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The resonantly enhanced optical interaction of light

with metallic, dielectric, or semiconductor nanoparti-

cles, which are the basic components of various nanoop-

tical devices, is at the forefront of modern nanophoton-

ics [1–4]. The examples of vital applications include on-

chip integrated photonic systems [5, 6], lab-on-chip tech-

nologies [7], medical biosensing [8] and others. However,

understanding the modal content of resonant nanostruc-

tures is non-trivial problem due to their substantially

subwavelength sizes and typically complicated geome-

tries. This problem has very limited solution within

the common optical spectroscopy methods as some of

the modes can be low-radiative because of their weak

coupling to freely propagating waves, and in this sense

are often known as dark-modes [9–11]. Thus, studying

the modal spectrum of optical nanostructures with ac-

count on dark modes immediately becomes a compli-

cated problem.

The solution of this problem usually relies on so-

phisticated optical methods such as total internal re-

flectance microscopy (TIRM) [12] and its combination

with atomic-force microscopy [13, 14]. The methods

based on resonant mode excitation through accelerated

electron scattering showed their efficiency in observing

the dark-modes of nanostructures.

In this Letter, we suggest detecting an intrinsic Ra-

man signal, which corresponds to inelastic photon scat-

tering via optical phonons excitation in a crystalline

lattice of a nanostructure to determine its electromag-

netic modal structure [15]. The Raman signal gener-

ated by lattice vibrations is distributed over the volume

of the nanoresonator and effectively couple to all reso-
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nant modes including dark ones. By exciting the optical

phonons and their consequent spontaneous decay, the

incoherent Stokes signal is generated inside the nanores-

onator under study. The intensity of the Raman signal

is governed by the optical density of states [16, 17] in-

side the nanoresonator at the frequency of the Raman

emission, and additionally enhanced at the excitation

frequency by resonant excitation of the eigenmodes. We

reveal magnetic quadrupole mode in a rather compli-

cated system of a silicon nanoparticle arranged on a

gold substrate as well as an anapole state, demonstrat-

ing the applicability of our approach even when dark-

field optical spectroscopy methods are not efficient. Sil-

icon as one of the main materials used in all-dielectric

nanophotonics [1, 18, 3] has a well pronounced peak in

Raman spectrum at Ω ≈ 520 cm−1, which is defined by

the light coupling with optical phonons at the band cen-

tral point [19–21]. The system under study consists of a

subwavelength silicon nanoparticle (SiNP) placed over

a gold substrate as show in Fig. 1. It should be stressed

that approach can be applied for detecting any reso-

nant mode excited in any structures that have inherent

Raman scattering at visible range.

In conclusion, we have suggested an efficient ap-

proach for experimental determining the spectral con-

tent of nanoresonator basing on utilizing an incoherent

Raman scattering, inherent to the resonator material.

The approach was confirmed theoretically and experi-

mentally for silicon nanoparticle resonators possessing

a strong intrinsic Raman response. We have shown that

the suggested method allows us to reveal the magnetic

quadrupole resonance combining with the anapole state

in the system of a silicon nanoparticle arranged on a

gold substrate, demonstrating the applicability of our
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Fig. 1. (Color online) The elastic and inelastic scattering by bright and dark resonant modes in silicon nanoparticle on the

top of gold substrate. (a) – The excitation of the bright nanoparticle mode results in both elastic scattering and inelastic

(Raman) scattering. (b) – The excitation of the dark mode does not contribute to elastic scattering, but can be detected via

Raman scattering signal

approach for broad range of non-plasmonic resonant

nanostructures.
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