Откольная прочность аморфного углерода (стеклоуглерода) при ударноволновом нагружении в области его аномальной сжимаемости

 $A. M. Молодец^{+1}$, $A. C. Савиных^{+*}$, $A. A. Голышев^+$

+Институт проблем химической физики РАН, 142432 Черноголовка, Россия

*Национальный исследовательский Томский государственный университет, 634050 Томск, Россия

Поступила в редакцию 25 декабря 2018 г. После переработки 31 января 2019 г. Принята к публикации 20 февраля 2019 г.

Исследована откольная прочность стеклообразного аморфного углерода марки СУ-2000 в двух сериях ударноволновых экспериментов. Одномерное ударноволновое нагружение образцов осуществлялось ударом плоских ударников. Первичной экспериментальной информацией служили профили скорости движения тыльной поверхности плоских образцов, контактирующих с воздухом или с плексигласом. Измерения проведены в области аномальной сжимаемости стеклоуглерода в диапазоне от ~ -0.3 ГПа до +3 ГПа. Откольная прочность стеклоуглерода составила величину -0.23(7) ГПа. Оценка теоретической прочности стеклоуглерода СУ-2000 составила величину -2.4 ГПа.

DOI: 10.1134/S0370274X19070051

1. Введение. Стеклоуглерод является одной из аллотропных аморфных модификаций углерода. На микроуровне стеклоуглерод представляет собой наноструктурированный материал, субмикроструктура которого зависит от температуры карбонизации при получении образцов (см. [1,2]). Стеклоуглерод, полученный при температуре меньше 2300 К, состоит, главным образом, из беспорядочно распределенных изогнутых графеновых слоев. Стеклоуглерод, изготовленный при температуре ~ 2800 К, состоит из многослойных фуллереноподобных сфероидов нанометровых размеров, размещенных в беспорядочной трехмерной графеновой слоистой матрице.

На макроскопическом уровне стеклоуглерод обладает типичными свойствами стекла – это хрупкий изотропный материал с высокой твердостью, непроницаемостью для газов и жидкостей и др. (см. [3]). В изотермических условиях статического сжатия при давлениях до ~ 3 ГПа стеклоуглерод проявляет ряд необычных физико-механических свойств, в частности, сохраняет обратимую упругость при больших деформациях, а его упругие модули аномально уменьшаются при увеличении давления [2]. В [4] показано, что в этом диапазоне давлений стеклоуглерод проявляет нетривиальное поведение и при ударных нагрузках – разрывный ударный фронт в этом материале трансформируется в плавную волну сжатия и, наоборот, размытая волна разрежения превращается в ударный скачок, что в целом означает его аномальную сжимаемость в микросекундном ударно-волновом цикле сжатие–разгрузка.

Следует также отметить, что прочностные свойства обычных силикатных стекол при ударноволновом нагружении имеют ряд особенностей (см. [5,6] и ссылки в них). Так, в упругой области силикатные стекла проявляют высокую, на уровне нескольких гигапаскалей, откольную прочность. Кроме этого, стеклам свойственен своеобразный тип разрушения в форме волны разрушения, которая распространяется в стекле вслед за волной сжатия. Что же касается сведений о прочностных свойствах углеродного стекла (стеклоуглерода) при ударных нагрузках, то в доступной литературе они не обнаружены.

В данной работе исследована откольная прочность и параметры волны разрушения стеклоуглерода при ударно-волновом нагружении в области его аномальной сжимаемости.

2. Экспериментальная часть. В исследованиях использовался стеклоуглерод марки СУ-2000, соответствующий ТУ 1916-027-27208846-01 и приобретенный в ООО "ЮгТехСнаб". Карбонизация стеклоуглерода ведется при температуре 2000 °С. В состоянии поставки стеклоуглерод представлял собой диски толщиной ~ 2.4 мм. Плотность одного из них составляла $\rho_0 = 1.55(2) \, \text{г/см}^3$. Материал этого диска в дальнейшем обозначается D1. Измеренная плотность второго диска равнялась $\rho_0 = 1.502(5) \, \text{г/см}^3$. Ма

 $^{^{1)}\}mathrm{e\text{-}mail:}$ molodets@icp.ac.ru

териал этого диска в дальнейшем обозначается D2. Рентгенограммы образцов были изучены ранее в [4]. Эти рентгенограммы свидетельствуют о том, что исследуемые образцы представляют собой аморфный углерод.

