Новые возможности йодного детектора при регистрации солнечных нейтрино

Ю. С. Лютостанский⁺¹⁾, Г. А. Коротеев^{*}, Н. В. Клочкова⁺, А. П. Осипенко⁺, В. Н. Тихонов⁺, А. Н. Фазлиахметов^{*×}

+ Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

* Федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)", 117303 Москва, Россия

 $^{ imes}$ Федеральное государственное бюджетное учреждение науки Институт ядерных исследований РАН, 117312 Москва, Россия

Поступила в редакцию 20 апреля 2020 г. После переработки 20 апреля 2020 г. Принята к публикации 23 апреля 2020 г.

Исследование резонансной структуры зарядово-обменной силовой функции S(E) показывает ее сильное влияние на сечение захвата $\sigma(E)$ солнечных нейтрино ядром ¹²⁷I. Для йодного детектора проанализировано влияние каждого резонанса на энергетическую зависимость $\sigma(E)$. Показано, что при расчетах сечения $\sigma(E)$ необходимо учитывать все высоколежащие зарядово-обменные резонансы, а самые энергичные резонансы в силовой функции S(E) определяют образование стабильного изотопа ¹²⁶Xe при захвате энергичных солнечных нейтрино ядром ¹²⁷I и последующей эмиссией нейтрона из образующегося ¹²⁷Xe. Проведенные расчеты с учетом энергии отрыва нейтрона – S_n в ядре ¹²⁷Xe показывают, что учет энергии S_n приводит к уменьшению скорости захвата нейтрино, особенно для борных и hер нейтрино и отношение изотопов ¹²⁶Xe/¹²⁷Xe является индикатором этих жестких нейтрино. Отмечено, что при образовании изотопа ¹²⁶Xe/¹²⁷Xe в газовой смеси образующегося ксенона и регистрация гамма-эмиссии в ¹²⁶Xe открывают новые возможности йодного детектора при регистрации солнечных нейтрино и позволяют выделить важную борную компоненту солнечного спектра.

DOI: 10.31857/S1234567820110014

1. Введение. При моделировании детекторов нейтрино, основанных на реакции *ν*-захвата необходимо рассчитывать сечения захвата нейтрино $\sigma(E)$ и учитывать резонансную структуру зарядово-обменной силовой функции S(E), которая определяет энергетическую зависимость $\sigma(E)$. Это особенно важно для детекторов, имеющих порог регистрации нейтрино, превышающий граничную энергию (p + p)-реакции ≈ 420 кэВ, так как эти (*pp*)-нейтрино вносят основной вклад в суммарный солнечный спектр, превышающий на порядки вклады от других реакций, в которых образуются солнечные нейтрино. Первым таким методом детектирования является хлор-аргоновый радиохимический метод, предложенный в 1946 г. Б. М. Понтекорво [1], позднее реализованный Р. Дэвисом [2] в США и использующий изотоп ³⁷Cl с порогом регистрации $Q = 813.87 \pm 0.20$ кэВ [3]. Позднее началась реализация галий-германиевого

метода для измерения солнечных нейтрино [4,5]. Низкопороговый детектор реакции 71 Ga $(\nu_e, e^-)^{71}$ Ge был установлен в подземной лаборатории и был хорошо защищен от космических лучей (подробнее см. обзор О. Г. Ряжской [6]).

В 1988 г. В. Хакстон [7] обратил внимание на то, что сечение $\sigma(E)$ в реакции на йоде ¹²⁷I:

$$\nu_e + {}^{127}\text{I} \to e^- + {}^{127}\text{Xe}$$
 (1)

должно быть существенно больше, чем на хлоре ³⁷Cl, и объем йодного детектора можно сделать во много раз бо́льшим, чем хлорного. Эта реакция имеет более низкий порог $Q = 662.3 \pm 0.20$ кэВ [3], что увеличивает сечение нейтринного захвата $\sigma(E)$. Но расчетов сечения $\sigma(E)$ реакции (1) в то время приведено не было, а были сделаны только оценки, и в следующем году были проведены расчеты с участием автора [8], с учетом резонансной структуры зарядово-обменной силовой функции S(E) дочернего ядра ¹²⁷Xe. Позже в 1991 г. эти расчеты были уточнены [9] с учетом особенностей нормировки силовой функции S(E) и

