Долгоживущий сигнал индукции в железо-иттриевом гранате

Ю. М. Буньков⁺¹⁾, П. М. Ветошко⁺, А. Н. Кузмичёв⁺, Г. В. Мамин^{*}, С. Б. Орлинский^{*}, Т. Р. Сафин^{*}, В. И. Белотелов⁺, М. С. Тагиров^{*}

+Российский квантовый центр, 143025 Сколково, Москва, Россия

*Казанский федеральный университет, 420008 Казань, Россия

Поступила в редакцию 25 ноября 2019 г. После переработки 26 ноября 2019 г. Принята к публикации 26 ноября 2019 г.

Мы представляем результаты экспериментов на пленке железо-иттриевого граната, в которых обнаружены два типа долгоживущих сигналов свободной индукции. Первый тип хорошо соответствует сигналам, возникающим за счет сверхтекучего переноса магнонов, обнаруженным ранее в антиферромагнитном сверхтекучем ³He-B. Второй, сверхдолгоживущий сигнал, также имеет ряд свойств когерентной прецессии. Однако он принципиально отличается от сверхдолгоживущего сигнала в ³He-B. Механизм образования сверхдолгоживущего сигнала в железо-иттриевом гранате пока не имеет теоретического объяснения.

DOI: 10.31857/S0370274X20010117

В 1984 г. было открыто явление спиновой сверхтекучести, когерентный перенос магнитного момента за счет градиента фазы прецессии намагниченности [1]. Первым проявлением спиновой сверхтекучести явилось формирование долго живущего сигнала индукции (ДСИ) после возбуждающего резонансного радиочастотного импульса. Обычно сигнал свободной индукции затухает за время, обратное неоднородному уширению линии магнитного резонанса. В экспериментах со сверхтекучим ³He-В оно составляло порядка нескольких миллисекунд. Было обнаружено, что в ³Не-В сигнал свободной индукции после затухания спонтанно восстанавливается и затем плавно затухает за времена порядка секунды. Образование ДСИ было объяснено перетеканием возбужденных неравновесных магнонов в область меньших полей. При этом формировалась область, в которой неоднородность магнитного поля компенсировалась динамическим сдвигом частоты за счет изменения плотности неравновесных магнонов – Однородно Прецессирующий Домен (ОПД) [2]. В дальнейшем пространственное перетекание магнонов в градиенте магнитного поля было непосредственно продемонстрировано в специально разработанном эксперименте [3]. В серии дальнейших экспериментов были обнаружены такие явления, присущие сверхтекучести, как не потенциальный ток магнонов в канале, определяемый исключительно разностью фаз волновой функции [4, 5], сброс фазы при достижении критического тока [6, 7], эффект Джозефсона [8, 9], образование квантовых вихрей [10, 11] и так далее. Подтверждением образования сверхтекучего когерентного состояния магнонов оказалось также наблюдение коллективных возбуждений магнонного конденсата – Голдстоуновских мод колебаний [12, 13].

Так как свойства магнонного газа в антиферромагнитном сверхтекучем ³Не и в твердотельных магнетиках не имеют принципиальных различий, была поставлена задача наблюдения спиновой сверхтекучести в последних [14]. Основной трудностью для решения этой задачи является время жизни магнонов. Если в ³Не постоянная затухания Гильберта α составляет порядка 10^{-8} , то для наилучшего твердотельного магнетика – железо-иттриевого граната (ЖИГ) она составляет 10^{-5} . Поэтому метод импульсного магнитного резонанса, при котором магноны, возбужденные коротким импульсом, перераспределяются и формируют ОПД, затруднителен. Магноны затухают за времена, сравнимые со временем его образования. Поэтому были разработаны новые методики наблюдения спиновой сверхтекучести – методики не резонансного возбуждения и непрерывного возбуждения магнонов [15, 16]. Этими методами была обнаружена спиновая сверхтекучесть для моды связанной ядерно-электронной прецессии в легкоплоскостных антиферромагнетиках с ионами ⁵⁵Mn [17, 18]. Удалось получить также долгоживущий сигнал индукции [19] и наблюдать Голдстоуновские моды колебаний [20].