Как и ранее, для обоих дисков была измерена продольная скорость звука C_{l0} при нормальных условиях, которая составила значения 4.638(5) км/с и 4.611(5) км/с для материалов D1 и D2 соответственно. Коэффициент Пуассона ν_0 исследуемых материалов был принят равным значению $\nu_0 = 0.2$ из [2], которое использовалось для вычисления объемной скорости звука $C_{b0} = C_{l0}\sqrt{\frac{1}{3}\left(\frac{1+\nu_0}{1-\nu_0}\right)}$. Вычисленные величины составили $C_{b0} = 3.280(5)$ для стеклоуглерода D1 и $C_{b0} = 3.260(5)$ для стеклоуглерода D2.

Образцы для исследования вырезались в виде прямоугольников размером ~ 15×15 мм. По одной из больших поверхностей образца наносился удар плоским алюминиевым или плексигласовым ударником 1 диаметром 60 мм и толщиной 1–3 мм (см. рис. 1), разогнанных с помощью устройства из [7] до скорости W_0 . Начальная температура образцов T_0 в момент ударноволнового нагружения составляла 300 К.

Рис. 1. Схема эксперимента. (а) – 1 – алюминиевый ударник в форме диска толщиной $h_0 = 2$ мм, летящий со скоростью W_0 ; 2 – образец стеклоуглерода толщиной h; 3 – алюминиевая фольга толщиной 0.07 мм. (b) – 1 – плексигласовый или алюминиевый ударник толщиной $h_0 = 1-3$ мм; 2 – образец стеклоуглерода толщиной h; 3 – алюминиевая фольга толщиной 0.07 мм; 4 – плексигласовая (РММА) пластина ("мягкая преграда") толщиной 5–8 мм; 5 – клин из отвердевшей прозрачной эпоксидной смолы; 6 – плексигласовая пластина толщиной 2 мм

Схема экспериментов на рис. 1 представляет собой типичную схему по исследованию прочностных свойств материала при ударно-волновом нагружении (см., например, [6] и ссылки в ней). В проведенных экспериментах регистрировались зависимости скорости тыльной поверхности фольги 3 от времени (профили скорости). В экспериментах по схеме рис. 1а ре-

Письма в ЖЭТФ том 109 вып. 7-8 2019

гистрировались профили скорости свободной поверхности алюминиевой фольги 3, которая отождествлялась со скоростью W свободной поверхности образца 2. В экспериментах по схеме рис. 1b регистрировались профили скорости контакта алюминиевой фольги 3 с плексигласовой пластиной 4. Эти профили отождествлялись с массовой скоростью U тыльной поверхности образца 2, взаимодействующего с плексигласом 4.

Соотнесение измеряемых величин с характеристиками образца оправдано двумя обстоятельствами. Во-первых, жесткость алюминия превышает жесткость стеклоуглерода и плексигласа. Поэтому во время волновых взаимодействий алюминиевая фольга не отслаивается ни от образца, ни от плексигласа, дублируя с некоторой задержкой во времени движение поверхности образца. Во-вторых, толщина алюминиевой фольги выбиралась достаточно малой, чтобы задержка во времени была гораздо меньше времени нагружения. Время задержки оценивается временем пробега акустического возмущения по фольге, которое в данном случае составляет величину ~0.01 микросекунды.

Профили W и U регистрировались с помощью лазерного интерферометра VISAR [8]. Используемый интерферометрический комплекс позволял регистрировать профили с точностью 2%. Соотношение толщины и линейных размеров образца обеспечивало одноосное напряженное состояние образца в течение времени плоского ударно-волнового нагружения.

На рисунках 2 и 3 показаны измеренные профили W(t) и U(t).

3. Обсуждение результатов. Начальный участок профиля W(t) до максимального значения W_1 (см. рис. 2a) соответствует плавной волне сжатия, характерной для материалов с аномальной сжимаемостью. Затем значение W достигает минимальной величины W_2 , после чего следуют колебания скорости. Таким образом, в основных чертах характер профиля W(t) аналогичен профилям скорости свободной поверхности для обычных материалов, с помощью которых определяется откольная прочность σ материала по разнице скоростей W_1 и W_2 .

