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Tetrads and q-theory
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As the microscopic structure of the deep relativistic
quantum vacuum is unknown, a phenomenological ap-
proach (q-theory) has been proposed to describe the vac-
uum degrees of freedom and the dynamics of the vacuum
energy after the Big Bang. The original q-theory was
based on a four-form field strength from a three-form
gauge potential. However, this realization of q-theory,
just as others suggested so far, is rather artificial and
does not take into account the fermionic nature of the
vacuum. We now propose a more physical realization of
the q-variable. In this approach, we assume that the vac-
uum has the properties of a plastic (malleable) fermionic
crystalline medium. The new approach unites general
relativity and fermionic microscopic (trans-Planckian)
degrees of freedom, as the approach involves both the
tetrad of standard gravity and the elasticity tetrad of
the hypothetical vacuum crystal. This approach also al-
lows for the description of possible topological phases of
the quantum vacuum.

The q-theory framework [1, 2] provides a general
phenomenological approach to the dynamics of vacuum
energy, which may be useful for the resolution of prob-
lems related to the cosmological constant in the Ein-
stein equation (a brief review of q-theory appears in
Appendix A of [3]). The advantage of q-theory is that,
at the classical level, the field equations of the theory
essentially do not depend on the detailed microscopic
(trans-Planckian) origin of the q-field. In the classical
limit, the field equations of q-theory (i.e., the equation
for the microscopic variable q and the modified Einstein
equation for the metric) are universal.

The q-theory approach to the cosmological constant
problem aims to describe the decay of the vacuum en-
ergy density from an initial Planck-scale value to the
present value of the cosmological constant. However, the
correct description of this decay requires the quantum
version of q-theory, which may be different for different
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classes of realizations of the q-variable (see Sec. 1 in [4]
for a general discussion of quantum-dissipative effects
and [5] for a sample calculation).

Up till now, our discussions of q-theory have pri-
marily used the nonlinear theory of a four-form field
strength from a three-form gauge potential (the lin-
ear theory of the vacuum energy in terms of the four-
form field strength has been considered by Hawking [6],
in particular). However, the four-form field strength,
though useful for the construction of the general phe-
nomenological equations for the quantum vacuum, is
rather abstract. The physical origin of such a field is not
clear. In the new realization, the corresponding vacuum
variable q is expressed in terms of both the gravitational
tetrad and the elasticity tetrad of the underlying crystal.
This realization in terms of tetrad fields is more appro-
priate for the quantum theory of the fermionic vacuum
of our Universe than the realization with a bosonic four-
form field strength.

Throughout, we use natural units with c = ~ = 1
and take the metric signature (−+++).

The tetrad formalism of torsion-less gravity is given
by the following equations:

gµν = ηab e
a
µ e

b
ν , ∇µ g

µν = 0, (1a)

Dµ e
a
ν ≡ ∇µ e

a
ν + ωa

µb e
b
ν = 0, (1b)

where ∇µ is the conventional covariant derivative of gen-
eral relativity and ωa

µb the spin connection,

ωa
µb = eaν ∇µ e

ν
b . (2)

We interpret the vacuum as a plastic (malleable)
fermionic crystalline medium. At each point of space-
time, we have a local system of four deformed crystal-
lographic manifolds of constant phase Xa(x) = 2πna,
for na ∈ Z with a = 0, 1, 2, 3. In addition to the con-
ventional tetrad eaµ of gravity, we then introduce the
following elasticity tetrad Ea

µ (cf. [7–9]):

Ea
µ(x) = DµX

a(x), (3)
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where both indices a and µ take values from the set
{0, 1, 2, 3}. Invariance under the local SO(1, 3) group
of rotations is implemented by defining

DµX
a ≡ ∇µX

a + ωa
µbX

b = ∂µX
a + ωa

µbX
b. (4)

Let us assume that the vacuum energy density ǫ(q)
in the action depends on the following type of q-field:

q(x) =
1

4
eµa(x)E

a
µ(x). (5)

The action in its simplest form is then given by

S =

∫

R4

d4x e

(
R

16πGN
+ ǫ(q)

)
, (6)

where R is the Ricci curvature scalar and e the tetrad
determinant. Variation of Eq. (6) over eµa gives the Ein-
stein equation [10],

Rµν − 1

2
gµν R = 8πGN ρV (q) gµν , (7)

where ρV (q) will be discussed shortly, and variation over
Xa gives the following differential equation for q (which
is both a coordinate scalar and a Lorentz scalar):

∂µ

(
dǫ(q)

dq

)
= 0, (8)

where (1b) has been used. The vacuum energy density
ρV (q), which enters the Einstein equation (7) through a
cosmological-constant-type term, is given by

ρV (q) ≡ ǫ(q)− q
dǫ(q)

dq
, (9)

with an extra term −q dǫ/dq.
Equation (8) for q has the following general solution:

dǫ(q)

dq
= µ = constant, (10)

with the arbitrary constant µ interpreted as a “chemi-
cal potential” in [1], and the gravitating vacuum energy
density (9) becomes ρV (q) = ǫ(q)− µ q.

The quantum vacuum in perfect equilibrium has a
constant nonzero value of the q-field,

q(x) = q0 = constant, (11)

which gives a particular value µ0 for µ in (10),

µ0 =

[
dǫ(q)

dq

]

q=q0

. (12)

In addition, there are the equilibrium conditions:

ρV (q0) = 0, (13a)
[
d ρV (q)

dq

]

q=q0

= 0, (13b)

[
d2 ρV (q)

dq2

]

q=q0

> 0. (13c)

Equations (13a) and (13b) result from the self-
adjustment of the conserved vacuum variable q, as
follows from the Gibbs–Duhem relation for an isolated
self-sustained system without external pressure; Eq.
(13c) corresponds to positive isothermal compressibility
of the vacuum.

To summarize, we have obtained with (5) one further
realization of the q-variable, in addition to the four-form
realization [1] and the brane realization [2]. The advan-
tage of this new realization is that it has a more di-
rect physical origin. The quantum version of q-theory
is sensitive to the particular realization of the q-field.
Assuming q-theory to be relevant, the comparison with
experiment may then provide information on the de-
tailed structure of the fermionic quantum vacuum and,
in particular, on the types of quantum anomalies. The
fermionic crystalline model of the vacuum is one of the
possible structures of the deep fermionic vacuum, dis-
tinct from a structure described the abstract four- form
field strength. This new fermionic structure gives, for ex-
ample, rise to new types of quantum anomalies, where
elasticity tetrads E with dimensions of inverse length or
inverse time are mixed with gauge and gravity fields [9].
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