Pis’ma v ZhETF, vol. 110, iss. 7, pp. 435 - 436
© 2019 October 10
Possibility of direct observation of the Bloch-Siegert shift in coherent
dynamics of multiphoton Raman transitions
A. P. Saiko+1), S. A. Markevich+, R. Fedaruk
+Scientific-Practical Material Research Centre, Belarus National Academy of Sciences, 20072 Minsk, Belarus
Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland
Submitted 8 August 2019
Resubmitted 28 August 2019
Accepted 28
August 2019
DOI: 10.1134/S0370274X19190019
Modern studies of the resonant matter-light inter-
We use the semi-classical Rabi model and the non-
action evolve toward the ultrastrong coupling regime
secular perturbation theory based on the Bogoliubov
where the coupling strength is comparable to the tran-
averaging method [37]. We show that the co-rotating
sition frequency of a two-level system (qubit). The ro-
component of the low-frequency modulation field excites
tating wave approximation (RWA) is broken and the
virtual multiple photon processes between the dressed
contribution of the counter-rotating (non-RWA) terms
states and forms the Rabi frequency in the RWA. The
to the coupling Hamiltonian must be taken into account
counter-rotating modulation component also gives a sig-
[1-4]. The well-known manifestation of the non-RWA
nificant contribution to the Rabi frequency owing to the
terms is the Bloch-Siegert effect [5].
Bloch-Siegert effect. It is shown that for properly cho-
The ultrastrong regime is extremely important for
sen parameters of the modulation field and qubit, the
quantum information processing [6] and is widely stud-
Rabi oscillations in the RWA vanish due to destruc-
ied for various quantum objects [6-9]. In this regime,
tive interference of multiple photon processes (Fig. 1).
the Rabi oscillations have been investigated [10-22]. The
In this case the Rabi oscillation results exclusively from
dressing of qubit by the resonant electromagnetic field
the Bloch-Siegert effect and is directly observed in the
gives rise to new energy levels of the coupled field-qubit
time-resolved coherent dynamics as the Bloch-Siegert
system and the Rabi frequency characterizes the split-
oscillation. Correspondingly, in Fourier spectra of the
ting of each bare level [7]. The second field with the
coherent response, triplets are transformed into doublets
frequency closed to the Rabi frequency excites effec-
with the splitting between the lines equal to twice the
tively transitions between the dressed states. This phe-
Bloch-Siegert shift. We demonstrate these features by
nomenon, called the Rabi resonance, has been observed
calculations of the qubit’s evolution in the conditions
in electron paramagnetic resonance [23-25], NMR [26,
of experiments with a NV center in diamond. The di-
27] and in optics [28, 29]. The ultrastrong regime and
rect observation of the Bloch-Siegert oscillation offers
the Bloch-Siegert effect becomes significant in the co-
new possibilities for studying driven quantum systems
herent dynamics of the doubly dressed states [24, 25, 30].
in the ultastrong regime. Non-RWA effects of atom-bath
This dynamics finds applications in quantum informa-
interactions [38] and propositions of two-photon Raman
tion technologies [31, 32] and radio-frequency magne-
transition for a heat-powered maser [39] are mentioned.
tometry [33]. Additional multiphoton resonances occur
Full text of the paper is published in JETP Letters
at the subharmonics of the Rabi frequency [28, 34].
journal. DOI: 10.1134/S0021364019190019
Recently, so-called Floquet Raman transitions at mul-
1. Y. Yan, Z. Lü, and H. Zheng, Phys. Rev. A 91, 053834
tiphoton Rabi resonances have been observed for NV
(2015).
center in diamond driven by the amplitude-modulated
2. X. Cao, J. Q. You, H. Zheng, A. G. Kofman, and F. Nori,
microwave field [35]. It was shown [36] that the ultra-
Phys. Rev. A 82, 022119 (2010).
strong regime is reached in [35] resulting in the signifi-
3. I. D. Feranchuk and A. V. Leonov, Phys. Lett. A 375,
cant Bloch-Siegert shift. Here, we propose the method
385 (2011).
for direct observation of the Bloch-Siegert oscillation in
4. F. Angaroni, G. Benenti, and G. Strini, Eur. Phys. J. D
the coherent dynamics of the second-order Raman tran-
72, 32109 (2018).
sition.
5. F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
6. T. Takui, L. Berliner, and G. Hanson, Electron Spin Res-
onance (ESR) Based Quantum Computing, Springer,
1)e-mail: saiko@physics.by
N.Y. (2016).
Письма в ЖЭТФ том 110 вып. 7 - 8
2019
435
436
A. P. Saiko, S. A. Markevich, R. Fedaruk
15.
P. London, P. Balasubramanian, B. Naydenov,
L. P. McGuinness, and F. Jelezko, Phys. Rev. A 90,
012302 (2014).
16.
