Модуляция магнето-межподзонных осцилляций в одномерной латеральной сверхрешетке

А. А. Быков^{+*1)}, И. С. Стрыгин^{+*}, А. В. Горан⁺, Д. В. Номоконов⁺, И. В. Марчишин⁺, А. К. Бакаров⁺, Е. Е. Родякина^{+*}, А. В. Латышев^{+*}

⁺Институт физики полупроводников им. А.В. Ржанова Сибирского отделения РАН, 630090 Новосибирск, Россия

*Новосибирский государственный университет, 630090 Новосибирск, Россия

Поступила в редакцию 17 июля 2019 г. После переработки 30 июля 2019 г. Принята к публикации 30 июля 2019 г.

Изучен низкотемпературный магнетотранспорт в квазидвумерной электронной системе с одномерной периодической модуляцией потенциала, изготовленной на основе селективно-легированной GaAs квантовой ямы с двумя заполненными подзонами размерного квантования. Показано, что в такой электронной системе соизмеримые осцилляции сопротивления сосуществуют с магнето-межподзонными осцилляциями. Обнаружено, что в двухподзонной электронной системе одномерный периодический потенциал приводит не только к соизмеримым осилляциям, но и к модуляции амплитуды магнето-межподзонных осцилляций. Полученные экспериментальные результаты объясняются формированием зон Ландау в квазидвумерной электронной системе с одномерной периодической модуляцией потенциала.

DOI: 10.1134/S0370274X19170107

Квантование Ландау в двухподзонной электронной системе Ферми, помещенной во внешнее перпендикулярное магнитное поле В, приводит к двум сериям осцилляций Шубникова-де Гааза (ШдГ). Возникают они при изменении В вследствие последовательного пересечения уровнями Ландау энергетического уровня Ферми Е_F. Осцилляции ШдГ периодичны по 1/B, а их частоты f_{SdH1} и f_{SdH2} определяются концентрациями электронов в подзонах n_1 и n_2 . Упругое рассеяние электронов между подзонами при изменении В становится резонансным в условиях, когда уровни Ландау, принадлежащие различным подзонам, пересекаются. Это приводит к тому, что в квазидвумерных системах, наряду с осцилляциями ШдГ, возникает еще один тип квантовых магнитных осцилляций сопротивления – магнето-межподзонные (ММП) осцилляции [1-7].

ММП осцилляции, как и осцилляции ШдГ, периодичны по 1/B. Период ММП осцилляций в двухподзонной электронной системе определяется равенством:

$$E_2 - E_1 = k\hbar\omega_c,\tag{1}$$

где E_1 – положение дна первой подзоны, E_2 – положение дна второй подзоны, k – целое положительное число, $\omega_c = eB/m^*$ – циклотронная частота, а m^* – эффективная электронная масса. Амплитуда ММП

осцилляций для квантовой ямы с двумя заполненными энергетическими подзонами задается соотношением [4, 7]:

$$\Delta \rho_{\rm MISO} / \rho_0 = A_{\rm MISO} \lambda_{\rm MISO}^2 \cos(2\pi \Delta_{12} / \hbar \omega_c), \qquad (2)$$

где $\rho_0 = \rho_{xx}(B = 0), A_{\text{MISO}} = 2\tau_{tr}/\tau_{12}, \tau_{tr}$ – транспортное время рассеяния, τ_{12} – время межподзонного рассеяния, $\lambda_{\text{MISO}}^2 = \lambda_1 \times \lambda_2, \lambda_1 = \exp(-\pi/\omega_c \tau_{q1})$ и $\lambda_2 = \exp(-\pi/\omega_c \tau_{q2})$ – факторы Дингла в первой и второй подзонах, τ_{q1} и τ_{q2} – квантовые времена жизни в энергетических подзонах, $\lambda_{\text{MISO}} =$ $= \exp(-\pi/\omega_c \tau_q^{\text{MISO}}), \tau_q^{\text{MISO}} = 2\tau_{q1}\tau_{q2}/(\tau_{q1} + \tau_{q2}), \Delta_{12} = (E_2 - E_1).$