Однако в силикатных стеклах минимум скорости W_2 и последующий колебательный характер профиля W(t) могут быть обусловлены двумя различными механизмами разрушения образца – либо откольным разрушением при растяжении, либо в волне разрушения при сжатии [6]. Соответственно и разница скоростей W_1 и W_2 в том и другом случае может быть существенно различной. Для углеродного стек-

Рис. 2. Экспериментальные профили W(t) и U(t) для стеклоуглерода D2. (а) – Экспериментальный профиль W(t) в постановке рис. 1а при толщине алюминиевого ударника $h_0 = 2.00$ мм, скорости $W_0 = W_{0A1} = 0.63(2)$ км/с, толщине образца h = 2.36 мм. (b) – Экспериментальный профиль U(t) в постановке рис. 1b при толщине плексигласового ударника $h_0 = 0.96$ мм, скорости $W_0 = W_{0P} = 0.82(2)$ км/с, толщине образца h = 2.36 мм

Рис. 3. Экспериментальный профиль U(t) для стеклоуглерода D1 в постановке рис. 1b при толщине алюминиевого ударника $h_0 = 3.00$ мм, скорости $W_0 = W_{0A1} =$ = 0.63(2) км/с, толщине образца h = 2.46 мм

ла, исследуемого в данной работе, альтернатива была решена на основе экспериментов по идентификации волны разрушения в стеклоуглероде с толстым ударником в схеме рис. 1b. На рисунке 3 показан результат одного из таких экспериментов в виде профиля U(t).

По аналогии с [6] ожидалось, что в случае существования волны разрушения в стеклоуглероде на плато профиля рис. З будет зарегистрирован подъем скорости, обусловленный приходом волны сжатия, отраженной от волны разрушения. Но, как видно, плато профиля U(t) на рис. З практически не имеет особенностей. На этом основании можно сделать два вывода. Во-первых, в области аномальной сжимаемости стеклоуглерод устойчив к волне разрушения и, во-вторых, колебательный характер профиля W(t) стеклоуглерода на рис. 2а обусловлен откольным разрушением при растяжении, и, соответственно, откольная прочность стеклоуглерода может быть определена по разнице скоростей W_1 и W_2 .

Отметим, что для стеклоуглерода значение $(W_1 - W_2)$ на рис. 1а оказывается малой разностью двух больших величин. Тем не менее, точность регистрации профиля W(t), составляющая 2%, позволяет измерить эту разницу $(W_1 - W_2)$ с погрешностью, не превышающей 40%.

Как хорошо известно, определение окольной прочности упруго-пластических материалов при плоском одномерном растяжении производится по формуле

$$\sigma = -0.5J(W_1 - W_2), \tag{1}$$

где J – импеданс материала (наклон изэнтропы разгрузки материала в координатах напряжениемассовая скорость) в области растяжения. При этом изэнтропа сжатия линейно экстраполируется в область растяжения с наклоном $J = J_0 = \rho_0 C_0$, где ρ_0 и C_0 – соответственно плотность и скорость звука, нижний индекс "0" означает принадлежность к состоянию при нулевом давлении. Для упругих материалов принимается $C_0 = C_{l0}$, для упруго-пластических материалов $C_0 = C_{b0}$. Таким образом, в первом приближении величина откольной прочности стеклоуглерода по (1) равна $\sigma = -0.22(7)$ ГПа при использовании значения $C_0 = C_{l0}$.

Заметим, однако, что применение стандартной формулы в виде (1) к профилям W(t) в материалах с аномальной сжимаемостью требует дополнительных комментариев. Во-первых, необходимо принимать во внимание тот факт, что в координатах напряжение (σ) массовая скорость (U) траектории сжатия и разгрузки материала с аномальной сжимаемостью выпуклы вверх. Этот факт осложняет нахождение изэнтропы разгрузки материала, которая используется при выводе формулы (1). Кроме этого, как отмечалось в [4,9], аномальный характер сжимаемости может сохраняться и в области растяжения, что требует уточнения величины импеданса такого материала в области растяжения.