¹⁾e-mail: y.bunkov@rqc.ru

Рис. 1. (Цветной онлайн) (a) – Сигнал свободной индукции после возбуждающего РЧ импульса на частоте, превышающей частоту линейного резонанса на 70 МГц. (b) – Результаты Фурье преобразования сигнала индукции во временных интервалах, схематически показанных на рис. (a). Сдвиг частоты пропорционален амплитуде сигнала индукции в соответствующий момент времени

Фундаментальной задачей является обнаружение сверхтекучего квантового состояния, существующего при комнатной температуре. Нам удалось получить такое состояние для неравновесных магнонов в пленке ЖИГ. Исследования проводились на дисках диаметром 0.5 и 0.3 мм, вырезанных из пленки ЖИГ толщиной 6 мкм. Магнитное поле было направлено перпендикулярно плоскости пленки. При данной конфигурации частота прецессии намагниченности описывается уравнением [21]:

$$\omega = \gamma (H_0 - 4\pi M_S \cos\beta), \tag{1}$$

где β – угол отклонения намагниченности, H_0 и M_S – локальное магнитное поле и намагниченность ферримагнитного образца. Частота прецессии увеличивается при отклонении намагниченности, что соответствует отталкиванию между магнонами. А это значит, что при пространственной неоднородности магнитного поля магноны потекут в область меньших полей, их плотность увеличится и динамический сдвиг частоты может компенсировать неоднородность.

Эксперименты проводились на импульсном спектрометре ELEXSYS E-580 X фирмы Брукер на частоте 9.73 ГГц. На образец подавался относительно длинный радиочастотный (РЧ) импульс длительностью порядка 400 нс на частоте, смещенной вверх относительно резонансной частоты. Эта методика, использованная впервые в экспериментах с ³He-A [22], позволяет сформировать ОПД во время импульса. Поэтому после выключения накачки появляется сигнал индукции уже сформировавшегося домена с начальной частотой, равной частоте накачки. На рисунке 1 слева показан сигнал индукции, который затухает за время порядка 0.4 мкс. Характерной особенностью сигнала является то, что его частота меняется в процессе релаксации. На рисунке 1 справа показаны результаты Фурье анализа сигнала, проведенные в различные временные интервалы, профиль которых схематически показан на левом рисунке. В начальный момент времени частота прецессии соответствует нулевой расстройке относительно частоты возбуждающего импульса. Зафиксированный в эксперименте начальный сдвиг частоты в 25 МГц от частоты РЧ импульса возникает за счет затухания сигнала за мертвое время приемника. В дальнейшем частота сигнала уменьшается до частоты линейного магнитного резонанса. И несмотря на относительно короткое время жизни сигнала, которое определяется релаксацией магнонов, изменение частоты сигнала индукции с уменьшением числа магнонов хорошо видно. Этот сдвиг частоты является характерной особенностью ДСИ излучаемого ОПД. Образование ОПД в ЖИГ было нами подтверждено также в экспериментах с непрерывной накачкой на нерезонансной частоте [23].

Кроме долгоживущего сигнала индукции в сверхтекучем ³Не-В, был обнаружен сигнал другой природы, который жил гораздо дольше ДСИ, порядка десятков секунд, и обладал другими динамическими свойствами – сверхдолгоживущий сигнал индукции (СДСИ) [24, 25]. Образование состояния, излучающего столь долгоживущий сигнал индукции, было объяснено квантованием магнонов в потенциальной яме, образованной текстурой параметра порядка ³Не-В [26, 27]. Дело в том, что взаимодействие магнонов со стенками камеры приводило к неустойчивости ОПД при низких температурах [28–30]. Во многом аналогичная ситуация была обнаружена и в экспериментах с ЖИГ, представленных в этой статье. Возможно, прецессия намагниченности в пленке ЖИГ распадается на другие моды колебаний, как и в случае с ³He-В при сверхнизких температурах [31], и только у стенок остается устойчивой.

На рисунке 2 показаны сигналы, которые возникают после релаксации основного сигнала ДСИ. Данные сигналы образуются только при возбуждении системы РЧ импульсом, сдвинутым по частоте вверх относительно частоты линейного резонанса. Причем их частота синхронизируется с частотой РЧ импульса и не меняется за время затухания. Небольшое изменение частоты наблюдается только в пределе больших расстроек. Характерной особенностью этих сигналов является на порядок меньшая скорость затухания по сравнению с сигналами ДСИ.

На рисунке 3 показано экспоненциальное затухание сигналов СДСИ на образце диаметром 0.5 мм при различной частоте возбуждения. На другом образце прямоугольной формы с размером также 0.5 мм были получены времена релаксации до 1.6 мкс с разбиением на две области (рис. 4). Возможно, сигналы СДСИ локализованы в двух различных областях и имеют разную скорость затухания.