ММП осцилляции не подавляются температурным уширением функции распределения Ферми [1, 4, 7] и поэтому позволяют исследовать квантовый транспорт в условиях, когда для этих целей нельзя использовать осцилляции ШдГ [8–18]. Настоящая работа посвящена изучению ММП осцилляций сопротивления в одномерной латеральной сверхрешетке (ЛСР) – двухподзонной электронной системе, помещенной в одномерный периодический потенциал: $V(x) = V_0 \cos(2\pi x/a)$, где V_0 – амплитуда модуляции потенциала, a – период латеральной потенциальной модуляции.

Магнетотранспортные свойства двумерного (2D) электронного газа в одномерном периодическом потенциале исследуются как экспериментально, так и

¹⁾e-mail: bykov@isp.nsc.ru

теоретически, уже более четверти века [19–36]. Наиболее ярким явлением, обнаруженным в такой системе, являются соизмеримые осцилляции (СО) сопротивления [19]. Эти осцилляции, как и осцилляции ШдГ, периодичны по 1/B. В 2D системе с концентрацией электронов n_e и периодом модуляции a минимумы CO возникают при выполнении равенства:

$$2R_c/a = (i - 1/4), \tag{3}$$

где $R_c = \hbar (2\pi n_e)^{1/2} / eB$ – циклотронный радиус, а *i* – целое положительное число. В рамках классического рассмотрения СО возникают благодаря резонансу между периодическим движением электронов по циклотронной орбите и осциллирующим дрейфом центра орбиты, индуцированным периодическим потенциалом V(x) [22].

В рамках квантового рассмотрения V(x) видоизменяет энергетический спектр 2D электронов в магнитном поле *B* вследствие снятия вырождения по отношению к координате центра волновой функции x_0 , что приводит к возникновению зон Ландау. В условиях слабой потенциальной модуляции, когда амплитуда модуляции много меньше энергии Ферми $(V_0 \ll \varepsilon_F)$, зависимость энергии уровня Ландау E_N с номером $N \gg 1$ от x_0 выражается соотношениями [21]:

$$E_N(x_0) \approx (N+1/2)\hbar\omega_c + V_B \cos(2\pi x_0/a), \quad (4)$$

$$V_B = V_0 J_0 (2\pi R_c/a).$$
(5)

Из (4) и (5) следует, что пирина зон Ландау $\Gamma_B = 2|V_B|$ изменяется периодически в зависимости от 1/B. Зависимость $\Gamma_B(1/B)$ приводит к периодическому изменению зонной проводимости от обратного магнитного поля, что является причиной СО в рамках квантового рассмотрения магнетотранспорта в одномерной ЛСР [21].

При большом числе сильно перекрывающихся уровней Ландау $N \gg 1$ плотность энергетических состояний электронов в 2D системе со слабой одномерной периодической модуляцией можно выразить следующим соотношением [21, 28]:

$$\Delta D/D_0 = -2J_0(2\pi V_B/\hbar\omega_c) \times \lambda \cos(2\pi\varepsilon_F/\hbar\omega_c), \quad (6)$$

где $D_0 = m^*/\pi\hbar^2$, $V_B = V_0 J_0(2\pi R_c/a)$, $\lambda = \exp(-\pi/\omega_c \tau_q)$, $\varepsilon_F = n_e/D_0$ – энергия Ферми. В сравнении с немодулированной 2D системой перед фактором Дингла λ появился дополнительный множитель $J_0(2\pi V_B/\hbar\omega_c)$. Такая модификация плотности состояний приводит к модуляции осцилляций ШдГ в одномерной ЛСР [28].