Применительно к стеклоуглероду оба эти обстоятельства были учтены с помощью математического моделирования представляемых экспериментов. Для этого использовалась модель стеклоуглерода и гидрокод из [4], которые позволяли рассчитывать историю напряжений и скоростей на внутренних и поверхностных слоях образца в условиях плоского одномерного ударно-волнового эксперимента. Полученная таким способом расчетная история напряжение-массовая скорость для экспериментов со свободной поверхностью обозначена на рис. 4

Рис. 4. История нагружения стеклоуглерода в координатах напряжение (σ) – массовая скорость (U). 1 – Моделирование эксперимента по схеме рис. 1а в рамках физико-механической модели стеклоуглерода [4]; 2 – экспериментальные значения максимальной W₁ и минимальной W₂ скорости свободной поверхности стеклоуглерода при отколе; 3- ударная адиабата торможения алюминиевого ударника; 4 - моделирование эксперимента по схеме рис. 1b в рамках физико-механической модели стеклоуглерода [4]; 5 – экспериментальные значения максимальной U₁ и минимальной U₂ скорости контактной поверхности образец-плексиглас при отколе; 6 – ударная адиабата плексигласового ударника; 7 – ударная адиабата торможения плексигласового ударника; W_{0A1} – скорость алюминиевого ударника; W_{0P} – скорость плексигласового ударника; $\sigma_{\rm U}$ – значения откольной прочности в опытах с "мягкой" преградой; $\sigma_{\rm W}$ – значения откольной прочности в опытах со свободной поверхностью

цифрой 1. В области растягивающих давлений наклон $J = |\Delta P/\Delta U|$ графика 1 составляет величину $J = 7.2(2) \Gamma \Pi a/(\kappa m/c)$. В соответствии с этим пунктирные отрезки прямых на рис. 4, имеющих наклон $\pm J$, представляют зависимость напряжения от массовой скорости стеклоуглерода в области растягивающих напряжений.

Экспериментальные значения W_1 и W_2 вместе с величиной J позволяют рассчитать величину откольной прочности стеклоуглерода как $\sigma_W = -0.5J(W_1 - W_2) = -0.3$ ГПа. Отметим, что для стеклоуглерода D2 величина J практически совпадает с произведением $\rho_0 C_{l0} = 6.92(1) \Gamma \Pi a/(км/c)$. Поэтому для определения откольной прочности в опытах со свободной поверхностью можно использовать обычную формулу (1) с заменой скорости звука C_0 на продольную C_{l0} , т.е. $\sigma = -0.5\rho_0 C_{l0} (W_1 - W_2)$.

Как отмечалось в [10], в тех случаях, когда профиль проходящей волны разгрузки существенно изменяется в области выхода откольного импульса, необходимо уточнять профиль U(t), используя в качестве "мягкой" преграды различные материалы. Очевидно, что эта рекомендация относится и к материалам с аномальной сжимаемостью, поскольку в них (см. [4–6]) формируются ударные волны разрежения с крутым фронтом. В связи с этим были проведены соответствующие откольные эксперименты по схеме рис. 1b, результаты которых упоминались выше (см. рис. 2b).

Как видно, профиль U(t) на рис. 2b содержит передний фронт плавной волны сжатия и задний фронт в виде крутой ударной волны разрежения. Кроме этого, профиль U(t) содержит максимальное U_1 , минимальное U_2 значения и откольный импульс, следующий за минимумом профиля. Таким образом, профиль представляет собой типичный профиль, содержащий информацию об откольной прочности материала, величина которой пропорциональна разнице $(U_1 - U_2)$.

С учетом вышеприведенного комментария и методического приема для определения откольной прочности материалов с аномальной сжимаемостью, была рассчитана история напряжение-массовая скорость для экспериментов с плексигласовым окном. Результаты расчета представлены на рис. 4 в виде графика 4. Экспериментальные значения U₁ и U₂ вместе с величиной J были использованы для нахождения значения откольной прочности стеклоуглерода σ_U путем графических построений (см. рис. 4). Оказалось, что σ_U почти в два раза меньше значения σ_W и составляет величину $\sigma_U = -0.16 \Gamma \Pi a$. Это означает, что в отличие от обычных материалов учет крутизны профиля проходящей волны разгрузки не увеличивает, а уменьшает значение откольной прочности.

