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The upper critical magnetic field, Hc2(T ), is known
to be one of the most important properties of the type-
II superconductors. It destroys superconductivity due
to the orbital Meissner currents in case, where we can
disregard the Pauli spin-splitting paramagnetic effects.
The Ginzburg–Landau (GL) theory gave tools to calcu-
late a slope of the Hc2(T ) [1] in the vicinity of super-
conducting transition temperature, (Tc−T )/Tc ≪ 1. On
the other hand, at zero temperature, the upper critical
magnetic field was calculated for an isotropic 3D super-
conductor in [2]. Temperature dependence of Hc2(T ) in
a whole temperature region in an isotropic 3D super-
conductor was calculated later in [3]. Important gen-
eralization of the GL theory to the case of anisotropic
superconductors was obtained in [4], where the so-called
effective mass model was implicitly introduced. The ef-
fective mass model, partially based on the results ob-
tained in [4] in the GL region, states more: ratios of the
upper critical magnetic fields measured along fixed dif-
ferent directions do not much depend on temperature.
Recently observed experimental temperature dependen-
cies of anisotropy of the upper critical fields in layered
compound MB2 [5] and other materials are prescribed
exclusively to many-band effects (see introductory part
of review [6]).

The goal of our Letter is to consider the orbital ef-
fect in a parallel magnetic field in a Q2D conductor
at zero temperature, where we explicitly take into ac-
count a Q2D anisotropy of the electron spectrum. In
contrast to [1–4, 6], we demonstrate that, in a Q2D case
in a parallel magnetic field, the solution of the so-called
gap equation can not be expressed as some exponential
function. Moreover, we show that the above mentioned
solution even changes a sign with changing space coor-
dinate. This leads to unusual value of the corresponding
coefficient, 0.75, in the equation,
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H
‖
c2(0) ≈ 0.75 |dH‖

c2/dT |Tc
Tc, (1)

for a parallel magnetic field. We recall that, for a perpen-
dicular magnetic field the corresponding solution is ex-
ponential one and gives much smaller coefficient – 0.59,
as shown by different method in [7]:

H⊥
c2(0) ≈ 0.59 |dH⊥

c2/dT |Tc
Tc. (2)

Note that Eqs. (1) and (2) directly break the effective
mass model, since the corresponding coefficients, 0.75

and 0.59 are not close to each other.
In the Letter, we consider a layered superconductor

with the following realistic Q2D electron spectrum:

ǫ(p) = 1
2m (p2x + p2y)− 2t⊥ cos(pzc

∗),

t⊥ ≪ ǫF , ǫF =
p2F
2m =

mv2F
2 , (3)

where m – the electron in-plane mass, t⊥ – the integral
of overlapping of electron wave functions in a perpen-
dicular to the conducting planes direction; ǫF , pF , and
vF are the Fermi energy, Fermi momentum, and Fermi
velocity, correspondingly; ~ ≡ 1. In a parallel to the
conducting planes magnetic field,

H = (0, H, 0) , A = (0, 0,−Hx), (4)

we make use of the so-called Peierls substitution
method:

px → −i
(

∂

∂x

)

, py → −i
(

∂

∂y

)

,

c∗pz → −ic∗
(

∂

∂z

)

−
(

ωc
vF

)

x, ωc(H) =
evF c

∗H

c
. (5)

Under such conditions the electron orbital Hamiltonian
in a magnetic field can be written in the following way:

Ĥ = − 1

2m

(

∂2

∂x2
+

∂2

∂y2

)

−2t⊥ cos

(

−ic∗ ∂
∂z

− ωc
vF
x

)

. (6)
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Using the standard procedure [2], we linearize the
Hamiltonian (6) with respect to the derivative ∂

∂x . As
a result, the problem becomes exactly solvable (see, for
example, [8]). It is straightforward to find the Matsub-
ara’s Green’s functions [8, 9] in the magnetic field (4)
and, then, to find the following Gor’kov’s gap equation,
which determines the parallel upper critical magnetic
field at any temperature:

∆(x) = g

〈∫ ∞

d

2πTdz

vF sinh

(

2πTz
vF

) ×

× J0

{

2t⊥ωc
v2F

[z(2x+ z sinα)]

}

∆(x + z sinα)

〉

α

, (7)

where ∆(x) is the so-called superconducting gap, g is
the coupling constant, d is the cut-off distance; < ... >α
stands for averaging procedure over angle α.

We recall that Eq. (7) determines the parallel upper
critical field at any temperatures. It is possible to prove
that near transition temperature, τ = Tc−T

Tc
≪ 1, it

reduces to differential GL equation:

−ξ2‖
d2∆(x)

dx2
+

(

2πH

φ0

)2

ξ2⊥x
2∆(x) − τ∆(x) = 0, (8)

ξ‖ =

√

7ζ(3)vF

4
√
2πTc

, ξ⊥ =

√

7ζ(3)t⊥c∗

2
√
2πTc

, (9)

where φ0 = πc
e is the magnetic flux quantum and ζ(x)

is zeta-Riemann function. It is important that Eq. (8)
can be analytically solved [1] and expression for the GL
upper critical field slope can be analytically written:

H
‖
c2 = τ

(

φ0
2πξ‖ξ⊥

)

= τ

[

8π2cT 2
c

7ζ(3)evF t⊥c∗

]

. (10)

To consider the Eq. (7) at T = 0, it is convenient to
introduce the following new variables,

z̃ =

√
2t⊥ωc
vF

(x− x1), x̃ =

√
2t⊥ωc
vF

x, (11)

and rewrite Eq. (7) at T = 0, using new variables, as

∆(x̃) = g

〈∫ ∞
√

2t⊥ωc

vF
d

dz̃

z̃
J0[z̃(2x̃+ z̃ sinα)]×

×∆(x̃+ z̃ sinα)

〉

α

. (12)

Numerical solution of Eq. (12) (see Fig. 1) gives the fol-
lowing result for the parallel upper magnetic critical
field in terms of the GL slope (10):

H
‖
c2(0) ≈ 0.75

[

8π2cT 2
c

7ζ(3)evF t⊥c∗

]

= 0.75 |dH‖
c2/dT |Tc

Tc.

(13)

Fig. 1. (Color online) Solution of Eq. (7) for the Q2D con-

ductor (3) in the parallel magnetic field (4) is shown. We

pay attention to the fact that the solution is not of the

Gaussian form, moreover it changes its sign several times

with changing variable x̃

For the perpendicular upper critical magnetic field
the corresponding results were obtained earlier [7] [see
Eq. (2)]. Therefore, we predict in the Letter an increase

of the Q2D anisotropy, γ(T ) =

[

H
‖
c2(T )

H⊥
c2(T )

]

, with decreas-

ing temperature:

lim
T→0

γ(T ) = lim
T→0

[

H
‖
c2(T )

H⊥
c2(T )

]

= 1.27 lim
T→Tc

γ(T ). (14)

We note that, in the Letter, we have not taken into
account quantum effects of electron motion along open
orbits [10] and have considered case, where tc > Tc,
which is opposite to the Lawrence–Doniach model [11].

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134/S0021364019150025
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