В условиях, когда $\Gamma_B \ll \hbar/\tau_q$, одномерный периодический потенциал приводит лишь к дополнительному уширению уровней Ландау. В этом случае его влияние на квантовый транспорт можно учесть, введя эффективное квантовое время жизни, зависящее от V_0 и 1/B [33]. В настоящее время в одномерных ЛСР изучены микроволновая фотопроводимость и нелинейные явления, возникающие под действием постоянного электрического поля в 2D электронном газе при больших факторах заполнения [30-33]. Однако поведение ММП осцилляций в ЛСР до сих пор остается неисследованным [37]. Так как ММП осцилляции проявляются в условиях, когда осцилляции ШдГ уже подавлены, то такие эксперименты открывают новые возможности для изучения квантового транспорта в низкоразмерных электронных системах.

В настоящей работе исследовалось поведение ММП осцилляций в одномерной ЛСР, изготовленной на основе селективно-легированной гетероструктуры GaAs/AlAs. Исходная гетероструктура представляла собой одиночную GaAs квантовую яму шириной 26 нм с боковыми сверхрешеточными барьерами AlAs/GaAs [38, 39]. Схематическое изображение квантовой ямы с двумя заполненными подзонами E_1 и E_2 представлено на вставке к рис. 1. Носители заряда в квантовой яме обеспечивались Si δ-легированием. Одиночные Si δ-легированные слои располагались с двух сторон от GaAs квантовой ямы на расстоянии 29.4 нм от ее границ. Расстояние от центра квантовой ямы до планарной поверхности структуры составляло 117.7 нм. Гетероструктура выращивалась методом молекулярно-лучевой эпитаксии на (100) GaAs подложке.

Исследования проводились на мостиках шириной W = 50 мкм и длиной L = 100 мкм. Они изготавливались с использованием оптической фотолитографии и жидкостного травления. На вставке к рис. 1 изображена упрощенная геометрия образца. Образец состоит из двух мостиков, на одном из которых формировалась одномерная ЛСР. Сверхрешетка представляла собой набор металлических полосок длиной 60 мкм и шириной 150 нм. Период ЛСР *a* составлял 300 нм. ЛСР изготавливалась при помощи электронно-лучевой литографии и метода "взрыва" двухслойной металлической пленки Au/Ti. Толщина слоя Au составляла 40 нм, а слоя Ti – 5 нм.

Эксперименты проводились при температуре T = 4.2 К в магнитных полях B < 2 Тл. Сопротивление образцов измерялось на переменном токе частотой 733 Гц, величина которого не превышала 10^{-6} А. В исходной гетероструктуре концентрация и подвиж-

Рис. 1. (Цветной онлайн) Зависимости ρ_{xx}/ρ_0 от 1/B, измеренные при T = 4.2 К на мостике с одномерной ЛСР (1) и на контрольном мостике (2). Кривая (2) для наглядности смещена вниз. Стрелкой указано положение ММП максимума для k = 12. На вставке изображены упрощенные схемы квантовой ямы и образца

ность электронов составляли: $n_H \approx 8.2 \cdot 10^{15} \text{ м}^{-2}$; $\mu \approx 111 \text{ м}^2/\text{Bc}$. Формирование ЛСР не изменяло n_H , а лишь незначительно уменьшало подвижность до $\mu \approx 106 \text{ м}^2/\text{Bc}$. В исследуемых ЛСР модуляция потенциала возникала без подачи электрического напряжения на металлические полоски. Одна из причин такой модуляции – упругие механические напряжения, возникающие между металлическими полосками и гетероструктурой [24].

На рисунке 1 представлены зависимости ρ_{xx}/ρ_0 от *B*, измеренные при *T* = 4.2 К на ЛСР (1) и на контрольном мостике (2). На контрольном мостике в диапазоне 0.1 < B < 0.5 Тл наблюдаются ММП осцилляции с небольшой модуляцией амплитуды, обусловленной интерференцией ММП и магнетофононных (МФ) осцилляций [10, 11]. На ЛСР в этом диапазоне *B* наблюдается более значительная модуляция амплитуды ММП осцилляций, обусловленная, как это будет показано далее, двухподзонным магнетотранспортом электронов в одномерном периодическом потенциале. В полях B > 0.5 Тл на ЛСР и контрольном мостике ММП осцилляции сосуществуют с осцилляциями ШДГ [8].

