Формирование фазы антиферромагнитного металла в допированном электронами оксиде $Sr_{0.98}La_{0.02}MnO_3$ по данным ЯМР ¹⁷О

З. Н. Волкова⁺¹⁾, С. В. Верховский⁺, А. П. Геращенко⁺, А. Ю. Гермов⁺, К. Н. Михалев⁺, А. Ю. Якубовский^{*}, Е. И. Константинова[×], И. А. Леонидов[×]

 $^+$ Институт физики металлов им. М. Н. Михеева Уральского отделения РАН, 620108 Екатеринбург, Россия

*Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

×Институт химии твердого тела Уральского отделения РАН, 620108 Екатеринбург, Россия

Поступила в редакцию 10 января 2019 г. После переработки 5 марта 2019 г. Принята к публикации 7 марта 2019 г.

Методом ядерного магнитного резонанса на ядрах ¹⁷О экспериментально исследовано распределение спиновой плотности коллективизированных электронов, n_{eg} , и их влияние на парные корреляции локализованных спинов $S(t_{2g})$ ионов Mn^{4+} в кубическом антиферромагнетике $\mathrm{Sr}_{1-x}\mathrm{La}_{x}\mathrm{MnO}_{3}$ (x = 0.02; $T_{\mathrm{N}} = 230 \,\mathrm{K}$; магнитная структура G-типа). В парамагнитной фазе обнаружены области с $n_{eg} > x$, в которых локальная спиновая восприимчивость пар атомов Mn следует зависимости $\chi \sim (T - \Theta)^{-1}$ с $\Theta = 20(5) \,\mathrm{K}$, указывающей на рост в этих областях ферромагнитного типа спиновых корреляций соседних магнитных ионов. С понижением температуры доля пар Mn–O–Mn ($n_{eg} > x$) увеличивается. Ниже T_{N} взаимно-проникающие сетки связей Mn–O–Mn с различной концентрацией коллективизированных e_{g} электронов формируют фазу антиферромагнитного металла. Обсуждается роль эффектов слабой локализации как основной причины магнитной неоднородности фазы антиферромагнитного металла в Sr_{0.98}La_{0.02}MnO₃.

DOI: 10.1134/S0370274X19080113

Переход металл-изолятор в допированных магнитных оксидах является ключевой задачей исследований этого класса сильнокоррелированных систем [1, 2]. Зарядовые и спиновые неоднородности, возникающие на диэлектрической стороне перехода в антиферромагнитно (АФ) упорядоченной матрице магнитных ионов ${\rm Mn}^{3+}$ $({}^{3}t_{2g}{}^{1}e_{g})$ дырочно допированных манганитов $\mathrm{Sr}_{1-x}\mathrm{La}_{x}\mathrm{MnO}_{3}$ (x > 0.7) являются надежно установленным фактом [3, 4]. Основные характеристики фазово-расслоенного состояния манганитов: высокая термическая устойчивость ферромагнитных (ФМ) кластеров, магнитных поляронов (МП), особенности диффузионной подвижности МП малого радиуса, перколяционная природа перехода в фазу ФМ металла получили достаточное микроскопическое обоснование в модели двойного обмена, учитывающей кулоновское взаимодействие между допированными электронами и поляронное сужение зоны проводимости за счет коллективного эффекта Яна-Теллера [5-8].

При допировании электронами оксида марганца SrMnO₃, не содержащего ян-теллеровских ионов, обладающего кристаллической структурой кубического перовскита, *Pm3m*, и демонстрирующего ниже $T_{\rm N} \sim 240 \, {\rm K}$ антиферромагнитное G-типа упорядочение локализованных спинов $S(t_{2q})$ ионов Mn⁴⁺ $({}^{3}t_{2q}{}^{0}e_{q}; S = 3/2),$ формирование проводящей фазы является исключительно результатом конкуренции антиферромагнитного суперобменного взаимодействия между локализованными спинами S ионов Mn⁴⁺ и ферромагнитного посредством механизма двойного обмена (ДО) взаимодействия локализованных спинов с коллективизированными электронами спин-поляризованной e_q зоны проводимости [9–11]. Широкая ($W_{eq} \sim 1.5$ эВ [11]) орбитально вырожденная зона проводимости минимизирует энергетические барьеры межузельных перескоков е_q электронов и способствует росту эффективности механизма ДО на трехмерной сетке 180° связей Mn–O–Mn, тем самым приближая кубический SrMnO₃ к переходу в металлическую фазу [12]. В отличие от дырочно-допированных манганитов, уже при достаточно малой концентрации допированных электронов $x \geq 0.01$ в $\mathrm{Sr}_{1-x}\mathrm{La}_{x}\mathrm{MnO}_{3}$ наблюдается температурная зависимость удельного сопротивления $d\rho/dT \ge 0$ [13], характерная для метал-