C. Avinadav, R. Fischer, P. London, and D. Gershoni,
Phys. Rev. B 89, 245311 (2014).
17.
J. H. Shim, S.-J. Lee, K.-K. Yu, S.-M. Hwang, and
K. Kim, J. Magn. Reson. 239, 87 (2014).
18.
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi,
S. Saito, and K. Semba, Nature Phys. 13, 44 (2017).
19.
P. Forn-Diaz, J. J. Garc´ia-Ripoll, B. Peropadre,
M. A. Yurtalan, J.-L. Orgiazzi, R. Belyansky, C. M. Wil-
son, and A. Lupascu, Nature Phys. 13, 39 (2017).
20.
A. F. Kockum, A. Miranowicz, S. D. Liberato,
S. Savasta, and F. Nori, Nat. Rev. Phys.
1,
19
(2019).
21.
J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll,
and E. Solano, Phys. Rev. Lett. 105, 263603 (2010).
22.
A. P. Saiko, S. A. Markevich, and R. Fedaruk, Phys. Rev.
A 93, 063834 (2016).
23.
G. Jeschke, Chem. Phys. Lett. 301, 524 (1999).
24.
A. P. Saiko and G. G. Fedoruk, JETP Lett. 87, 128
(2008).
25.
S. Rohr, E. Dupont-Ferrier, B. Pigeau, P. Verlot,
V. Jacques, and O. Arcizet, Phys. Rev. Lett. 112,
010502 (2014).
26.
A. Redfield, Phys. Rev. 98, 1787 (1955).
27.
R. Glenn, M. E. Limes, B. Pankovich, B. Saam, and
Fig. 1. (Color online) The state population of the excited
M. E. Raikh, Phys. Rev. B 87, 155128 (2013).
level |0〉 of the NV center for the second-order Raman
28.
S. Papademetriou, S. Chakmakjian, and J. C. R. Stroud,
transitions [35] as a function of the evolution time at the
J. Opt. Soc. Am. B 9, 1182 (1992).
modulation frequency ω/2π = 5.22 MHz. The strength of
29.
Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev.
the modulation field is A = A + ΔA, where A/ω = 2.68
A 50, 1474 (1994).
is the strength at which the RWA Rabi frequency is equal
30.
A. P. Saiko, R. Fedaruk, and S. A. Markevich, J. Phys.
to zero, and ΔA/ω = 0.25, 0.1, 0, -0.1, -0.25. The red
B 47, 155502 (2014).
line shows the Bloch-Siegert oscillation
31.
J.-M. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness,
K. D. Jahnke, F. Jelezko, M. B. Plenio, and A. Retzker,
New J. Phys. 14, 113023 (2012).
7. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Gryn-
32.
A. P. Saiko, R. Fedaruk, and S. A. Markevich, J. Magn.
berg, Atom - Photon Interactions: Basic Processes and
Reson. 290, 60 (2018).
Applications, Wiley, N.Y. (1992).
33.
A. Stark, N. Aharon, T. Unden, D. Louzon, A. Huck,
8. J. R. Schaibley, A. P. Burgers, G. A. McCracken,
A. Retzker, U. L. Andersen, and F. Jelezko, Nat. Com-
D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham,
mun. 8, 1105 (2017).
Phys. Rev. B 87, 115311 (2013).
34.
A. P. Saiko, R. Fedaruk, and S. A. Markevich, J. Magn.
9. S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492,
Reson. 259, 47 (2015).
1 (2010).
35.
Z. Shu, Y. Liu, Q. Cao, P. Yang, S. Zhang, M. B. Ple-
nio, F. Jelezko, and J. Cai, Phys. Rev. Lett. 121, 210501
10. I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura,
(2018).
C. J. P. M. Harmans, and J. E. Mooij, Nature (London)
36.
A. P. Saiko, S. A. Markevich, and R. Fedaruk, Phys. Rev.
431, 159 (2004).
A 98, 043814 (2018).
11. S. Saito, T. Meno, M. Ueda, H. Tanaka, K. Semba, and
37.
N. N. Bogoliubov and Yu.A. Mitropolsky, Asymptotic
H. Takayanagi, Phys. Rev. Lett. 96, 107001 (2006).
Methods in the Theory of Nonlinear Oscillations, Gor-
12. C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A. Lu-
don and Breach, N.Y. (1961).
pascu, Phys. Rev. Lett. 115, 133601 (2015).
38.
E. Shahmoon and G. Kurizki, Phys. Rev. A 87, 013841
(2013).
13. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Phys. Rev.
39.
A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu,
Lett. 87, 246601 (2001).
A. I. Lvovsky, I. Mazets, M. O. Scully, and G. Kurizki,
14. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Here-
PNAS 115, 9941 (2018).
mans, and D. D. Awschalom, Science 326, 1520 (2009).
Письма в ЖЭТФ том 110 вып. 7 - 8
2019