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Pauli-principle driven correlations in four-neutron nuclear decays
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In the last decade there was a great progress in the

studies of three-body decays (e.g. two-proton radioactiv-

ity) [1]. In contrast to “conventional” two-body decays,

three-body decays encrypt a lot of additional informa-

tion in the momentum (energy and angular) correla-

tions of the decay products. Theoretical studies indicate

that both effects of the initial nuclear structure and the

decay mechanism may show up in the core+n+n and

core+p+p fragment correlation patterns in various ways

[2–13].

With the development of experimental techniques,

more and more “complicated” nuclear systems become

available for studies. One of such complicated cases

are isotonic neighbors of the 4n-halo systems located

beyond the neutron dripline, which are expected to

have narrow resonance ground state decaying via 4n-

emission. The examples of such systems, which are now

actively studied by experiment, are 7H and 28O. The

4n-emission phenomenon is known to be widespread be-

yond the neutron dripline, and other possible candidates

for such a decay mode, e.g., 18Be can be mentioned.

Their ground states are expected to be unbound with

ET . 2MeV (ET is energy above the 4n decay thresh-

old), and the decay mechanism can be assumed as “true”

4n emission: there are no sequential neutron emissions,

which mean that all neutrons are emitted simultane-

ously.

In the 4n-emission (core+4n decay) the five-body

correlations encrypt enormously more information com-

pared to the three-body decay. In five-body case

the complete correlation pattern is described by 8-

dimensional space compared to the 2-dimensional space

in the three-body decay. The core+4n system permuta-

tion symmetries should decrease the effective dimension
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of the correlation space, but there should be still a lot.

The question can be asked here “How we should look for

physically meaningful signals in this wealth of informa-

tion?”

The concept of “Pauli focusing” was proposed in [14]

and further discussed, e.g., in [15, 16] for the bound

state structure of three-body core+n+n systems. It was

demonstrated that due to the Pauli exclusion principle,

the population of orbital configurations [lj1⊗lj2 ]J for the

valence nucleons may induce strong spatial correlations

depending on the specific values of j1, j2, and J . Various

forms of such correlations were actively discussed as an

integral part of the two-nucleon halo phenomenon.

Pauli focusing for 5-body systems was discussed in

[17, 18] by example of 8He nucleus described by the

α+4n model. The complicated spatial correlation pat-

terns were predicted. However, Pauli focusing has never

been discussed for decays of the systems located above

the five-body core+4n breakup threshold.

The theoretical model we develop in this work for dy-

namics of 5-body decay is generalization of the improved

direct 2p-decay model [19] to the 4n emission case. In di-

rect decay models it is assumed that emitted particles

are propagating to asymptotics in fixed quantum states,

while the total decay energy is shared among single-

particle configurations described by R-matrix-type am-

plitudes. In the three-body case the direct decay model

is powerful and reliable phenomenological tool broadly

used in the application to 2n and 2p decays for lifetime

estimates [12, 20–22] studies of two-nucleon correlations

[1, 19] and transitional dynamics [19, 23, 24].

As a result, in this work we have for the first time

theoretically studied the correlations in emission of four

nucleons in the nuclear 5-body decay. We have demon-

strated that for true five-body decays of core+4n sys-

tems the Pauli focusing – the cumulative effects of anti-
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symmetrization and population of definite orbital con-

figurations – may lead to distinctive correlation pat-

terns. These patterns are not very expressed in the one-

dimensional energy and angular distributions. Here they

can also be masked by other dynamical effects. However,

we have found a way to reliably extract the information

on internal structure from correlations. In addition to

the one-dimensional distributions, the correlated two-

dimensional energy {εik, εnm} and angular {θik, θnm}
(i 6= k, n 6= m) distributions may be constructed. For

core+4n decays in total five topologically nonequivalent

two-dimensional distributions exist. The reconstruction

of all these distributions requires a complete kinemat-

ical characterization of the core+4n decay, which is

within the reach of the modern experiment. We pro-

pose to study the full set of the two-dimensional corre-

lated energy or/and angular distributions for derivation

of the information concerning the quantum-mechanical

4n-decay configuration. We predict that taken together

these distributions form a unique “fingerprint” of the

decaying quantum state.
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