¹⁾e-mail: volkovazn@imp.uran.ru

лического состояния. Однако реализация однородной фазы АФ металла [14] во многом зависит от эффективности экранирования избыточного заряда ионов-допантов – потенциальных ловушек допированных электронов. Электронное допирование путем создания вакансий в подрешетке атомов кислорода в SrMnO_{3-x/2} [15, 16] или гетеровалентного замещения в подрешетке немагнитного катиона Sr²⁺ в Sr_{1-x}La_xMnO₃, Sr_{1-x/2}Ce_{x/2}MnO₃ [13, 17] сопровождается появлением при $T < T_N/10$ в изотермах перемагничивания M(H) ферромагнитного вклада $M_{\rm FM}$ (рис. 1). Наличие в той же области температур двух

Рис. 1. Температурная зависимость магнитной восприимчивости $\chi_{\rm m} = M/H$ и изотермы перемагничивания M(H), измеренные с помощью магнитометра PPMS-9 (Quantum Design) в поликристаллических образцах кубических оксидов Sr_{0.98}La_{0.02}MnO₃ ($T_{\rm N} = 230(5)$ K) и SrMnO_{2.998} ($T_{\rm N} = 238.5(30)$ K) [18]

хорошо разрешенных линий ядерного магнитного резонанса (ЯМР) ⁵⁵Mn, соответствующих АФ и ФМ коррелированным спинам ионов Mn⁴⁺ [18, 19], является прямым свидетельством магнитной неоднородности допированного SrMnO₃ в основном состоянии, где АФ матрица сосуществует с ФМ кластерами. В SrMnO_{3-x/2} все x электронов локализуются в потенциальных ямах ~ 25 мэВ [16, 18], формируя связанные МП.

В отличие от дырочного допирования, в $Sr_{0.98}La_{0.02}MnO_3$ значительная доля допированных электронов остается коллективизированной, обеспечивая эффективный механизм Корринги [20] для скорости спин-решеточной релаксации ядер ⁸⁷Sr в областях фазы AФ металла [21]. Другой особенностью электронного допирования SrMnO₃ является низкая термическая устойчивость MII. Согласно результатам по ЯМР ⁸⁷Sr [21], ¹⁷O [18], выше 40 К подавляющая доля MII разрушается

Письма в ЖЭТФ том 109 вып. 7-8 2019

и все x электронов делокализованы и принимают участие в механизме ДО. Неоднородное магнитное уширение линий ЯМР ⁸⁷Sr, ¹³⁹La свидетельствует о магнитной гетерогенности фазы АФ металла с более выраженным подкосом АФ G-типа структуры вблизи иона-допанта La³⁺ [21, 22].

В этой связи полученные в экспериментах по ЯМР 17 О локальные данные о плотности допированных электронов и парных спиновых корреляциях соседних ионов марганца вносят необходимую ясность в вопрос об источнике магнитной неоднородности парамагнитной фазы и фазы АФ металла в Sr_{0.98}La_{0.02}MnO₃.

Действительно, в перовскитной структуре оксида атом кислорода – непосредственный участник формирования ковалентных химических связей и соответствующих анизотропных обменных взаимодействий локализованных спинов $S(t_{2g})$ соседних ионов Mn^{4+} . Электронный перенос спиновой плотности $s_z(2p_\pi) = f_\pi S_z(t_{2g})$ на $2p_\pi$ орбитали кислорода приводит к анизотропному вкладу в сдвиг линии ЯМР ¹⁷О: $K_{\rm hf}(\alpha) = K_{\rm hf,ax}(3\cos^2\alpha - 1)$, где α – угол между $H \parallel z$ и направлением связи Мп–О–Мп. При $x \ll 1$ [23]

$$K_{\rm hf,ax} = -4/5\mu_{\rm B} \langle r^{-3} \rangle_{2p} f_\pi \langle S_z(t_{2g}) \rangle / 2SH, \quad (1)$$