¹⁾e-mail: lutostansky@yandex.ru

был учтен quenching-эффект (подробнее см. в [10]). Несколько лет позже в 1999 г. силовая функция S(E)была измерена в реакции ¹²⁷I(p, n)¹²⁷Xe [11] и наши прогнозы [8, 9] неплохо совпали с экспериментальными данными. Также необходимо отметить расчеты Енгеля, Питтеля и Вогеля (J. Engel, S. Pittel, P. Vogel) [12, 13], проведенные в то же время. Как было позже опубликовано в [11], сравнение с экспериментальной зависимостью функции S(E) показало, что лучшая предсказательная точность оказалась у расчетов [9].

Однако в предыдущих расчетах не учитывалась возможность образования стабильного изотопа ¹²⁶Xe в реакции (1) – захвата нейтрино в йодном детекторе. Высоколежащие зарядово-обменные резонансы в силовой функции S(E) определяют образование стабильного изотопа ¹²⁶Хе при захвате энергичных солнечных нейтрино ядром ¹²⁷I и последующей эмиссией нейтрона из образующегося ¹²⁷Xe. Проведеные расчеты с учетом энергии отрыва нейтрона в ядре ¹²⁷Xe, $S_n = 7246 \pm 5$ кэВ [14], показывают, что учет энергии S_n приводит к уменьшению скорости захвата нейтрино с образованием ¹²⁷Хе, особенно для борных и hep нейтрино, которые участвуют, в основном, в образовании ¹²⁶Xe, и отношение изотопов $^{126}\mathrm{Xe}/^{127}\mathrm{Xe}$ является индикатором этих жестких нейтрино. Таким образом, анализ изотопного отношения ¹²⁶Xe/¹²⁷Xe в газовой смеси образующегося ксенона открывает новые возможности йодного детектора при регистрации солнечных нейтрино и позволяет выделить важную борную компоненту солнечного ν_e -спектра.

На рисунке 1 показаны возбужденные состояния ядра-изобары ¹²⁷Xe, различные участки спектра возбуждений и изотопы, образующиеся в результате нейтринных захватов ядром ¹²⁷I и последующих распадов. Возбужденные состояния ядра ¹²⁷Хе с энергией, превышающей S_n , будут распадаться с эмиссией нейтрона в стабильный изотоп ¹²⁶Xe и, таким образом, в реакции (1) захвата нейтрино ядром ¹²⁷ І будут образовываться два изотопа ¹²⁷ Хе и ¹²⁶ Хе. Легкого стабильного изотопа ¹²⁶Хе будет образовываться значительно меньше, но он останется в ксеноновой фракции после длительной выдержки и после распада изотопа ¹²⁷Хе ($T_{1/2} = 36.4$ дн.). Кроме того, как видно из рис. 1, при образовании изотопа 126 Хе происходит гамма-эмиссия с энергией $E_1 =$ = 388.6 кэВ с низколежащего возбужденного состояния 2^{+126} Xe на основное состояние 0^{+} . Таким образом, анализ изотопного отношения ¹²⁶Xe/¹²⁷Xe в газовой смеси образующегося ксенона и регистрация гамма-эмиссии в ¹²⁶Xe открывают новые возможности йодного детектора при регистрации солнеч-

Рис. 1. (Цветной онлайн) Схема зарядово-обменных возбуждений ядра ¹²⁷Хе в реакции ¹²⁷ I(p, n)¹²⁷Хе с распадом высоколежащих возбуждений в стабильный изотоп ¹²⁶Хе с эмиссией нейтрона. Обозначены гигантский гамов-теллеровский (GTR), аналоговый (IAS) и расположенные ниже пигми-резонансы (PR). S_n – энергия отрыва нейтрона в ядре ¹²⁷Хе

ных нейтрино и позволяют выделить важную борную компоненту солнечного спектра.

