Управляемый источник одиночных фотонов на основе микромазера с нулевой инверсией атомного пучка

 $E. H. Попов^{+1}, B. A. Решетов^*$

+ Санкт-Петербургский политехнический университет Петра Великого, 195251 С.-Петербург, Россия

*Тольяттинский государственный университет, 445020 Тольятти, Россия

Поступила в редакцию 24 марта 2020 г. После переработки 12 мая 2020 г. Принята к публикации 12 мая 2020 г.

В настоящей работе рассмотрен источник одиночных радио фотонов на основе микромазера, атомы накачки которого имеет нулевую инверсию населенности. Нулевая инверсия связана с тем, что в резонатор поочередно влетают атомы на верхнем и нижнем уровнях. Процесс генерации представляет собой непрерывное поддержание поля внутри резонатора в таком состоянии, что число фотонов в накачиваемой моде равно единице. Поле может быть выведено из резонатора по требованию так, что атомы накачки в процессе детектирования фотона перестают передавать энергию резонатору. Этот эффект позволит существенно снизить вероятность обнаружения парных скоррелированных фотонов и использовать источник в квантовых вычислениях и криптографии. Также в работе смоделированы флуктуации сжатого состояния радио поля, возникающие из-за неупорядоченного чередования атомов в пучке.

DOI: 10.31857/S1234567820120113

В теории и практике квантовых коммуникаций важную роль играют источники сжатых состояний электромагнитного поля. Если группа атомов взаимодействует с полевой модой в сжатом состоянии, то статистика отсчета поглощаемых фотонов может оказаться не пуассоновской — с эффектами группировки и антигруппировки [1–3]. Эти явления лежат в основе квантовых вычислений, криптографии и других областей неклассической физики. Поэтому управление квантовой статистикой электромагнитного поля является одной из наиболее сложных и популярных областей современной физики.

В качестве примера успешной реализации управляемого источника можно привести одноатомный лазер, который генерирует слабое поле из нескольких перепутанных фотонов в резонаторе [4–7]. Другим примером является "однофотонный пистолет" на основе оптических волокон с выраженными нелинейными свойствами [8–10], также отметим полупроводниковые источники одиночных фотонов [11, 12]. Точечные источники сжатого излучения актуальны не только в задачах лазерной генерации, но и в спектроскопии сверхвысокого разрешения [13, 14]: при регистрации люминесценции пар квантовых точек на поверхности исследуемого образца наблюдаются различные эффекты квантового сжатия.

Большой цикл работ был посвящен генерации сжатого поля с помощью одноатомного микромазера [15–24]. Его результаты показали широкие возможности подобной технологии в задачах подготовки полевой моды в требуемом состоянии, поэтому мы выбрали микромазер в качестве объекта нашего теоретического исследования.

В данной статье мы предлагаем новый принцип накачки и выведения радио поля из резонатора микромазера, квантовая статистика которого близка к чистому фоковскому состоянию с одним фотоном. Для эффективного сжатия используется пучок атомов, часть из которых находится на нижнем энергетическом уровне. Они нужны для поглощения тепловых фотонов и более эффективного сжатия поля. Такая постановка задачи наиболее близка к теме удерживания фотонов внутри некоторого локального объема, или полости. В англоязычной литературе это явление известно под названием "trapping photons" [25–28], которое получено в том числе в микромазере [29-30]. Его история исследований очень богата и подобная идея генерации сжатых состояний поля не нова. Поэтому в нашей работе мы делаем акцент не столько на сам метод генерации, сколько на механизм выведения радио поля и исследование флуктуаций, связанных с неравномерной последовательностью атомов в пучке.

¹⁾e-mail: enp-tion@yandex.ru

Выведение поля из резонатора по требованию позволяет получить статистику детектирования радио фотонов максимально соответствующую излучению "однофотонного пистолета". Управляемые излучатели радио фотонов с высокой степенью сжатия стали особенно актуальны в связи с развитием квантовых сетей на джозевсоновских кубитах [31, 32].

Принцип формирования однофотонных состояний поля и механизм его выведения из резонатора. Поле микромазера накачивается пучком атомов, которые пролетают через полость резонатора. Пучок является активной средой и предполагается достаточно редким, чтобы внутри резонатора одновременно находился только один атом. В отличие от традиционной схемы накачки, в которой все атомы должны влетать в резонатор на верхнем уровне и переходить на нижний при вылете из него, мы предлагаем использовать переменный пучок, т.е. атомы на верхнем и нижнем уровнях чередуются друг с другом и их количество примерно равно. Отметим, что в этом случае инверсия населенности активной среды близка к нулю, что в классической интерпретации должно приводить к отсутствию генерации когерентного поля. Однако при последовательном квантовом описании это может быть не так.