где $g\mu_{\rm B}\langle S_z(t_{2g})\rangle/H = \chi_s({\rm Mn})$ – локальная спиновая восприимчивость ионов Mn, ближайших соседей зонда ЯМР ¹⁷О. Изотропная компонента сверхтонкого магнитного сдвига линии ЯМР ¹⁷О, $K_{\rm hf,iso}$, возникает *при допировании оксида* в результате контактного взаимодействия Ферми ядра I с s спиновой плотностью $s_z(2s) = f_s s_z(e_g)$ коллективизированных допированных e_q электронов:

$$K_{\rm hf,iso} = 2H_{\rm FC}(2s)f_s\langle s_z(e_g)\rangle/H,\tag{2}$$

где $H_{\rm FC}(2s)$ – магнитное поле, создаваемое на ядре Iнеспаренным O(2s) электроном. Эти электроны становятся коллективизированными в $O(2s2p_{\sigma})-{\rm Mn}(e_g)$ зоне проводимости, состояния которой имеют основной $|e_g\rangle$ характер и ФМ поляризованы вследствие сильного внутриатомного обменного взаимодействия $-Js(e_g)S(t_{2g})$ с локализованными t_{2g} электронами: $s_z(2s) = f_s s_z(e_g) = g(E_{\rm F})JS_z(t_{2g})$ [23]. При $x \ll 1$ плотность состояний $g(E_{\rm F}) \propto n_{eg}/E_{\rm F}$ [10], тогда выражение (2) принимает вид:

$$K_{\rm hf,iso} = 2H_{\rm FC}(2s)f_s(J/E_{\rm F})n_{eq}\langle S_z(t_{2q})\rangle/2SH.$$
 (3)

Согласно (1) и (3), отношение $K_{\rm hf,iso}(T)/|K_{\rm hf,ax}|$ может служить мерой доли коллективизированных электронов, n_{eq} , которая может отличаться от x вследствие эффектов локализации [18]. В данной работе представлены результаты экспериментов по ЯМР ¹⁷О в поликристаллическом образце $Sr_{0.98}La_{0.02}MnO_3$ ($T_N = 230(5)$ K), позволившие оценить величину и выяснить особенности температурной зависимости локальной спиновой восприимчивости ионов Mn^{4+} в областях с различной концентрацией допированных электронов.

Детали синтеза образца Sr_{0.98}La_{0.02}MnO₃ описаны в [21] за исключением финальной стадии синтеза. Стехиометрический по кислороду состав оксида со структурой кубического перовскита, обогащенного (~30%) изотопом ¹⁷O, был достигнут в результате отжига в потоке газообразного кислорода, содержащего ~70% изотопа-зонда ЯМР в течение 48 ч при парциальном давлении P = 1.2 атм и T = 670 K.

Спектры ЯМР ¹⁷О получены на спектрометре ЯМР AVANCE III-500 (Bruker) в магнитном поле $H = 11.7 \,\mathrm{T}$ с использованием метода спинового эхо, где сигнал эхо возбуждался импульсной последовательностью $au_{\pi/2} - t_{delay} - au_{\pi/2} - t_{delay} - ext{ sxo}$ $(\tau_{\pi/2} = 1.2$ мкс, $t_{delay} = 15$ мкс). Спектр шириной в несколько мегагерц является суммой спектральных интенсивностей фурье-сигналов второй половины спинового эхо, накопленных при проходе по частоте с шагом 100 кГц. Сдвиг линий ЯМР ¹⁷О, $K = (\nu - \nu_0)/\nu_0$, определялся относительно частоты $\nu_0 = 67.800 \,\mathrm{MGm}$ – положения пика линии ЯМР ¹⁷О в H₂O. В кубическом перовските позиции кислорода структурно эквивалентны и обладают аксиальной D4h симметрией. Положение резонанса ядра ¹⁷О (квадрупольный момент ¹⁷Q = -0.02578 · $10^{-24} \, \text{сm}^2$) определяется совместным эффектом магнитного и электрического квадрупольного взаимодействий. В результате спектр поликристаллического образца (рис. 2a) состоит из 2I = 5 линий магнитных ($|\Delta m = 1|$) переходов $m = 5/2 \leftrightarrow 3/2; ...;$ $-3/2 \leftrightarrow -5/2$. Симуляция спектра, включающего все переходы, позволяет надежно определить компоненты тензора магнитного сдвига $\{K_{iso}; K_{ax}\}$ и градиента электрического поля (ГЭП) V_{ii} {квадрупольная частота $\nu_Q = [3e^2Q/2I(2I-1)h]V_{zz}$; параметр асимметрии $\eta = |(V_{xx} - V_{yy})/V_{zz}|\}.$