Таким образом, откольная прочность стеклоуглерода в области его аномальной сжимаемости, определенная с использованием графических построений на рис. 4, может быть охарактеризована величиной $\sigma = (\sigma_W + \sigma_U)/2 = -0.23(7) \Gamma \Pi a.$

Как отмечалось во Введении, силикатные стекла обладают высокой откольной прочностью. Так, откольная прочность стекла в [5] превышала (по абсолютной величине) –5 ГПа, а откольная прочность

н сылкатного стекла (в квадратных скооках указаны энтературные ссылки)				
	Материал	$\sigma_{\rm Th}$, ΓΠα	σ, ΓΠα	$σ_b$, ΓΠα
	Стеклоуглерод	-2.4 [эта работа]	-0.23 [эта работа]	-0.04 [15]
	Силикатное	-16.0 [11]	-5.0 [5]	$-0.06 \div -14.0$ [11]
	стекло		-7.0 [6]	

Таблица 1. Значения теоретической прочности на отрыв σ_{Th} , откольной прочности σ и прочности на растяжение σ_b для графита и силикатного стекла (в квадратных скобках указаны литературные ссылки)

боросиликатного стекла ЛК7 превышала —7 ГПа [6], что в 20–30 раз больше откольной прочности стеклоуглерода. Обсудим возможные причины такого различия между силикатными и углеродным стеклами.

Воспользуемся оценкой Орована (см. [11]) величины максимальных растягивающих напряжений (теоретической прочности $\sigma_{\rm Th}$) для обоих стекол в виде

$$\sigma_{\rm Th} = -\sqrt{\frac{E\gamma}{a_0}}.$$
 (2)

В формуле (2) E – модуль Юнга, γ – поверхностная энергия, a_0 – межатомное расстояние.

Расчет [11] по (2) для силикатного стекла дает величину $\sigma_{\rm Th} = -16 \, \Gamma \Pi a$. Заметим, что при разрушении силикатных стекол на атомарном уровне происходит разрыв прочных ковалентных связей однокомпонентного материала. Что же касается стеклоуглерода, то этот материал, грубо говоря, состоит из графеновой и графитной компонент. Прочность на растяжение графеновой плоскости равна -130(10) ГПа [12]. Однако разумно ожидать, что при растяжении стеклоуглерода в первую очередь будет происходить разрыв межатомных связей в его графитной составляющей. Оценим с этих позиций величину теоретической прочности стеклоуглерода с помощью формулы (2). Воспользуемся для исследуемого стеклоуглерода значением модуля Юнга $E = \rho_0 C_{l0}^2 \left(\frac{(1+\nu_0)(1+2\nu_0)}{(1-\nu_0)} \right) = 29 \, \Gamma \Pi a$, поверхностной энергией $\gamma = 0.07 \, \text{Дж/м}^2$ для графита из [11] и величиной межплоскостных расстояний графитной составляющей стеклоуглерода СУ-2000 $a_0 = 3.606 \text{ Å}$ из [13]. Подстановка этих значений в (2) дает оценку величины теоретической прочности стеклоуглерода $\sigma_{\rm Th} = -2.4 \, \Gamma \Pi a$. Отметим, что полученное значение согласуется с величиной теоретической прочности стеклоуглерода $-2 \div -3 \Gamma \Pi a$, используемой в [14].

Таким образом, если предполагать, что верхним пределом откольной прочности является теоретическая прочность, то для стеклоуглерода этот предел в семь раз меньше, чем для силикатных стекол.

Значения теоретической прочности для углеродного и силикатного стекол вместе со значениями откольной прочности σ и прочности на растяжение σ_b приведены в табл. 1.

Вторая причина малой откольной прочности углеродного стекла по сравнению с силикатным стеклом, очевидно, связана с различием характера дефектности этих материалов. Величина прочности на растяжение $\sigma_b = -0.06 \, \Gamma \Pi a$ силикатного стекла инициируется, главным образом, микротрещинами на поверхности образца. Удаление поверхностных дефектов приводит к повышению σ_b силикатного стекла до $-14\Gamma\Pi a$ (см. [11]). Откольное разрушение всегда инициируется во внутренних слоях образца. Поэтому, как отмечалось в [5], если в предшествуюшей фазе упругого сжатия стеклянных образцов во внутренних слоях не возникает поврежденность, то величина откольной прочности σ оказывается близкой к прочности на растяжение σ_b тщательно изготовленных образцов. То есть, величина откольной прочности силикатного стекла достигает значений $\sigma \approx 0.5 \sigma_{\rm Th}$.