Атомы, которые перед пролетом через резонатор находятся на верхнем уровне, будем называть светлыми атомами, а те, которые на нижнем, – темными. Отметим, что введенные нами термины относятся только к начальному состоянию, т.е. светлые и темные атомы при вылете из резонатора могут оказаться на любом уровне. В дальнейшем те физические величины, которые различаются по типу атома, будем характеризовать нижним индексом μ , при этом пусть $\mu = a$ соответствует темному атому, а $\mu = b$ – светлому.

В настоящей работе рассматривается два режима работы микромазера: **режим генерации**, когда внутри резонатора удерживается однофотонное состояние полевой моды, и **режим источника**, когда радио поле выводится из резонатора "по требованию".

В режиме генерации атомный пучок должен поддерживать поле в однофотонном состоянии сколь угодно долго, поглощая лишние тепловые фотоны и заполняя пустую моду при ее случайной релаксации в нулевое состояние. Это происходит при выполнении нескольких условий:

1. Когда в моде **0** фотонов, **темный** атом всегда пролетает через резонатор без обмена энергией с модой, а **светлый** атом с некоторой вероятностью излучает фотон.

- 2. Когда в моде **1** фотон, **темный** атом поглощает его и за время пролета излучает обратно в моду, а **светлый** атом излучает второй фотон и успевает поглотить за время пролета. То есть атомы вылетают из резонатора в том же самом состоянии, в котором они влетели в него, не изменяя состояния поля.
- 3. Когда в моде **2** фотона, **темный** атом поглощает один из них с большей вероятностью, чем **светлый** атом излучает третий фотон в резонатор.

В режиме источника атомный пучок должен прекратить накачивать полевую моду, чтобы при выведении однофотонного поля вероятность генерации вторичных фотонов стремилась к нулю. Тогда статистика детектирования будет обладать свойством антигруппировки, характерным для однофотонного пистолета. Для реализации режима источника необходимо выполнение двух условий, которые противоречат условиям в режиме накачки:

- 1. Когда в моде **0** фотонов, **темный** атом всегда пролетает через резонатор без обмена энергией с модой, а **светлый** атом излучает фотон и успевает поглотить его за время пролета. То есть атомы вылетают из резонатора в том же самом состоянии, в котором они влетели в него, не изменяя состояния поля.
- 2. Когда в моде 1 фотон, то он быстро покидает резонатор по каналу выведения поля, а мода оказывается в нулевом состоянии. Это происходит преимущественно в промежутки времени, когда в резонаторе нет атомов.

Выполнение этих двух условий становится возможным, если резонатор микромазера связан с резервуаром устройства выведения поля, который имеет малое время жизни фотона внутри. Далее опишем оба режима работы теоретически.

Теоретическое описание режима генера- ции. Чтобы доказать работоспособность предложенного принципа накачки, нами была построена следующая модель квантовой системы: в начальный момент времени полевая мода резонатора находится в тепловом состоянии с интенсивностью $n_0 = 0.01$ фотонов; затем через резонатор начинают пролетать атомы пучка, причем длительность пролета атомов через резонатор одинаковая и пренебрежимо мала по сравнению со средним интервалом τ_p между атомами пучка; когда предыдущий атом уже вылетел, а следующий еще не влетел в резонатор, то система

описывается полевым оператором плотности $\hat{\sigma}$ и релаксирует к состоянию теплового равновесия; когда через резонатор пролетает атом, то система описывается атомно-полевым оператором плотности \hat{o}_{n} и изменяется согласно модели Джейнса-Каммингса без учета релаксации; после вылета атома из резонатора оператор плотности атомно-полевой системы усредняется по атомным переменным, так как следующий атом "не знает", в каком состоянии вылетел предыдущий. Через некоторое время полевая подсистема оказывается в состоянии динамического равновесия, в котором процессы релаксации и атомной накачки компенсируют друг друга.