Образование сигналов СДСИ очень устойчиво и наблюдается на всех образцах в широком диапазоне температур – от комнатной до 100 К. При более низких температурах процессы магнитной релаксации в исследованных пленках резко усиливаются. Амплитуда сигнала СДСИ составляет от 10 до 1 % при различных условиях, что также сравнимо с параметрами СДСИ в сверхтекучим ³Не-В. Однако частотные характеристики СДСИ в ЖИГ сильно отличаются

Рис. 2. (Цветной онлайн) Стробоскопическая запись сигналов неизвестной природы при разной расстройке между частотой линейного резонанса и частотой РЧ поля. (а) – Время выключения РЧ поля. (b) – Мертвое время приемника. Далее до отметки 0.6 мкс – сигнал ДСИ, ослабленный защитой приемника. Далее видны сверхдолгоживущие сигналы индукции неизвестной природы, полученные при сдвиге фазы приемника 0, 90, 180 и 270°

от СДСИ в ³Не-В. Обращает внимание то, что частота и даже фаза прецессии в ЖИГ не изменяется в процессе релаксации. Поэтому за образование когерентного состояния СДСИ в ЖИГ, видимо, отвечает другой механизм формирования, природа которого требует объяснения.

Зависимость амплитуды сигнала СДСИ от величины расстройки также весьма интересна. Она приведена на рис. 5. Обращает внимание то что сигнал СДСИ в резонансе не формируется. Однако он резко появляется при небольшой расстройке, и затем плавно уменьшается с ее увеличением. Возможно, сигнал СДСИ образуется на границе образца, где существу-

Рис. 3. (Цветной онлайн) Затухание сигналов СДСИ в образце диаметром 0.5 мм при возбуждении РЧ импульсом со сдвигом частоты в 11.2 (сверху) и 22.4 МГц. Постоянная времени затухания составляет 0.84 мкс

Рис. 4. (Цветной онлайн) Затухание сигналов СДСИ в образце прямоугольной формы 0.5 мм при возбуждении РЧ импульсом со сдвигом частоты в 0 МГц (ДСИ), 56 и 112 МГц. Постоянная времени затухания СДСИ составляет до 1.7 мкс

ют спины с частотой линейной прецессии, равной частоте возбуждающего РЧ поля. Вопрос о слабом затухании их прецессии остается открытым.

В заключении, мы обнаружили необычные долгоживущие сигналы свободной индукции, механизм формирования которых требует объяснения. Они об-

Рис. 5. Амплитуда сигналов СДСИ в образце диаметром 0.5 мм при возбуждении в нерезонансном поле, измеренная через 1 и 2 мкс после выключения РЧ импульса. Обращает внимание то, что амплитуда сигнала пропорциональна плотности магнонов с частотой резонанса, соответствующей частоте РЧ поля накачки за счет краевого эффекта размагничивания

разуются на частоте РЧ накачки, а не на частоте линейного магнитного резонанса. Образование подобных сигналов в системах с динамическим сдвигом частоты наблюдалось и ранее, например, захватное эхо [32] и ДСИ в сверхтекучем ³Не-В, однако их свойства принципиально отличаются от свойств полученных сигналов. Не вызывает сомнение, что полученные сигналы образуются когерентной прецессией намагниченности в локальных областях, как, например, магнонный Q-ball в ³Не-В, свойства которого интенсивно исследовались в последнее время [33–36]. Кроме того, Q-ball нашел свое применение в качестве сверхчувствительного термометра при сверхнизких температурах [37].

Исследование выполнено за счет гранта Российского научного фонда (проект #19-12-00397).

- A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 40, 1033 (1984).
- 2. I.A. Fomin, JETP Lett. 40, 1037 (1984).
- A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, and K. Flahbart, Sov. Phys. JETP 61, 1199 (1985).
- 4. Yu. M. Bunkov, Jpn. J. Appl. Phys, 26, 1809 (1987).
- Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, and G. K. Tvalashvily, Sov. Phys. JETP 67, 300 (1988).
- A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, JETP Lett. 45, 124 (1987).