Величина прочности на растяжение стеклоуглерода $\sigma_b = -0.04 \, \Gamma \Pi a$ [15] практически совпадает с прочностью на растяжение обычных образцов силикатного стекла. Однако в отличие от силикатного стекла углеродное стекло заведомо содержит внутренние поры нанометрового размера (см. [16]), которые обратимо изменяют свою форму и не залечиваются при упругом сжатии и разгрузке в области аномальной сжимаемости стеклоуглерода (см. [2]). Поэтому при откольном разрушении внутренних объемов стеклоуглерода изначально существующие нанометровые поры играют, по-видимому, роль готовых зародышей разрушения и тем самым существенно ограничивают величину откольной прочности. В данной работе величина откольной прочности стеклоуглерода СУ-2000 составила $\sigma \approx 0.1 \sigma_{\rm Th}$.

Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (грант # 16-08-00237) и госзадания # 0089-2014-0016 с использованием оборудования уникальной научной установки "Экспериментальный взрывной стэнд" Института проблем химической физики РАН.

4. Заключение. Проведены ударноволновые эксперименты по одномерному плоскому нагруже-

нию образцов аморфного стеклообразного углерода СУ-2000. Получена первичная экспериментальная информация в виде профилей скорости движения тыльной поверхности плоских образцов, контактирующих с воздухом или с плексигласом. Измерения проведены в области аномальной сжимаемости стеклоуглерода в диапазоне от ~ -0.3 до +3 ГПа. Сформулирована экспериментально-расчетная методика определения откольной прочности материалов с аномальной сжимаемостью. Откольная прочность стеклоуглерода составила величину -0.23(7) ГПа. Показано, что в области давлений до 3 ГПа стеклоуглерод сохраняет устойчивость к волне разрушения. Оценка теоретической прочности стеклоуглерода СУ-2000 составила величину -2.4 ГПа.

- 1. J.F. Harris, J. Mater Sci. 48, 565 (2013).
- Z. Zhao, E. F. Wang, H. Yan, Y. Kono, B. Wen, L. Bai, F. Shi, J. Zhang, C. Kenney-Benson, C. Park, Y. Wang, and G. Shen, Nat. Commun. 6, 1 (2015).
- 3. В.Д. Чеканова, А.С. Фиалков, Успехи химии **XL**, 777 (1971).
- А. М. Молодец, А. А. Голышев, А. С. Савиных, В. В. Ким, ЖЭТФ 149(2), 333 (2016).

- 5. Г.И. Канель, А.М. Молодец, А.Н. Дремин, ФГВ **6**, 906 (1977).
- А. С. Савиных, Г.И. Канель, С.В. Разоренов, ЖТФ 80(6), 85 (2010).
- А. М. Молодец, В. И. Лебедев, А. Н. Дремин, ФГВ 25, 101 (1989).
- L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43(11), 4669 (1972).
- А.М. Молодец, Химическая физика 16(7), 113 (1997).
- А.М. Молодец, А.С. Савиных, А.А. Голышев, Г.В. Гаркушин, ПЖТФ 45(2), 29 (2019).
- А. Келли, Высокопрочные материалы, МИР, М. (1976), гл. 1, с. 15 [A. Kelly, Strong Solids, Clarendon Press, Oxford (1973)].
- Ch. Lee, X. Wei, J. W. Kysar, and J. Hone, Science **321**, 385 (2008).
- А.М. Молодец, А.А. Голышев, ЖЭТФ 153(6), 930 (2018).
- J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, Nature Materials 15, 438 (2016).
- W. V. Kotlensky and H. E. Martens, Nature 206, 1246 (1965).
- А. С. Фиалков, Углерод, межслоевые соединения и композиты на его основе, Аспект Пресс, М. (1997), гл. 8, с. 490.