Подобная физическая система неоднократно описана в литературе [15-24]. Чаще всего теория динамики полевой подсистемы строится на решении кинетического уравнения для оператора плотности $\hat{\rho}$, усредненного по промежутку времени T, за который через резонатор успевает пролететь несколько ато-

$$\frac{d\hat{\rho}}{dt} = I(\hat{\rho}' - \hat{\rho}) + \hat{L}\hat{\rho}, \quad \hat{\rho} = \frac{1}{2T} \int_{t-T}^{t+T} \hat{\sigma}(t')dt', \quad (1)$$

$$\hat{L}\hat{o} = -\frac{\gamma}{2} (1 + n_0) \,\hat{L}_- \hat{o} - \frac{\gamma}{2} n_0 \hat{L}_+ \hat{o}, \tag{2}$$

$$\hat{L}_{-}\hat{o} = \hat{a}^{\dagger}\hat{a}\hat{o} - 2\hat{a}\hat{o}\hat{a}^{\dagger} + \hat{o}\hat{a}^{\dagger}\hat{a}, \tag{3}$$

$$\hat{L}_{+}\hat{o} = \hat{a}\hat{a}^{\dagger}\hat{o} - 2\hat{a}^{\dagger}\hat{o}\hat{a} + \hat{o}\hat{a}\hat{a}^{\dagger},\tag{4}$$

где I – это интенсивность атомного пучка, $\hat{\rho}' - \hat{\rho}$ – малое изменение оператора плотности при пролете одного атома, \hat{L} описывает релаксацию полевой моды, \hat{a}^{\dagger} и \hat{a} – операторы рождения и уничтожения фотона в полевой моде, γ – обратное время жизни фотона.

Уравнение (1) имеет несложное аналитическое решение, которое в базисе чисел заполнения показывает вероятность обнаружить в резонаторе то или иное количество фотонов [15, 16]. Оно решалось в том числе и для переменного атомного пучка [20, 28]. Тем не менее, мы предлагаем отказаться от его использования и исследовать численное решение более точного уравнения для оператора плотности $\hat{\sigma}$, не усред-

$$\frac{d\hat{\sigma}}{dt} = \sum_{i=1}^{N} \delta(t - t_i) \left(\hat{\Upsilon}_i \hat{\sigma} - \hat{\sigma} \right) + \hat{L} \hat{\sigma}, \tag{5}$$

$$\hat{o}_i = \hat{\sigma} \otimes \hat{\sigma}_i, \quad \hat{\Upsilon}_i \hat{\sigma} = \langle \hat{U} \hat{o}_i \hat{U}^{\dagger} \rangle_{at}, \quad \hat{U} = e^{i\hat{V}\tau}, \quad (6)$$

где \hat{U} – это оператор эволюции в модели Джейнса– Каммингса, \hat{V} — оператор взаимодействия атома с полевой модой, au – время пролета атома через резонатор, t_i – начальный момент времени пролета i-го атома через резонатор, N – количество атомов, пролетевших через резонатор за время наблюдения, $\hat{\sigma}_i$ оператор плотности і-того атома перед пролетом через резонатор (он может принимать один из двух видов в зависимости от того, к какому типу принадлежит i-тый атом), индекс "at" обозначает усреднение по атомным переменным.

Математическое обоснование целесообразности использования численного решения уравнения (5) вместо аналитического решения (1) приводится в конце статьи в разделе "дискуссия". Здесь лишь отметим, что численное решение (5) позволяет пронаблюдать флуктуации вероятности обнаружить фотон в резонаторе. Они играют значительную роль, если рассматривать микромазер как источник одиночных фотонов. Это, в частности, отличает наше исследование от похожей работы [28], в которой не рассматривались флуктуации и механизм выведения поля из резонатора.

После записи уравнения (5) необходимо было найти параметры системы, при которых выполняются три условия режима генерации. Эти параметры заключены в операторе $\hat{\Upsilon}$: отстройка частоты поля от частоты атомного перехода Δ_{μ} , константа связи атома и полевой моды g_{μ} , время пролета атома через резонатор au – они определяют изменение поля при пролете каждого атома. Математическая формулировка первого условия имеет вид (7), второго – вид (8), (9) и третьего – вид (10):

$$\exists n = 0 \to p_b \neq 1 \quad \Leftrightarrow \quad \frac{\tau}{T_{b,0}} \notin \mathbb{N},$$
 (7)

$$\exists n = 1 \to p_a = 1 \quad \Leftrightarrow \quad \frac{\tau}{T_{a,1}} \in \mathbb{N},$$

$$\exists n = 1 \to p_b = 1 \quad \Leftrightarrow \quad \frac{\tau}{T_{b,1}} \in \mathbb{N},$$

$$(9)$$

$$\exists n = 1 \to p_b = 1 \quad \Leftrightarrow \quad \frac{\tau}{T_{b,1}} \in \mathbb{N},$$
 (9)

$$\exists n = 2 \to p_b > p_a,$$
 (10)

$$T_{\mu,n} = 2\pi/\sqrt{4g_{\mu}^2(n+\delta_{\mu,b}) + \Delta_{\mu}^2},$$
 (11)