2. Зарядово-обменная силовая функция изотопа ¹²⁷Хе. Результаты расчетов зарядовообменной силовой функции S(E) изотопа ¹²⁷Хе представлены на рис. 2 вместе с экспериментальными данными по ¹²⁷I $(p, n)^{127}$ Хе реакции [11]. Выделены гигантский гамов-теллеровский резонанс – GTR и три пигми-резонанса PR1, PR2 и PR3, аппроксимированные по Брейт–Вигнеру (B-W), как в [9].

Зарядово-обменные возбуждения ядер описываются в микроскопической теории конечных фермисистем (ТКФС) системой уравнений для эффективного поля [15]:

$$V_{pn} = e_q V_{pn}^{\omega} + \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'},$$

$$V_{pn}^{h} = \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'}^{h},$$
(2)

где V_{pn} и V_{pn}^{h} – эффективные поля квазичастиц и дырок в ядре, V_{pn}^{ω} – внешнее зарядово-обменное поле. Система секулярных уравнений (2) решалась для разрешенных переходов с локальным нуклоннуклонным взаимодействием F^{ω} в форме Ландау– Мигдала [15]:

$$F_{\omega} = C_0(f'_0 + g'_0(\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2))(\boldsymbol{\tau}_1 \boldsymbol{\tau}_2)\delta(r_1 - r_2), \quad (3)$$

Письма в ЖЭТФ том 111 вып. 11-12 2020

Рис. 2. Зарядово-обменная силовая функция S(E) изотопа ¹²⁷Хе для GT-возбуждений ¹²⁷I. Сплошные линии: 1 – экспериментальные данные по реакции ¹²⁷I $(p, n)^{127}$ Хе [11], 2 – наш расчет по ТКФС; пунктир – резонансы GTR, PR1, PR2 и PR3

где $C_0 = (d\rho/d\varepsilon_F)^{-1} = 300 \text{ МэВ фм}^3$ (ρ – средняя плотность ядерной материи), f'_0 и g'_0 – параметры соответственно изоспин-изоспинового и спинизоспинового взаимодействия квазичастиц. Здесь использовались значения $f'_0 = 1.351$ и $g'_0 = 1.214$, полученные недавно [16] из анализа расчетных и экспериментальных данных по энергиям аналоговых (38 ядер) и гамов-теллеровских (20 ядер) резонансов.

Нормировалась силовая функция, как в [9], согласно правилу сумм для GT-переходов:

$$\sum M_i^2 = q[3(N-Z)] = e_q^2[3(N-Z)] \approx$$
$$\approx \int_0^{E_{\text{max}}} S(E)dE = I(E_{\text{max}}). \tag{4}$$

Здесь E_{max} – максимальная энергия, учитываемая в расчетах или в эксперименте, S(E) – зарядовообменная силовая функция. В настоящих расчетах использовалось значение $E_{\text{max}} = 20$ МэВ, как в эксперименте [11]. Параметр q < 1 определяет quenching-эффект — недобор в правиле сумм до максимального теоретического значения 3(N - Z) [17] при q = 1. В ТКФС $q = e_q^2$, где e_q – эффективный заряд [15].

На рисунке 3 представлена зависимость величины интеграла $I(E_{\rm max})$ (4) от переменного значения энергии $E_{\rm max}$ для изотопа ¹²⁷Хе. Как видно, экспериментальные данные лучше всего в данном случае описываются расчетами со значениями эффективого

Рис. 3. Зависимость величины интеграла $I(E_{\max})$ (4) от переменного значения энергии E_{\max} для изотопа ¹²⁷Хе. Ступеньки – экспериментальные данные [11], сплошная линия – расчет $e_q = 0.9$, пунктир – расчет с $e_q = 0.8$, горизонтальная линия – значение правила сумм, равное 3(N-Z) = 63

заряда $e_q = 0.9$ (q = 0.81). В эксперименте [11] для ¹²⁷I было получено q = 0.85, что близко к расчетному значению. Отметим, что для других ядер расчетные значения e_q отличаются от 0.9, в основном, в меньшую сторону [10, 18]. Это в бо́льшей части характерно для более легких, чем ¹²⁷I, ядер и частично связано с неучетом в эксперименте высоколежащих (выше GTR) возбуждений.

