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On thermal Nieh–Yan anomaly in topological Weyl materials
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We discuss the possibility of a gravitional Nieh–Yan
anomaly of the type ∂µj

µ
5 = γT 2T a ∧ Ta in topological

Weyl materials, where T is temperature and T a is the
effective or emergent torsion. As distinct from the non-
universal parameter Λ in the conventional (zero temper-
ature) Nieh–Yan (NY) anomaly [1–4] – with canonical
dimensions of momentum – the parameter γ is dimen-
sionless. This suggests that the dimensionless parame-
ter is fundamental, being determined by the geometry,
topology and the number of chiral quantum fields with-
out any explicit non-universal ultraviolet (UV) scales.

In non-relativistic topological matter, quasi-
relativistic description of low-energy quasiparticles
with linear spectrum phenomena may emerge [5, 6]. In
three spatial dimensions at a generic (two-fold) fermion
band crossing at momentum pW , the Hamiltonian is
of the Weyl form [5, 7–9] HW = σaeia(p − pW )i + · · · ,
where the eia are the linear coefficients of the Pauli
matrices σa, playing the role of background spacetime
tetrad fields. The shift of the Weyl node pW acts as an
emergent (axial) gauge field. These background fields
imply the chiral anomaly for the low-energy massless
quasiparticles, see, e.g., [5, 9–11]. In particular, the
non-trivial coordinate dependence (torsion) related to
the tetrads eµa(x) can lead to the gravitational NY
anomaly [1–4, 12, 13]. Here we discuss this anomaly in
the presence of finite temperature [14, 15].

For spacetimes with torsion T (and curvature R) the
4-dimensional invariant was introduced [1, 2, 4]:

N = T a ∧ Ta − ea ∧ eb ∧Rab (1)

and can be associated with a difference of two topolog-
ical terms [3]. It was also suggested that N contributes
to the anomalous chiral current jµ5 :

∂µj
µ
5 =

Λ2

4π2
N(r, t), (2)

where the parameter Λ has dimension of mass [Λ] = [M ]
and is determined by an UV scale.
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There has been several attempts to consider
the NY anomaly in condensed matter systems with
Weyl fermions, see, e.g., [13, 16–18]. However, in
non-relativistic systems the relativistic high-energy
cut-off Λ is not a well defined parameter. The complete
UV theory is non-Lorentz invariant and the linear,
quasirelativistic Weyl regime is valid at much lower
scales. Moreover, the anomalous hydrodynamics of
superfluid 3He at zero temperature suggests that the
chiral anomaly is completely exhausted by the emergent
axial gauge field corresponding to the shift of the node
or, conversely, the NY anomaly term. Nevertheless, it
was shown in [13] that the low-energy theory satisfies
the symmetries and conservations laws related to an
emergent quasirelativistic spacetime with torsion and
Λ is determined from the UV-scale where the linear
Weyl approximation breaks down.

The fully relativistic responses work unambiguously
only for terms in the effective action with dimensionless
coefficients. An example is the 2+1-dimensional topo-
logical Chern–Simons (CS) terms describing the quan-
tum Hall effect. Gravitational CS terms similarly are
quantized in terms of chiral central charge which has
relation to thermal transport and the gapless boundary
modes [19, 20]. The CS action was recently generalized
to crystalline topological insulators in odd space dimen-
sions. The CS term is expressed via elasticity tetrads
E with dimension [E] = [M ] as the topological term
E ∧ A ∧ dA with quantized dimensionless coefficients
[21–23].

Another such example is the temperature correction
to curvature effects, with δSeff =

∫
T 2R in the low-

energy action [24]. This represent the analog of the grav-
itational coupling (Newton constant) in the low-energy
action where the curvature scalar R is some analog of
scalar spacetime curvature. Since [T ]2[R] = [M ]4, the
coefficient of this term in the low-energy theory is di-
mensionless, and thus can be given in terms of universal
constants. It is fully determined by the number of the
fermionic and bosonic species and works both in rela-
tivistic and non-relativistic systems [24].
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The same universal behavior takes place with the
terms describing the chiral magnetic and chiral vorti-
cal effects in Weyl superfluids, where the coefficients
are dimensionless [5, 25]. Similarly, the coefficient of the
R∧R gravitional anomaly in chiral Weyl systems affects
the thermal transport coefficients in flat space [26, 27].
These coefficients are fundamental, being determined by
the underlying degrees of freedom in addition to symme-
try, topology and geometry. The same may hold for the
temperature correction to the NY anomaly term. The
zero-temperature anomaly term is still not confirmed in
general. On one hand the UV cut-off parameter Λ is
not well-defined in relativistic field theory. On the other
hand, such a cut-off is not in general available in non-
relativistic matter and can be anisotropic [13] or even
zero. However, the term T 2(T a ∧Ta+ ea∧ eb ∧Rab) has
the proper dimensionality.

Here we use the result obtained in [28, 29] for
the finite temperature contribution to the chiral cur-
rent. For complex fermions, the chiral current is jk5 =

= −T 2

24 ǫ
0kijT 0

ij , which can be covariantly generalized to

the 4-current jµ5 = −T 2

24 ǫ
µναβeνaT

a
αβ leading to ∂µj

µ
5 =

= −T 2

48 ǫ
µναβTaµνT

a
αβ . With curvature, this becomes the

temperature correction to the full NY term, where the
cut-off Λ is substituted by the well defined local rela-
tivistic temperature T with parameter γ = 1/12:

∂µj
µ
5 = −T

2

12
N(r, t). (3)

This temperature correction to the NY anomaly can
be universal for chiral Weyl fermions. It is fully deter-
mined by the quasirelativistic physics in the vicinity
of the Weyl node, and does not depend on the non-
universal cut-off as distinct from the T = 0 term. The
prefactor has been found using a relativistic regulariza-
tion scheme (see [14, 28, 29]) and has been confirmed in
[15] in a finite T spectral flow calculation in a torsional
magnetic field [16, 30].

It is known that the hydrodynamics of 3He-A ex-
periences the chiral anomaly due to non-trivial texture
[5, 30]. The spectral flow of momentum depends only on
the density of states at the node. Therefore the relativis-
tically invariant calculation near the gap node gives the
same result as the full BCS Fermi-liquid far from the
nodes, where relativistic invariance is lost. The same
ultraviolet-infrared correspondence may take place for
the finite temperature NY anomaly. The temperature is
an infrared energy scale at which the quasi-relativistic
fermions are well-defined, whereas Λ2 is an explicit and
non-universal UV cut-off [13]. This correspondence can
be verified from the hydrodynamic conservation laws,
which exactly correspond to the NY anomaly. The first
attempt was made in [14], where the hydrodynamic
transport parameters calculated in [31] have been used.
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