Характерные спектры ЯМР ¹⁷О в парамагнитном и АФ упорядоченном состояниях оксида $Sr_{0.98}La_{0.02}MnO_3$ приведены на рис. 2. Особенности магнитного уширения спектров достаточно рельефно выделяются при симуляции спектра в оксиде $SrMnO_{3-x/2}$ (x = 0.004), где положение и интенсивность всех особенностей хорошо описывается одним набором параметров ГЭП { $\nu_Q = 1.06 \text{ M}\Gamma$ ц; $\eta = 0$ } и тензора магнитного сдвига { K_{iso} ; K_{ax} } [18]. В то же

Рис. 2. Спектры ЯМР ¹⁷О, полученные в магнитном поле H = 11.7 Т и включающие все $m \leftrightarrow m - 1$ переходы, в парамагнитной и АФ фазах поликристаллических образцов SrMnO_{2.998} (а) и Sr_{0.98}La_{0.02}MnO₃ (b), (c). Сплошная кривая – результат симуляции спектра порошка суперпозицией двух линий: line-1(- –) и line-2(- · - · –)

время существенная "избыточность" спектральной интенсивности в интервале сдвигов $K = (0.5 \div 1.5)$ % не позволяет описать экспериментальный спектр в оксиде $Sr_{0.98}La_{0.02}MnO_3$ одним набором $\{K_{ii}; V_{ii}\}$. Удовлетворительное описание (сплошная кривая на рис. 2b, c) достигается двумя линиями, относящимися к позициям кислорода с аксиальной симметрией зарядового окружения: O1 (line-1; $\nu_{Q1} = 1.05(2) M\Gamma$ ц; $\eta_1 = 0$), O2 (line-2; $\nu_{Q2} = 1.10(10) M\Gamma$ ц; $\eta_2 = 0$) и различной величиной $\{K_{iso}; K_{ax}\}$. Относительная интенсивность линий, Int_i , определяет долю атомов кислорода, зондирующих статические спиновые корреляции соответствующих пар соседних атомов марганца Mn1–O1–Mn1 или Mn2–O2–Mn2.

Рис. 3. (а) – Температурные зависимости изотропной $K_{\rm hf,iso}$ и аксиальной $K_{\rm hf,ax}$ компонент сверхтонкого магнитного сдвига линии ЯМР ¹⁷О в SrMnO_{2.998} и Sr_{0.98}La_{0.02}MnO₃ (line-1). (b) – Доля допированных электронов n_{eg}/x в зависимости от T в областях (Mn1–O1–Mn1) оксида Sr_{0.98}La_{0.02}MnO₃. (c) – Температурная зависимость относительной интенсивности Int_2 линии line-2, сдвиг которой определяется спиновой воспри-имчивостью χ (Mn2) соседней пары атомов марганца Mn2–O2–Mn2. Величина χ^{-1} (Mn2) в зависимости от температуры приведена на вставке для $T > T_{\rm N}$; пунктирная прямая – результат линейной аппроксимации

Для наиболее интенсивной линии line-1 на рис. За приведены температурные зависимости компонент сверхтонкого сдвига: изотропной $K_{\rm hf,iso}(T) = K_{\rm iso}(T) - K_0$, где величина химического сдвига $K_0 = 0.08\,\%$ не зависит от T и x[18], и аксиальной $K_{\rm hf,ax}(T) = K_{\rm ax}(T) - K_{\rm dip,ax}$, где $K_{\rm dip,ax} = 0.10$ (1% – вклад в измеряемый сдвиг $K_{\rm ax}(T)$ классического дипольного поля локализованных магнитных моментов соседних ионов ${\rm Mn}^{4+2}$. Согласно (1), величина $|K_{\rm hf,ax}(T;{\rm line-1})| \propto \chi_s(T;{\rm Mn1})$ и рост с температурой абсолютной величины сдвига $K_{\rm hf,ax}(T;{\rm line-1})$

