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Two roads to antispacetime in distorted B-phase of 3He
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The topological materials with emergent analogs of

gravity demonstrate the possibility of realization of dif-

ferent exotic spacetimes, including the transition to an-

tispacetime, see, e.g., [1] and references therein. There

are several routes to the effective gravity. One of them

is the tetrad gravity emerging in the vicinity the Weyl

or Dirac points [2–5] – the exceptional crossing points

in the fermionic spectrum [6, 7]. Also the degenerate

2 + 1 gravity emerges near the Dirac nodal line in the

spectrum [1]. Another important source of gravity is the

formation of the tetrads as bilinear combinations of the

fermionic fields [8–10].

Emergent gravity provides different types of the an-

tispacetime obtained by the space reversal P and time

reversal T operations, including those where the deter-

minant of the tetrads e changes sign [9–12]. In cosmol-

ogy, the antispacetime Universe was in particular sug-

gested as analytic continuation of our Universe across

the Big Bang singularity [13]. There were speculations,

that antispacetime may support nonequilibrium states

with negative temperature as a result of analytic contin-

uation across the singularity [14, 15]. Here we consider

the antispacetime realized in experiments [16] on the

analog of cosmological walls bounded by strings [17] –

Kibble walls (KWs).

In notations [18] used in [19], the Green’s function

of the relativistic massive Dirac particle has the form:

S =
Z(p2)

−iγaeµapµ +M(p2)
. (1)

Here eµa are tetrads with µ, a = 0, 1, 2, 3; the residue

Z(p2) and the mass M(p2) are the functions of p2 =

= gµνpµpν , where gµν = eµae
ν
bη

ab. It is convenient to

express γ-matrices in terms of two sets of Pauli matri-

ces: σ1, σ2 and σ3 for conventional spin, and τ1, τ2, τ3
for the isospin in the left-right space:

γ0 = −iτ1, γa = τ2σ
a, a = (1, 2, 3). (2)
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γ5 = −iγ0γ1γ2γ3 = τ3. (3)

In some phases of superfluid 3He, the Green’s func-

tion for fermionic Bogoliubov quasiparticles is similar to

that in Eq. (1). Now instead of the mass function M(p2),

the energy of quasiparticles in the normal Fermi liquid

enters, ǫ(p) = vF(|p| − pF). The spin matrices σa act

in the spin space of 3He atoms; the matrices τb act in

the isotopic Bogoliubov–Nambu space. The function Z

can be ignored. The tetrads come from the spin-triplet

p-wave order parameter in 3He superfluids – the 3 × 3

matrix Ai
a with spin index a = (1, 2, 3) and orbital in-

dex i = (1, 2, 3):
∑

k k
i 〈akαa−kβ〉 ∼ Ai

a

(
σaσ2

)
αβ

. For

the time reversal symmetric phases [20]:

Ai
a = pFe

iΦeia , a, i = (1, 2, 3). (4)

The tetrads eia emerge due to the spontaneously broken

symmetries SO(3)S×SO(3)L under spin and orbital ro-

tations. This is analogous to the formation of the tetrads

in relativistic theories as bilinear combinations of the

fermionic fields [9, 10]. In addition to tetrads, the order

parameter (4) contains the phase Φ coming from spon-

taneous breaking of U(1)-symmetry, and the Green’s

function depends both on eµa and on Φ:

S̃(eµa ,Φ) = e−γ0Φ/2S(eµa)e
γ0Φ/2. (5)

For Φ = π the symmetry transformation e−γ0Φ/2 is

equivalent to the conventional space reversal transfor-

mation – the parity P = e−γ0π/2 = γ0, with P 2 = −1.

This suggests that in relativistic theories the discrete

symmetry, such as the space inversion P , could be the

residual Z2 symmetry after breaking of the more funda-

mental symmetry group.

In the time reversal symmetric states realized in ex-

periments [16, 21] the tetrads are:

eia = c1f̂ax̂
i + c2ĝaŷ

i + c3d̂aẑ
i, (a, i) = (1, 2, 3), (6)

where d̂, f̂ and ĝ are orthogonal unit vectors in spin

space; x̂, ŷ and ẑ are orthogonal unit vectors in or-

bital space; c1, c2 and c3 are “speeds of light”. In the
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pure B-phase |c1| = |c2| = |c3|; in the polar phase

[21] c1 = c2 = 0; in the polar disorted B phase (PdB)

|c2| = |c1| < |c3|. The particular states of these phases:

eµa = diag(−1, c1, c2, c3). (7)

In the PdB phase, the states with c2 = +c1 and

c2 = −c1 in Eq. (7) can be separated by the nontopo-

logical domain wall – the analog of the KW bounded by

strings [17]. The KW typically appears in the two phase

transitions: at first transition the linear defect becomes

topologically stable; at the second transition the linear

defect looses its topological stability and becomes the

termination line of the KW. In superfluid 3He, the HQVs

(half-quantum vortex – HQV) appear at first transition

from the mormal liquid to the polar phase [22], and at

further transition to the PdB phase they become the

end lines of the KWs [16]. Across KW, e22 = c2 changes

sign, and the spacetime analytically transforms to the

antispacetime. The intermediate state within the KW

has the degenerate tetrad eµa = diag(−1, c1, 0, c3) – the

distorted planar phase (for planar phase |c1| = |c3| and

c2 = 0 [20]).

Figure 1 demonstrates the loop of HQV, which ter-

minates the KW. In cosmology, the HQV corresponds

Fig. 1. Roads to antispacetime: the safe route around the

Alice string (along C1) or dangerous route along C2 across

the Kibble wall (through the Alice looking glass)

to the Alice string [23]: by circling around the HQV the

phase Φ changes by π, the vectors d̂ and f̂ rotate by π,

and one continuously arrives at opposite e22:

diag(−1, c1, c2, c3) → diag(−1, c1,−c2, c3), (8)

i.e., to the same antispacetime as across the KW.

In conclusion, in the polar distorted B-phase of su-

perfluid 3He, the half-quantum vortex (Alice string) and

the Kibble wall bounded by strings demonstrate the two

ways to enter the mirror world in Fig. 1: either to go

around the HQV or to cross the Kibble wall. The po-

lar distorted B-phase also suggests the scenario of the

formation of the discrete symmetry – the parity P in

particle physics – from the continuous symmetry exist-

ing on the more fundamental level.
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