- A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, and D. A. Sergatskov, Phys. Rev. Lett. 62, 1631 (1989).
- A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, V. Makroczyova, Yu. M. Mukharskii, D. A. Sergatskov, and A. de Waard, Journal de Physique 49 (C8), 2067 (1988).
- A. S. Borovik-Romanov, Yu. M. Bunkov, A. de Waard, V. V. Dmitriev, V. Makrotsieva, Yu. M. Mukharskiy, and D. A. Sergatskov, JETP Lett. 47, 478 (1988).
- A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, and D. A. Sergatskov, Physica B 165, 649 (1990).
- Yu. M. Bunkov and G. E. Volovik, Physica C 468, 600 (2008).
- Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 43, 131 (1986).
- Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskii, Physica B **178**, 196 (1992).
- 14. Yu. M. Bunkov, Physics Uspekhi 53, 848 (2010).
- L. V. Abdurakhimov, M. A. Borich, Yu. M. Bunkov, R. R. Gazizulin, D. Konstantinov, M. I. Kurkin, and A. P. Tankeyev, Phys. Rev. B 97, 024425 (2018).
- Yu. M. Bunkov, A.V. Klochkov, T. R. Safin, K. R. Safiullin, and M.S. Tagirov, JETP Lett. 109, 43 (2019).
- Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, V. V. Kuzmin, V. S. L'vov, and M. S. Tagirov, Phys. Rev. Lett. **108**, 177002 (2012).
- M.S. Tagirov, E.M. Alakshin, Yu.M. Bunkov, R.R. Gazizulin, S.A. Zhurkov, L.I. Isaenko, A.V. Klochkov, A.M. Sabitova, T.R. Safin, and K.R. Safiullin, J. Low Temp. Phys. **175**, 167 (2014).
- E. M. Alakshin, Yu M. Bunkov, R. R. Gazizulin, L. I. Isaenko, A. V. Klochkov, T. R. Safin, K. R. Safiullin, M. S. Tagirov, and S. A. Zhurkov, Journal of Physics: Conference Series 568, 042001 (2014).
- 20. Yu. M. Bunkov, A. V. Klochkov, T. R. Safin,

K.R. Safiullin, and M.S. Tagirov, JETP Lett. **106**, 677 (2017).

- Yu. V. Gulyaev, P. E. Zil'berman, A. G. Temiryazev, and M. P. Tikhomirova, Physics of the Solid State 42, 1062 (2000).
- P. Hunger, Yu. M. Bunkov, E. Collin, and H. Godfrin, J. of Low Temp. Phys. 158, 129 (2010).
- Yu. M. Bunkov, A. Farhutdinov, A. N. Kuzmichev, T. R. Safin, P. M. Vetoshko, V. I. Belotelov, and M. S. Tagirov, to be published; arxiv.1911.03708.
- 24. Yu. M. Bunkov, S. N. Fisher, A. M. Guenault, and G. R. Pickett, Phys. Rev. Lett. 69, 3092 (1992).
- 25. Yu. M. Bunkov, J. Low Temp. Phys. 138, 753 (2005).
- Yu. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98, 265302 (2007).
- S. Autti, Yu. M. Bunkov, V. B. Eltsov, P. J. Heikkinen, J. J. Hosio, P. Hunger, M. Krusius, and G. E. Volovik, Phys. Rev. Lett. **108**, 145303 (2012).
- Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, J. Nyeki, and D. A. Sergatskov, Europhysics Lett. 8, 645 (1989).
- Yu. M. Bunkov, V. S. L'vov, and G. E. Volovik, JETP Lett. 83, 530 (2006).
- Yu. M. Bunkov, V.S. L'vov, and G.E. Volovik, JETP Lett. 84, 289 (2006).
- 31. Yu. M. Bunkov, J. Low Temp. Phys. 135, 337 (2004).
- Yu. M. Bunkov and B. S. Dumesh, Sov. Phys. JETP 41, 576 (1975).
- S. Autti, V.B. Eltsov, and G.E. Volovik, JETP Lett. 95, 544 (2012).
- 34. V. V. Zavjalov, S. Autti, V. B. Eltsov, and P. J. Heikkinen, JETP Lett. **101**, 802 (2015).
- 35. S. Autti, P. J. Heikkinen, G. E. Volovik, V. V. Zavjalov, and V. B. Eltsov, Phys. Rev. B 97, 014518 (2018).
- S. Autti, V.B. Eltsov, and G.E. Volovik, Phys. Rev. Lett. **120**, 215301 (2018).
- 37. S. N. Fisher, G. R. Pickett, P. Skyba, and N. Suramlishvili, Phys. Rev. B 86, 024506 (2012).

РОССИЙСКАЯ АКАДЕМИЯ НАУК

ПИСЬМА

В

ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

том 111

Выпуск 2 25 января 2020

Журнал издается под руководством Отделения физических наук РАН

Главный редактор В. М. Пудалов

Заместители главного редактора Г. Е. Воловик, В. П. Пастухов

Зав. редакцией И.В.Подыниглазова

Адрес редакции	119334 Москва, ул. Косыгина 2
тел./факс	(499)-137-75-89
e-mail	letters@kapitza.ras.ru
Web-страница	http://www.jetpletters.ac.ru

Интернет-версия английского издания http://www.springerlink.com/content/1090-6487

[©] Российская академия наук, 2020

[©] Редколлегия журнала "Письма в ЖЭТФ" (составитель), 2020