отражает псевдощелевое поведение, $d\chi_s/dT \geq 0$, спиновой восприимчивости атомов марганца, ближайших соседей зонда O1 на связи Mn1-O1-Mn1. Подобная "щелевая" зависимость $\chi_s(T)$ регистрировалась лишь в макроскопической восприимчивости $\chi_{\rm m}(T) = M/H$ [24, 25] и результатах по ЯМР ¹⁷О [18] слабо допированных электронами кубических оксидов SrMnO_{3-x/2} ($x \le 0.01$) [24, 25]. Для удобства сравнения на рис. За приведены данные $K_{\mathrm{hf},\mathrm{ax}}(T)$ и $K_{\rm hf,iso}(T)$ для оксида SrMnO_{2.998}. В отличие от SrMnO_{2.998}, в Sr_{0.98}La_{0.02}MnO₃ абсолютная величина изотропной компоненты сверхтонкого сдвига линии line-1, $|K_{\rm hf,iso}(T; {\rm line-1})| \propto n_{eq}\chi_s(T, {\rm Mn1}),$ демонстрирует с понижением Т лишь слабую тенденцию уменьшения, тем самым свидетельствуя, что доля $n_{eq}/x \approx 1/4$ допированных электронов (рис. 3b) остается коллективизированной в парамагнитной и АФ фазах оксида. Эти электроны участвуют в создании однородной спиновой поляризации в областях Mn1–O1–Mn1. Объемная доля этих областей $Int_1 > 0.6$, что существенно больше $p_c = 0.25$ – соответствующей оценки перколяционного предела протекания по связям в простой кубической решетке атомов Mn [26].

Существенное различие величин и температурных зависимостей макроскопической восприимчивости $\chi_{\rm m}(T) = \chi_s(T,{\rm Mn1})Int_1 + \chi_s(T,{\rm Mn2})Int_2$ (рис. 1) и локальной спиновой восприимчивости $\chi_s(T, \text{Mn1})|K_{\text{hf.ax}}(T; \text{line-1})|$ (рис. 3a) связано в Sr_{0.98}La_{0.02}MnO₃ с вкладом областей Mn2–O2–Mn2, формирующих неоднородное магнитное состояние оксида. Линия line-2 сдвинута в сторону существенно больших величин $K_{\rm hf,iso}(T; {\rm line-2}) = 1.1(2)\%;$ $-K_{hf,ax}(T; line-2) = 0.43(7)\%$, соответствующих n_{eq} > x и $\chi_s(T, \mathrm{Mn2})$ > $\chi_s(T, \mathrm{Mn1})$ в областях Mn2-O2-Mn2. В парамагнитной фазе оксида величина $\chi_s(T, \text{Mn2})$ следует зависимости закона Кюри–Вейсса $\chi \sim (T - \Theta)^{-1}$ с положительной величиной парамагнитной температуры Кюри $\Theta = 20(5) \,\mathrm{K}$ (рис. 3с), указывающей на преобладание ФМ типа спиновых корреляций соседних ионов Mn⁴⁺ в областях Mn2–O2–Mn2. Объемная доля этих областей (рис. 3с) монотонно растет при понижении температуры и ниже 200 К превышает перколяционный предел по связям в кубической решетке: $Int_2 > p_c$. Важно иметь в виду, что выше 100 К в этих областях усиленный эффект двойного обмена приводит лишь к росту крутизны индуцированного внешним магнитным полем подкоса магнитных подрешеток АФ (G-типа) структуры (рис. 1) без образования статических ФМ упорядоченных конфигураций локализованных $S(t_{2q})$

 $^{^{2)}}$ В интервал
еT=(100-400)К изменение с температурой $|\Delta K_{\rm dip,ax}|<10^{-3}K_{\rm dip,ax}.$

спинов соседних ионов Mn^{4+} . Ферромагнитная компонента подкоса, $M_{\rm FM, canting}$, создает сверхтонкое поле ${}^{17}h({\rm O2}) = K_{\rm hf, iso}H \approx 1.5$ кЭ, величина которого существенно меньше ${}^{17}h({\rm MI}) \approx 40$ кЭ, сверхтонкого поля на ядрах зонда ${}^{17}{\rm O}$ внутри МП [27].

Таким образом, согласно результатам ПО ЯМР ¹⁷О, в магнитно-упорядоченном состоянии Sr0.98La0.02MnO3 возникают взаимно-проникающие сетки связей Mn – O – Mn с различной концентрацией коллективизированных e_q электронов. Обнаруженный парадокс сосуществования в единой зоне проводимости электронов с различной энергией кулоновского взаимодействия между ними естественно разрешается, принимая во внимание неполное экранирование случайного потенциала в подрешетке ионов La³⁺/Sr²⁺. Рост времени межузельных перескоков e_q электронов вблизи ионадопанта, по сравнению с его величиной $t_{\rm hop} = \hbar g(E_{\rm F})$ в однородной фазе АФ металла [14], сопровождается эффектами слабой локализации допированных электронов, приводящими к неоднородной по кристаллу спиновой плотности коллективизированных электронов и, соответственно, к существенной дисперсии спиновой восприимчивости ионов Mn⁴⁺.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект #18-32-00030, Российского научного фонда, проект #18-73-00190, в рамках государственного задания по теме "Спин" # АААА-А18-118020290104-2.

