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Periodic driving transforms the stationary energy

spectrum into the Floquet modes spectrum (quasiener-

gies). This can be associated with the so-called synthetic

dimension introduced by the Floquet modes [1, 2]. Per-

turbation frequency in this case becomes an additional

degree of freedom, which opens new ways of manipu-

lating the quantum system spectrum. In this context,

periodic driving can introduce phenomena, which are

typical for higher dimensional systems, in lower dimen-

sional samples. In a finite system periodic driving can

effectively change its geometry (connectivity of tunnel-

ing paths). In present letter we study interference fea-

tures in the high-frequency conductance of a two-state

model system. We show that the synthetic frequency

dimension provides the possibility for effective degener-

acy of eigenstates in a simply connected linear quantum

conductor, which is impossible in statics. This is accom-

panied by the destructive quantum interference (DQI)

and resonance coalescence, described by an exceptional

point (EP), and can be observed by a dip in the real part

of the conductance at resonant frequency. Our study

is based on the Keldysh formalism for non-equilibrium

Green functions [3] (NEGF) in tight-binding basis [4],

which basics in application to the dynamical response

of quantum conductors have been thoroughly developed

in the 90s [5, 6].

Consider an arbitrary two-state system with the fol-

lowing tight-binding bare Hamiltonian:

Ĥ0 = ε1a
†
1a1 + ε2a

†
2a2 +

(
τa†2a1 +H.c.

)
, (1)

where εi is the on-site energy and τ is the intersite hop-

ping. Left (right) lead is coupled to the i-th site by

matrix element γ
L(R)
i , which is real and independent

of energy within the wide-band approximation (WBA).

Suppose there is a weak external AC bias applied to the
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leads. Following general formalism [5, 6] one can calcu-

late the net conductance as

G (ω) =
e2

h

∫
dE

f (E)− f (E + ~ω)

~ω
× T (E,ω), (2)

where f(E) is the Fermi–Dirac distribution function,

which is the same in the left and right lead as there

is no DC bias. Factor T (E,ω) in the integrand is an

energy and frequency resolved generalized transmission

coefficient: T (E,ω) = TRe (E,ω) + iTIm (E,ω).

Depending on the particular values of γL,R
i we can

distinguish topologically different symmetric configura-

tions, for instance: the linear configuration (inset in

Fig. 1b) and the side-defect (SD) configuration (inset in

Fig. 1d). Linear configuration corresponds to ε1 = ε2 =

= ε0, γ
L
1 = γR2 = γ and γL2 = γR1 = 0. The conductance

in this case has the form (2) with

TRe (E,ω) =
1

2

[
T−
0 (E,ω) + T+

0 (E,ω)
]
. (3)

Here terms T±
0 are of the form of some stationary trans-

mission coefficients [7]:

T±
0 (E,ω) =

P 2
±(E,ω)

P 2
±(E,ω) +Q2

±(E,ω)
, (4)

with corresponding functions P±(E,ω) and Q±(E,ω):

P±(E,ω) = Γ (~ω ± 2τ) ,

Q±(E,ω) =

[
E − ε0 +

1

2
~ω

]2
+ Γ2 − 1

4
(~ω ± 2τ)2 ,

(5)

where Γ = πργ2.

Equation (4) provides a clear analysis of interference

picture: zeros of functions P± correspond to zero-valued

antiresonances (DQI) and zeros of functions Q± – to

perfect resonances [7]. As can be seen from Eq. (5),
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Fig. 1. (Color online) Energy and frequency resolved real
part of the generalized transmission of the two-state sys-
tem in the linear configuration (a) and SD configuration
(c). Real part of the conductance vs. frequency for zero
constant bias, zero temperature and EF = ε0 of the lin-
ear (b) and SD configuration (d), which are shown in the
insets

functions Q± can be written as characteristic deter-

minants of some PT -symmetric auxiliary Hamiltonians

Ĥ±
aux: Q± = det (EÎ − Ĥ±

aux), with

Ĥ±
aux =

(
ε0 ∓ τ − ~ω iΓ

iΓ ε0 ± τ

)
. (6)

For finite frequency conditions for the EPs are Γ =

= |τ+~ω/2| and Γ = |τ−~ω/2|, i.e., AC field effectively

modifies the tunneling matrix element τ , which defines

the energy split between the eigenstates. For ~ω = ±2τ

this split can vanish, which resembles the case of the

stationary transmission through the quantum system

with degenerate states [8]. From Eq. (3) one can also

see that there are antiresonances for ~ω = ±2τ (zeroes

of P∓), which is the manifestation of a photon-assisted

DQI phenomena.

Figure 1a depicts the real part of the generalized

transmission coefficient (3) calculated for Γ = 0.2τ . Ac-

cording to Eq. (5), there is coalescence of resonances of

TRe(E,ω) for ~ω = 2τ ± 2Γ at energy E = ε0 − τ ∓ Γ,

which correspond to the EP of Ĥ−
aux. This causes a dip

in the real part of the conductance at ~ω = 2τ (Fig. 1b).

SD configuration is defined by γL1 = γR1 = 0,

γL2 = γR2 = γ, and ε1 = ε2 = ε0. In this case we have

TRe (E,ω) =
1

2
[T0 (E) + T0 (E + ~ω)] . (7)

Here T0 (E) is a stationary transmission coefficient of

the form (4) and functions P and Q equal to

P (E) = 2Γ (E − ε0) , Q(E) = (E − ε0)
2 − τ2. (8)

TRe (E,ω) of the SD configuration is illustrated by

Fig. 1c. The real part of the conductance (Fig. 1d)

demonstrates only peak, corresponding to the photon-

assisted (absorption/emission) resonant tunneling, i.e.,

there is no AC field induced additional interference ef-

fects.

Equations (3) and (7) for the real parts of the gen-

eralized transmission coefficient consist of two terms,

which are of the form (4) and can be regarded as some

stationary transmission coefficients. It turns out that

they correspond to the stationary scattering problem

for the initial symmetric configuration with either sym-

metric or antisymmetric eigenstates shifted by −~ω. In

the case of SD configuration both eigenstates are of the

same parity – symmetric and hence they are shifted (or

not) all together, what preserves the interference pic-

ture of the stationary scattering. In the linear config-

uration eigenstates are of opposite parity and they are

shifted relative to each other and the interference pic-

ture is being modified. In this case the effective degener-

acy at ~ω = ±2τ is exactly the dynamical counterpart

of the situation considered in [8]. One can treat this

phenomenon by introduction of a synthetic frequency

dimension that allows linear configuration to behave as

multiply-connected and possess DQI.
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