3. Сечения захвата солнечных нейтрино ядром ¹²⁷ І. Формула для сечения $\sigma(E)$ реакции (ν_e, e^-) (1), зависящего от энергии налетающего нейтрино E_{ν} , имеет вид [9]:

$$\sigma(E_{\nu}) = \frac{(G_F g_A)^2}{\pi c^3 \hbar^4} \int_{0}^{E_{\nu} - Q} E_e p_e F(Z, A, E_e) S(x) dx,$$
$$E_e = E_{\nu} - Q - x + m_e c^2, \ cp_e = \sqrt{E_e^2 - (mc^2)^2}, \ (5)$$

где $F(Z, A, E_e)$ – функция Ферми, S(E) – силовая функция, $G_F/(\hbar c)^3 = 1.1663787(6) \cdot 10^{-5} \Gamma \Rightarrow B^{-2}$ – фермиевская константа слабого взаимодействия, $g_A =$ = -1.2723(23) – аксиально-векторная константа из [19].

Сечения нейтринного захвата $\sigma(E)$ ядром ¹²⁷I в реакции ¹²⁷I(ν_e, e^-)¹²⁷Xе рассчитаны с экспериментальными зарядово-обменными силовыми функциями S(E) и с силовыми функциями S(E), полученными в ТКФС подходе (см. рис. 2). Для анализа влияния зарядово-обменных резонансов на величину сечения $\sigma(E)$ были также проведены расчеты

Скорость захвата нейтрино на 127 I без учета отрыва нейтрона в ядре 127 Xe								
	B-8	hep	N-13	O-15	F-17	Be-7	pep	Total
R-total	32.000	0.199	0.170	0.574	0.015	3.029	0.863	36.850
R без GTR	8.909	0.045	0.168	0.542	0.014	3.010	0.807	13.496
R без GTR и PR1	3.64	0.010	0.166	0.528	0.013	3.001	0.781	8.140
Скорость захвата нейтрино на 127 I с учетом отрыва нейтрона в ядре 127 Xe								
	B-8	hep	N-13	O-15	F-17	Be-7	pep	Total
R-total	26.592	0.112	0.170	0.574	0.015	3.029	0.863	31.355
R без GTR	7.274	0.027	0.168	0.542	0.014	3.01	0.807	11.843
R без GTR и PR1	3.611	0.010	0.166	0.528	0.013	3.001	0.781	8.111

Таблица 1. Скорости захвата R солнечных нейтрино (в SNU) на изотопе ¹²⁷I. Указаны скорости захвата нейтрино с учетом (R-total) и без учета GTR и GTR + PR1. Расчеты проводились с экспериментальной силовой функцией $S_{\exp}(E)$ без учета и с учетом энергии отрыва нейтрона в ядре ¹²⁷Хе

без учета GTR и без учета пигми-резонансов. Максимальное расхождение полного сечения в 30–15 % наблюдается в районе 1.5–2.5 МэВ, а при энергиях, бо́льших 6 МэВ, расхождения не превышают 10 %. Неучет только двух резонансов ГТР и PR1 уменьшает сечение $\sigma(E)$ на величину от ~25 до ~80 % при изменении энергии нейтрино в интервале 2–12 МэВ.

Скорость захвата нейтрино R (число поглощенных нейтрино за единицу времени) связана с потоком солнечных нейтрино и сечением поглощения следующей формулой:

$$R = \int_{0}^{E_{\text{max}}} \rho_{\text{solar}}(E_{\nu}) \sigma_{\text{total}}(E_{\nu}) dE_{\nu}, \qquad (6)$$

где для энергии $E_{\rm max}$ можно ограничиться hep нейтрино (реакция ³He + $p \rightarrow {}^{4}$ He + $e^{+} + \nu_{e}$) с $E_{\rm max} \leq \leq 18.79$ МэВ или борными нейтрино (реакция ⁸B $\rightarrow a^{8}$ Be + $e^{+} + \nu_{e}$) с $E_{\rm max} \leq 16.36$ МэВ и в расчетах использовалась солнечная модель Бакала [20]. Скорость захвата солнечных нейтрино представлена в SNU – это стандартная солнечная единица, соответствующая количеству событий в секунду на 10^{36} ядер мишени.