Авторы благодарят центр коллективного пользования Института физики металлов Уральского отделения РАН за предоставленные услуги.

- M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
- 2. E. Nagaev, Phys. Rep. 346, 387 (2001).
- J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).
- N.A. Babushkina, E.A. Chistonina, K.I. Kugel, A.L. Rakhmanov, O.Yu. Gorbenko, and A.R. Kaul, J. Phys.: Condens. Matter 15, 259 (2003).
- A. J. Millis, P. B. Littlewood, and B. J. Shraiman, Phys. Rev. Lett. **74**, 5144 (1995).
- M. Yu. Kagan, D. I. Khomskii, and M. V. Mostovoy, Eur. Phys. J. B **12**, 217 (1999).
- 7. М. Ю. Каган, К. И. Кугель, УФН 171, 577 (2001).
- К. И. Кугель, А. Л. Рахманов, А. О. Сбойчаков, М. Ю. Каган, И. В. Бродский, А. В. Клапцов, ЖЭТФ 125, 648 (2004).

- 9. J.B. Googenough, Rep. Prog. Phys. 67, 1915 (2004).
- J. van den Brink and D. Khomskii, Phys. Rev. Lett. 82, 1016 (1999).
- A. M. Oles and G. Khaliullin, Phys. Rev. B 84, 214414 (2011).
- L. Vaugier, H. Jiang, and S. Biermann, Phys. Rev. 86, 165105 (2012).
- H. Sakai, S. Ishiwata, D. Okuyama, A. Nakao, H. Nakao, Y. Murakami, Y. Taguchi, and Y. Tokura, Phys. Rev. B 82, 180409 (2010).
- 14. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
- T. Negas and R.S. Roth, J. Solid State Chem. 1, 409 (1970).
- C. Chiorescu, J. L. Cohn, and J. J. Neumeier, Phys. Rev. B 76, 020404(R) (2007).
- O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Phys. Rev. B 67, 094431 (2003).
- A. Trokiner, S. Verkhovskii, Z. Volkova, A. Gerashenko, K. Mikhalev, A. Germov, A. Yakubovskii, A. Korolev, B. Dabrowski, and A. Tyutyunnik, Phys. Rev. B 93, 174413 (2016).
- А.Ю. Гермов, К.Н. Михалев, С.В. Верховский, З.Н. Волкова, А.П. Геращенко, А.В. Королев, Е.И. Константинова, И.А. Леонидов, В.Л. Кожевников, Письма в ЖЭТФ 102, 837 (2015).
- 20. J. Korringa, Physica 16, 601 (1950).
- A. Germov, A. Trokiner, Z. Volkova, K. Mikhalev, A. Gerashenko, S. Verkhovskii, A. Korolev, I. Leonidov, E. Konstantinova, and V. Kozhevnikov, Phys. Rev. B 96, 104409 (2017).
- А. Ю. Гермов, К. Н. Михалев, З. Н. Волкова, А. П. Геращенко, Е. И. Константинова, И. А. Леонидов, Письма в ЖЭТФ 109, 245 (2019).
- A. Narath, *Hyperfine interactions*, ed. by A. J. Freeman and R. B. Frankel, Academic Press, N.Y. (1967).
- H. Sakai, J. Fujioka, T. Fukuda, M.S. Bahramy, D. Okuyama, R. Arita, T. Arima, A.Q.R. Baron, Y. Taguchi, and Y. Tokura, Phys. Rev. B 86, 104407 (2012).
- A. A. Belik, Y. Matsushita, Y. Katsuya, M. Tanaka, T. Kolodiazhnyi, M. Isobe, and E. Takayama-Muromachi, Phys. Rev. B 84, 174413 (2016).
- J. M. Ziman, *Models of Disorder*, Cambridge University Press, Cambridge (1979).
- A. Trokiner, S. Verkhovskii, A. Yakubovskii,
 A. Gerashenko, P. Monod, K. Kumagai, K. Mikhalev,
 A. Buzlukov, Z. Litvinova, O. Gorbenko, A. Kaul, and
 M. Kartavtzeva, Phys. Rev. B **79**, 214414 (2009).