В Фурье спектре зависимосте
й ρ_{xx}/ρ_0 от 1/B для одномерной ЛСР и контрольного мостика в диа-

пазоне обратных магнитных полей $1/B < 2 \text{ Tn}^{-1}$ (B > 0.5 Tл) проявляются три частоты. Две из них соответствуют частотам осцилляций ШдГ ($f_{\text{SdH1}} \approx$ $\approx 13.1 \text{ Tл}$ и $f_{\text{SdH2}} \approx 4.0 \text{ Tл}$), а третья – ММП осцилляциям ($f_{\text{MISO}} \approx 9.16 \text{ Tл}$). Вычисленные из частот осцилляций ШдГ концентрации электронов в подзонах составили: $n_1 \approx 6.3 \cdot 10^{15} \text{ м}^{-2}$; $n_2 \approx 1.9 \cdot 10^{15} \text{ м}^{-2}$. Определенная из частоты f_{MISO} величина межподзонной энергии составила $\Delta_{12} = 15.6 \text{ мэB}$, что совпадет со значением, полученным из самосогласованного расчета исследуемой квантовой ямы.

На рисунке 2
а приведена зависимость ρ_{xx}/ρ_0 от 1/B в диапазон
е $2<1/B<8\,{\rm Tr}^{-1}$ для контроль-

Рис. 2. (Цветной онлайн) (а) – Тонкая линия – зависимость ρ_{xx}/ρ_0 от 1/B, измеренная при T = 4.2 К на контрольном мостике. Толстая линия – усредненная компонента экспериментальной зависимости ρ_{xx}/ρ_0 от 1/B. На вставке приведен Фурье спектр усредненной компоненты. (b) – Тонкая линия – зависимости $\Delta \rho_{\rm MISO}/\rho_0$ от 1/B для контрольного мостика. Толстая линия – зависимость $A_{\rm MISO} \times \lambda_{\rm MISO}^2$ от 1/B: $A_{\rm MISO} =$ = 0.34; $\tau_a^{\rm MISO} = 8$ пс

ного мостика. В Фурье спектре усредненной компоненты этой зависимости наблюдается пик, соответствующий частоте МФ осцилляций сопротивления в первой энергетической подзоне ($f_{\rm MPH} \approx 0.7 \, {\rm Tr}$) [11]. На рисунке 2b приведена зависимость $\Delta \rho_{\rm MISO}/\rho_0$ от 1/B, полученная путем вычитания усредненной компоненты из экспериментальной зависимости ρ_{xx}/ρ_0 от 1/B. Наблюдается падение $\Delta \rho_{\rm MISO}/\rho_0$ с ростом

 $\mathbf{4}^*$

1/B, что полностью согласуется с уравнением (2). Экспериментальная зависимость амплитуды ММП осцилляций от 1/B описывается этим уравнением с двумя подгоночными параметрами: $A_{\rm MISO}=0.34$, а $\tau_q^{\rm MISO}=8$ пс. Исходя из $A_{\rm MISO}=0.34$ и величины $\tau_{tr}\approx43$ пс, следует, что в исследуемой двухподзонной системе $\tau_{12}\approx253$ пс.

