI: 10.1002/mop.24641.
- V. Butylkin, Yu. Kazantsev, G. Kraftmakher, and V. Mal'tsev, Appl. Phys. A **123**(1), 57 (2017); DOI: 10.1007/s00339-016-0705-4.
- D. Bensafieddine, F. Djerfaf, F. Chouireb, and D. Vincent, Appl. Phys. A: Materials Sciemce & Processing 124(9), 581 (2018); DOI: 10.1007/s00339-018-2004-8.
- N. Apaydin, K. Sertel, and J.L. Volakis, IEEE Trans. Antennas & Propag. 62(6), 2954 (2014).
- F. A. Ghaffar, J. R. Bray, and A. Shamim, IEEE Trans. Antennas & Propag. 62(3), 1238 (2014); DOI: 10.1109/TAP.2013.2295833.
- V. Rawat, S. Dhobale, and S. N. Kale, J. Appl. Phys. 116(16), 164106 (2014).
- T. C. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Sing, Appl. Phys. Lett. **112**(20), 201111 (2018).
- E. A. Brui, A. V. Shchelokova, A. V. Sokolov, A. P. Slobozhanyuk, A. E. Andreychenko, V. A. Fokin, P. A. Belov, and I. V. Melchakov, Письма в ЖЭТФ **108**(6), 445 (2018) [E. A. Brui, A. V. Shchelokova, A. V. Sokolov, A. P. Slobozhanyuk, A. E. Andreychenko, V. A. Fokin, P. A. Belov, and I. V. Melchakov, JETP Lett. **108**(6), 423 (2018)].
- D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Yu. S. Kivshar, Phys. Rev. Lett. **121**, 163901 (2018); DOI: 10.1103/PhysRevLett.121.163901.
- M. A. Gorlach, X. Ni, D. A. Smirnova, D. Korobkin, D. Zhirihin, A. P. Slobozhanyuk, P. A. Belov, A. Alü, and A. B. Khanikaev, Nat. Commun. 9, 909 (2018); DOI: 10.1038/s41467-018-03330-9.