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Since the discovery of the Quantum Hall Effect
(QHE), there were many attempts to understand the
quantization of Hall conductivity σH . The appearance of
the universal integer values of the Hall plateaus prompts
that σH has the topological meaning, i.e., it is related
to a certain topological invariant, which is robust to the
smooth modification of the system. Indeed, the seminal
paper [1] shows that σH may be expressed through the
integral of Berry curvature over the occupied electronic
states. This is the so-called TKNN (Thouless, Kohmoto,
Nightingale, den Nijs) invariant [2–5]. The correspond-
ing expression is the topological invariant, i.e. it is not
changed when the system is modified smoothly. How-
ever, it has been obtained for the constant magnetic
fields only. Later it has been shown that in the ab-
sence of the inter-electron interactions the TKNN in-
variant for the intrinsic QHE (existing without exter-
nal magnetic field) may be expressed through the mo-
mentum space Green’s function [6, 7] (see also Chapter
21.2.1 in [8]). Recently these two results have been ex-
tended to the case of magnetic field varying as a func-
tion of coordinates. The corresponding expression for
σH is the topological invariant in phase space expressed
through the Wigner transformation of the two-point
Green function [9]. The mentioned representations of
σH through the topological invariants were derived for
the non-interacting systems. It is widely believed, that
in the presence of interactions the intrinsic anomalous
quantum Hall effect (AQHE) conductivity is given by
the expression of [6, 7], in which the non-interacting
two-point Green function has been substituted by the
two-point Green function with the interaction correc-
tions [10]. In the 2+1 D Quantum Electrodynamics this
has been proved in [11]. The influence of interactions
on the Hall conductivity in external magnetic field has
been discussed widely in the past (see, for example [12–
15] and references therein), however, this consideration
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has been limited by the case of the constant magnetic
field. In the present work, we investigate the influence
of Coulomb interactions on the QHE in the presence of
the non-uniform magnetic field. On the technical side
we consider the tight-binding models with the Coulomb
interactions between the electrons. We will use Wigner–
Weyl formalism [16–19] adapted in [20–24] to the lattice
models of solid state physics combined with the ordinary
perturbation theory.

Let us discuss first the system with the interactions
neglected. We start from the Euclidean action of the
2+1D tight-binding model of electrons under the action
of varying magnetic field and varying electric potential,
whose three-potential is Aµ

S =

∫
dτ
∑

x,x′

ψ̄x′

(
i(i∂τ −A3(iτ,x))δx,x′ − iDx,x′

)
ψx,(1)

where we denote the parallel transporters along the lat-
tice vector ei by eiAx−ei,x = e

i
∫

x

x−ei
Aµe

µ
i du. All presented

results are valid for any lattice models with the gauge in-
variant action of Eq. (1), and Hermitian matrix iDx,x′.
If vector potential Aµ(x) does not vary fast, i.e. if its
variation on the distance of the lattice spacing may be
neglected, then Wigner transformation of the two-point
Green function GW (R, p) satisfies the Groenewold equa-
tion [20]

GW (R, p) ∗QW (R, p) = 1,

in which
∗ = e

i
2

←−
∂ x

−→
∂ p−

i
2

←−
∂ p

−→
∂ x

is the star (Moyal) product, where the derivatives with
the left arrow act only on the functions standing to the
left from the star while the derivatives with the right
arrow act only to the functions standing right to the
star, while for the model with the action of Eq. (1)

QW (R, p) = Q(p−A(R)).

Here p = (p, p3), R = (R, τ). For the lattice model of
a general type Q is a certain function specific for the
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given system. For our purposes it may be almost ar-
bitrary. Wigner transformation of the Green function
G(p1, p2) is defined as

GW (R, p) =

∫

M

G(p+ q/2, p− q/2)eiqxdq,

where integral is over momentum space M. The star
product is associative: (f ∗ g) ∗ h = f ∗ (g ∗ h), which
allows us to write such products without brackets. The
electric current density (in the absence of electric field)
is given by

Jk(R) =

∫
d3p

(2π)3
TrGW (R, p)

∂

∂pk
QW (R, p). (2)

For the convenience, we introduce the average total cur-
rent Ik = (T/S)

∫
Jk(R)d3R, in which T is temperature,

while S is the area of the sample. In the following for
simplicity we refer to Ik as to the total current.

The technique applied allows us to obtain the fol-
lowing representation for the average Hall conductivity
(electric field is directed along the y axis): σxy = N

2π ,
where N is the topological invariant in phase space,
which is the generalization of the classical TKNN in-
variant [1]. Unlike the latter it is applicable to the non-
homogeneous systems

N =
T

S 3! 4π2
ǫijk

∫
d3x

∫
d3p T rGW (p, x) ∗ ∂QW (p, x)

∂pi

∗ ∂GW (p, x)

∂pj
∗ ∂QW (p, x)

∂pk
. (3)

This expression gives the average Hall conductivity in
the presence of the non-homogeneous magnetic field and
non-homogeneous electric potential, but with the inter-
actions neglected.

It is natural to suppose also, that Eq. (3) remains
valid in the presence of the inter-electron interactions.
The Euclidean action is

S=

∫
dτ
∑

x,x′

[
ψ̄x′

(
i(i∂τ −A3(iτ,x))δx,x′ − iDx,x′

)
ψx +

+ αψ̄(τ,x)ψ(τ,x)θ(y)V (x− x′)θ(y′)ψ̄(τ,x′)ψ(τ,x′)
]
(4)

with the same function Dx,x′ as above and with Ax,y =
=
∫ y
x
Aµdsµ. V is the Coulomb potential V (x) =

1/|x| = 1/
√
x21 + x22, for x 6= 0.

The results of our calculations demonstrate, that the
(averaged over the system area) Hall conductivity in
the presence of inhomogeneous magnetic field, inhomo-
geneous electric field, and Coulomb interactions is pro-
portional to the topological invariant in phase space of
Eq. (3). In the presence of interaction one simply has
to substitute to Eq. (3) the complete two-point Green
function with the contribution of interactions included.

In the region of analyticity in α the Hall conductivity
does not depend on α at all and is still given by the
same expression as without Coulomb interactions!

It would be interesting to consider the generalization
of the approach of the present paper to the case, when
elastic deformations are present (see, e.g., [21, 25]).

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134/S0021364019190020
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