Зависимость ρ_{xx}/ρ_0 от 1/B в диапазоне 2 < $< 1/B < 8 \,\mathrm{Tn}^{-1}$ для одномерной ЛСР приведена на рис. 3. В этом случае в Фурье спектре усредненной

Рис. 3. (Цветной онлайн) Тонкая линия – зависимость ρ_{xx}/ρ_0 от 1/B, измеренная при T = 4.2 К на мостике с одномерной ЛСР. Толстая линия – усредненная компонента экспериментальной зависимости ρ_{xx}/ρ_0 от 1/B. На вставке приведен Фурье спектр усредненной компоненты

компоненты наблюдается два пика: $f_{\rm CO1} \approx 0.9$ Тл и $f_{\rm CO2} \approx 0.5$ Тл. Появление этих пиков мы связываем с одномерной периодической модуляцией потенциала, которая должна приводить в двухподзонной электронной системе к двум сериям CO [37]. Период CO определяется соотношением (3). Исходя из величин a, n_1 и n_2 , мы вычислили частоты CO в первой и второй подзонах: $f_{\rm CO1} \approx 0.88$ Тл и $f_{\rm CO2} \approx 0.49$ Тл. Имеется хорошее совпадение расчетных и экспериментальных частот CO. Это означает, что осцилляции сопротивления в усредненной компоненте зависимости ρ_{xx}/ρ_0 от 1/B для одномерной ЛСР, действительно, являются CO.

На риснке 4
а приведены зависимости $\Delta \rho_{\rm MISO}/\rho_0$ и $\Delta \rho_{\rm CO}/\rho_0$ от 1/B для одномерной ЛСР. Видно,

Рис. 4. (Цветной онлайн) (а) – Зависимости $\Delta \rho_{\text{MISO}}/\rho_0$ (тонкая линия) и $\Delta \rho_{\text{CO}}/\rho_0$ (толстая линия) от 1/*B* для мостика с одномерной ЛСР. (b) – Тонкая линия – зависимость $\Delta \rho_{\text{MISO}}/\rho_0$ от 1/*B*, рассчитанная по формуле (7): $A_{\text{MISO}} = 0.28$; $V_0 = 0.2 \text{ мэB}$; $\tau_q^{\text{MISO}} = 7.6 \text{ пс}$

что зависимости $\Delta \rho_{\text{MISO}}/\rho_0$ от 1/B для ЛСР и контрольного мостика существенно отличаются. Для контрольного мостика наблюдается экспоненциальное падение $\Delta \rho_{\text{MISO}}/\rho_0$ с ростом 1/B, а для ЛСР, кроме уменьшения $\Delta \rho_{\text{MISO}}/\rho_0$ с увеличением 1/B, наблюдается еще и значительная модуляция амплитуды ММП осцилляций. Из сопоставления зависимостей $\Delta \rho_{\text{MISO}}/\rho_0$ и $\Delta \rho_{\text{CO}}/\rho_0$ от 1/B для исследуемой ЛСР следует, что амплитуда ММП осцилляций падает в максимумах СО. Подобное поведение наблюдалось ранее для осцилляций ШдГ в одномерной ЛСР, и было объяснено возникновением зон Ландау в одномерном периодическом потенциале [23, 26, 28].

Мы учли влияние одномерной потенциальной модуляции на амплитуду ММП осцилляций в двухподзонной электронной системе, преобразовав формулу (2) по аналогии с формулой (6) к следующему виду:

$$\Delta \rho_{\rm MISO} / \rho_0 = A_{\rm MISO} \lambda_1 \lambda_2 J_0 (2\pi V_{B1} / \hbar \omega_c) \times J_0 (2\pi V_{B2} / \hbar \omega_c) \cos(2\pi \Delta_{12} / \hbar \omega_c), \tag{7}$$

где $V_{B1} = V_0 J_0(2\pi R_{c1}/a), V_{B2} = V_0 J_0(2\pi R_{c2}/a), R_{c1}$ и R_{c2} – циклотронные радиусы в подзонах. В формуле

(7), по аналогии с формулой (6) для плотности электронных состояний в одномерной ЛСР в одноподзонной системе, влияние потенциальной модуляции на амплитуду ММП осцилляций учитывается двумя дополнительными множителями $J_0(2\pi V_{B1}/\hbar\omega_c)$ и $J_0(2\pi V_{B2}/\hbar\omega_c)$ перед факторами Дингла λ_1 и λ_2 .