Численные значения расчетных скоростей захвата солнечных нейтрино R в реакции ¹²⁷I(ν_e, e^-)¹²⁷Xe представлены в табл. 1 (в SNU). Расчеты сечений проводились с использованием функции Ферми как в [21], в отличие от расчетов [22], где использовалась Ферми-функция, полученная Ю. П. Сусловым [23]. Расхождения рассчитываемого сечения поглощения (и соответственно R-total) в 10–14 % наблюдается по всей области энергий налетающих солнечных нейтрино. В расчетах, представленных в табл. 1 использовались экспериментальные $S_{\exp}(E)$ силовые функции ¹²⁷Xe, как без учета энергии отрыва нейтрона до энергии $E_{\max} = 20$ МэВ в (6), так и до энергии отрыва нейтрона в ядре ¹²⁷Xe $E_{\max} = S_n$, равной $S_n = 7246$ кэВ [14]. Так как возбужденные состояния с энергиями, бо́льшими S_n , быстро распадаются с вылетом нейтронов и образованием изотопа ¹²⁶Хе, то это уменьшает сечения $\sigma_i(E)$ и скорость захвата нейтрино R на $\approx 15\%$ (от R-total), и особенно величину R для борных нейтрино на $\approx 17\%$ (от R-total).

В этих расчетах с $S_{exp}(E)$ выделялись гигантский GTR и пигми PR резонансы, аппроксимированные по Брейт–Вигнеру (B-W) с шириной Г, полученной фитированием экспериментальных данных [11], с использованием формулы [15]: $\Gamma(E_x) = \alpha E_x^2$, где $\alpha = 0.0165$. Отметим, что при энергетическом пороге для 127 I, равном Q = 662.3 кэВ [3], наиболее интенсивные солнечные нейтрино (*pp*) отсекаются, что приводит к еще бо́льшему влиянию высоколежащих резонансов в силовой функции S(E). Так неучет GTR приводит к сильному сокращению сечения и скорости захвата на 63.4 и 62.2% в обоих случаях расчетов (с учетом и без энергии отрыва нейтрона). Особенно сильное влияние на величину *R* оказывает учет резонансов для энергичных борных нейтрино, их неучет уменьшает R-total на ≈ 72 и $\approx 73\%$ соответственно. Неучет сразу двух резонансов GTR и PR1 сильно уменьшает рассчитываемую величину *R*-total в 4.5–3.9 раз (см. табл. 1). Расчеты с теоретическими силовыми функциями $S_{\text{calc}}(E)$ [22] подтверждают выводы о сильном влиянии высоколежащих зарядово-обменных резонансов.

4. Заключение. Анализ спектра зарядовообменных возбуждений изотопа ¹²⁷I показывает наличие резонансных состояний с большой энергией возбуждения E_x в дочернем ядре ¹²⁷Xe (см. рис. 1), которые оказывают сильное влияние на сечение захвата $\sigma(E)$ солнечных нейтрино ядром ¹²⁷I. Проведенные расчеты с учетом энергии отрыва нейтрона – S_n в ядре ¹²⁷Xe показывают, что при возбуждениях с энергией $E_x > S_n$ происходит эмиссия нейтрона из ядра ¹²⁷Xe с образованием

2020

Письма в ЖЭТФ том 111 вып. 11-12

стабильного изотопа ¹²⁶Хе. Таким образом, эмиссия нейтрона при распаде высоколежащих возбуждений ¹²⁷Хе приводит к уменьшению скорости захвата нейтрино, особенно для борных и hep нейтрино и отношение изотопов $m(\text{Xe}) = {}^{126}\text{Xe}/{}^{127}\text{Xe}$ является индикатором этих жестких нейтрино. Приведенные расчеты как с экспериментальной силовой функцией $S_{\exp}(E)$ (см. табл. 1), так и с теоретической $S_{\text{calc}}(E)$ [22] показывают, что, несмотря на малость этого отношения $m(\text{Xe}) \approx 15\%$, его можно будет определить экспериментально и оценить вклад жестких нейтрино в солнечном спектре.