Зависимость $\Delta \rho_{\rm MISO}/\rho_0$ от 1/B, рассчитанная по формуле (7), представлена на рис. 4b. Наблюдается хорошее согласие экспериментальной кривой с расчетной зависимостью для следующих подгоночных параметров: $A_{\rm MISO} = 0.28$; $V_0 = 0.2 \,\mathrm{m}$ эB; $\tau_q^{\rm MISO} =$ = 7.6 пс. Это позволяет считать, что обнаруженная модуляция амплитуды ММП осцилляций обусловлена модификацией электронного спектра в одномерной ЛСР. Наличие одномерного периодического потенциала привело не только к модификации электронного спектра, но еще и к незначительному уменьшению τ_{tr} и $\tau_q^{\rm MISO}$ в ЛСР, по сравнению с их величинами в исходной гетероструктуре.

В исследуемых селективно-легированных гетероструктурах GaAs/AlAs рассеяние электронов на случайном потенциале является среднеугловым [39]. В этом случае дополнительное малоугловое рассеяние на одномерном периодическом потенциале с амплитудой $V_0 \ll \varepsilon_F$ не должно приводить к существенному изменению характера рассеяния электронов в ЛСР, что и наблюдается в эксперименте. Вычисленная из значений $A_{\rm MISO} = 0.28$ и $\tau_{tr} \approx 41$ пс величина τ_{12} для одномерной ЛСР составила 293 пс. Чем обусловлено увеличение времени межподзонного рассеяния в одномерной ЛСР, по сравнению с $\tau_{12} \approx 253$ пс в немодулированной двухподзонной электронной системе, мы в настоящее время не знаем.

Таким образом, на основе выскоподвижной двухподзонной электронной системы изготовлена одномерная ЛСР, в которой ММП осцилляции сопротивления сосуществуют с СО. В такой электронной системе обнаружена амплитудная модуляция ММП осцилляций. Установлено, что она вызвана периодическим изменением ширины зон Ландау в одномерной ЛСР при изменении внешнего обратного магнитного поля. Показано, что одной из причин уменьшения амплитуды ММП осцилляций в одномерной ЛСР является возрастание времени межподзонного рассеяния в двухподзонной электронной системе с одномерной периодической модуляцией потенциала.

Работа была выполнена при поддержке Российского фонда фундаментальных исследований, проект номер 18-02-00603.

 V.M. Polyanovskii, Sov. Phys. Semicond. 22, 1408 (1988).

- 2. P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).
- D. R. Leadley, R. Fletcher, R. J. Nicholas, F. Tao, C. T. Foxon, and J. J. Harris, Phys. Rev. B 46, 12439 (1992).
- M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 49, 5531 (1994).
- A. A. Bykov, D. R. Islamov, A. V. Goran, and A. I. Toropov, JETP Lett. 87, 477 (2008).
- N.C. Mamani, G.M. Gusev, T.E. Lamas, A.K. Bakarov, and O.E. Raichev, Phys. Rev. B 77, 205327 (2008).
- 7. O.E. Raichev, Phys. Rev. B 78, 125304 (2008).
- A. V. Goran, A. A. Bykov, A. I. Toropov, and S. A. Vitkalov, Phys. Rev. B 80, 193305 (2009).
- S. Wiedmann, N.C. Mamani, G.M. Gusev, O.E. Raichev, A.K. Bakarov, and J.C. Portal, Phys. Rev. B 80, 245306 (2009).
- A. A. Bykov, A. V. Goran, and S. A. Vitkalov, Phys. Rev. B 81, 155322 (2010).
- 11. O.E. Raichev, Phys. Rev. B 81, 195301 (2010).
- S. Wiedmann, G. M. Gusev, O. E. Raichev, A. K. Bakarov, and J. C. Portal, Phys. Rev. B 82, 165333 (2010).
- S. Dietrich, J. Kanter, W. Mayer, S. Vitkalov, D.V. Dmitriev, and A.A. Bykov, Phys. Rev. B 92, 155411 (2015).
- W. Mayer, J. Kanter, J. Shabani, S. Vitkalov, A.K. Bakarov, and A.A. Bykov, Phys. Rev. B 93, 115309 (2016).
- W. Mayer, S. Vitkalov, and A. A. Bykov, Phys. Rev. B 96, 045436 (2017).
- A. A. Bykov, A. V. Goran, and A. K. Bakarov, J. Phys. D: Appl. Phys. 51, 28LT01 (2018).
- I. L. Drichko, I. Yu. Smirnov, M. O. Nestoklon, A. V. Suslov, D. Kamburov, K. W. Baldwin, L. N. Pfeiffer, K. W. West, and L. E. Golub, Phys. Rev. B 97, 075427 (2018).
- A. A. Bykov, I. S. Strygin, A. V. Goran, I. V. Marchishin, D. V. Nomokonov, A. K. Bakarov, S. Abedi, and S. A. Vitkalov, JETP Lett. **109**, 400 (2019).
- D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8, 179 (1989).
- R. R. Gerhardts, D. Weiss, and K. v. Klitzing, Phys. Rev. Lett. 62, 1173 (1989).
- R. W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 62, 1177 (1989).
- 22. C. W. J. Beenakker, Phys. Rev. Lett. 62, 2020 (1989).
- D. Weiss, C. Zhang, R. R. Gerhardts, K. v. Klitzing, and G. Weimann, Phys. Rev. B 39, 13020(R) (1989).
- I. A. Larkin, J. H. Davies, A. R. Long, and R. Cuscó, Phys. Rev. B 56, 15242 (1997).
- J. H. Smet, S. Jobst, K. von Klitzing, D. Weiss, W. Wegscheider, and V. Umansky, Phys. Rev. Lett. 83, 2620 (1999).

- K. W. Edmonds, B. L. Gallagher, P. C. Main, N. Overend, R. Wirtz, A. Nogaret, M. Henini, C. H. Marrows, B. J. Hickey, and S. Thoms, Phys. Rev. B 64, 041303(R) 2001.
- R.A. Deutschmann, W. Wegscheider, M. Rother, M. Bichler, G. Abstreiter, C. Albrecht, and J. H. Smet, Phys. Rev. Lett. 86, 1857 (2001).
- A. Endo and Y. Iye, J. Phys. Soc. Jpn. 77, 054709 (2008).
- D. Kamburov, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. Lett. **109**, 236401 (2012).
- A. A. Bykov, I.S. Strygin, E. E. Rodyakina, W. Mayer, and S. A. Vitkalov, JETP Lett. **101**, 703 (2015).
- A. A. Bykov, I. S. Strygin, A. V. Goran, A. K. Kalagin, E. E. Rodyakina, and A. V. Latyshev, Appl. Phys. Lett. 108, 012103 (2016).

- A. A. Bykov, I. S. Strygin, A. V. Goran, E. E. Rodyakina, W. Mayer, and S. A. Vitkalov, JETP Lett. **104**, 257 (2016).
- A. A. Bykov, I.S. Strygin, E.E. Rodyakina, and S.A. Vitkalov, JETP Lett. 108, 121 (2018).
- 34. O.E. Raichev, Phys. Rev. Lett. 120, 146802 (2018).
- 35. O.E. Raichev, Phys. Rev. B 97, 245310 (2018).
- 36. M. Drienovsky, J. Joachimsmeyer, A. Sandner, M.-H. Liu, T. Taniguchi, K. Watanabe, K. Richter, D. Weiss, and J. Eroms, Phys. Rev. Lett. **121**, 026806 (2018).
- 37. J. P. Lu and M. Shayegan, Phys. Rev. B 58, 1138 (1998).
- 38. K.-J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616 (1996).
- D. V. Dmitriev, I. S. Strygin, A. A. Bykov, S. Dietrich, and S. A. Vitkalov, JETP Lett. 95, 420 (2012).