Также тонким экспериментом является измерение гамма-излучения при распаде первого возбужденного состояния образовавшегося конечного ядра ¹²⁶Хе с энергией $E_1 = 388.6$ кэВ (см. рис. 1). Согласно расчетам, количество таких распадов n_{γ} будет $n_{\gamma} \approx 79$ на 100 образовавшихся ядер ¹²⁶Хе (из них 98% определяются борными нейтрино, а 2% – hер нейтрино). Это крайне мало и потребует длительной экспозиции в экспериментах с йодным детектором при высоких фонах. Насколько это реально в настоящее время, покажут последующие исследования.

Таким образом, получено, что анализ изотопного отношения 126 Xe/ 127 Xe в газовой смеси образующегося ксенона и регистрация гамма-эмиссии в 126 Xe открывают новые возможности йодного детектора при регистрации солнечных нейтрино и позволяют выделить важную борную компоненту солнечного спектра.

Авторы благодарны Д. Н. Абдурашитову, И. Н. Борзову, А. К. Выборову, В. Н. Гаврину, Л. В. Инжечику, А. Ю. Лютостанскому, С. В. Толоконникову и Н. Б. Шульгиной за стимулирующие дискуссии и помощь в работе.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований, грант #18-02-00670, гранта Отделения Нейтринных Процессов НИЦ Курчатовский Институт и программы 5-100 МФТИ.

 B. Pontecorvo, *Report PD-205*, Chalk River Laboratory, Chalk River (1946); воспроизведено в: J. N. Bahcall, *Neutrino Astrophysics*, Cambridge Univ. Press, Cambridge (1989); Б. Понтекорво, *Избранные труды*, Под общ. ред. С. М. Биленького, Наука, М. (1997), т. 1, с. 31.

- 2. R. Jr. Davis, Phys. Rev. Lett. **12**, 303 (1964).
- M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41(3), 030003 (2017).
- 4. В. А. Кузьмин, Препринт # 62, ФИАН, М. (1964).
- 5. V.A. Kuzmin, Phys. Lett. ${\bf 17},\,27$ (1965).
- 6. О.Г. Ряжская, УФН ${\bf 188}(9),\,1010$ (2018).
- 7. W. C. Haxton, Phys. Rev. Lett. **60**(9), 768 (1988).
- 8. Ю.С. Лютостанский, Н.Б. Шульгина, Силовая Функция Ксенона-127 и Сечение Реакции 127 I(ν, e^{-}) 127 Xe. Препринт ИАЭ 4876/2, ЦНИИатом-информ, М. (1989).
- Yu. S. Lutostansky and N. B. Shul'gina, Phys. Rev. Lett. 67, 430 (1991).
- Ю.С. Лютостанский, В.Н. Тихонов, ЯФ 81, 515 (2018).
- M. Palarczyk, J. Rapaport, C. Hautala et al. (Collaboration), Phys. Rev. C 59, 500 (1999).
- J. Engel, S. Pittel, and P. Vogel, Phys. Rev. Lett. 67, 426 (1991).
- J. Engel, S. Pittel, and P. Vogel, Phys. Rev. C 50, 1702 (1994).
- $14. \ https://www-nds.iaea.org.$
- 15. А.Б. Мигдал, *Теория конечных ферми-систем и* свойства атомных ядер, Наука, М. (1983).
- 16. Ю.С. Лютостанский, ЯФ **83**, 34 (2020).
- 17. A. Arima, Nucl. Phys. A **649**, 260 (1999).
- Ю. С. Лютостанский, А. П. Осипенко, В. Н. Тихонов, Изв. РАН. Сер. Физ. 83, 519 (2019).
- C. Patrignani, K. Agashe, G. Aielli et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
- J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Lett. 621, 85 (2005).
- H. Behrens and J. Jänecke, Numerical Tables for Beta Decay and Electron Capture, Springer, Berlin (1969).
- Ю. С. Лютостанский, Г. А. Коротеев, Н. В. Клочкова, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов, ЯФ 83, 208 (2020).
- 23. Ю.П. Суслов, Изв. АН СССР, Сер. Физ. **32**, 213 (1968).