где p_{μ} – это вероятность того, что атом вылетит из резонатора в том же состоянии, в котором влетел в него, $T_{\mu,n}$ – период осцилляций Раби, полученный из модели Джейнса-Каммингса, $\delta_{\mu,b}$ – это дельта символ Кронекера, \mathbb{N} – множество натуральных чисел.

Непосредственной подстановкой можно убедиться, что при $g_a=g_b$ и $\Delta_a=\Delta_b$ одновременное выполнение условий (7) и (8) является невозможным. В работе [28] внесено различие в параметр Δ_{μ} , однако не предложен метод реализации. Нам такой путь представляется маловероятным, поскольку светлые и темные атомы пучка являются одинаковыми атомами в разных состояниях. Поэтому мы внесли различие в константу связи атомов с полевой модой g_{μ} .

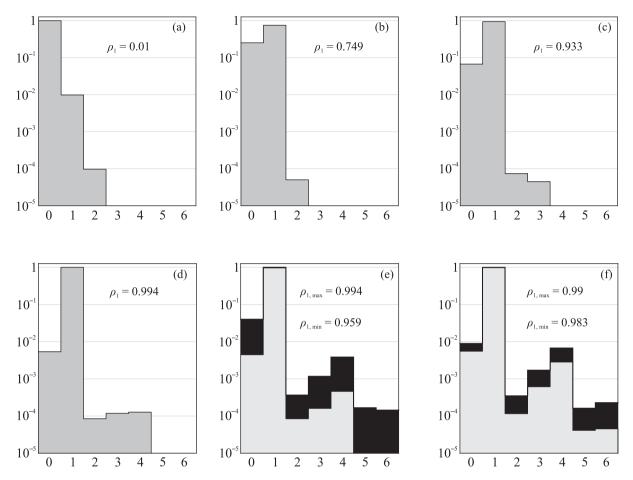


Рис. 1. Эволюция квантовой статистики поля в условиях накачки. В начальный момент система находилась в состоянии теплового равновесия (а). После пролета первого светлого атома квантовая статистика поля имеет вид (b), второго светлого атома – (c), шестого светлого атома – (d). Между светлыми атомами в соответствии с полученной случайной последовательностью пролетали темные атомы, но они практически не влияли на состояние поля. В расчете принято: $n_0 = 0.01$, $\tau_p \gamma = 1/300$, N = 2000. На двух правых графиках (e), (f) черным цветом показан диапазон флуктуаций вероятностей после того, как полевая система перешла в состояние динамического равновесия. Для этого рассмотрен промежуток времени между 200-м и 2000-м атомами. При случайной последовательности темных и светлых атомов статистика в условиях динамического равновесия имеет вид (e), при строгим чередованием темных и светлых атомов – вид (f)

Практически эту разницу можно создать, если подготавливать темные и светлые атомы на зеемановских подуровнях, которые относятся к разным резонансным переходам. Например

- ullet для темных атомов: $m_a=rac{3}{2}
 ightarrow m_a'=rac{3}{2}$
- ullet для светлых атомов: $m_b'=rac{1}{2}
 ightarrow m_b=rac{1}{2}$

$$g_a = \frac{1}{2} \sqrt{\frac{3}{5}} \cdot g, \qquad g_b = \frac{1}{2} \sqrt{\frac{1}{15}} \cdot g, \qquad (12)$$

где m_{μ} и m'_{μ} – это магнитные квантовые числа нижнего и верхнего уровней атома, g – это константа связи без учета вырождения по проекциям углового момента. Отметим, что рассматриваемые переходы

внутри светлого и темного атомов относятся к одной и той же паре вырожденных электронных уровней с угловыми моментами J=J'=3/2, поэтому их частоты переходов совпадают. Учитывая (11) и (12), мы нашли такие параметры пучка, при которых все условия (7)–(10) оказались выполненными:

$$\tau \ll \tau_p, \quad \Delta_a = \Delta_b = \Delta,$$
 (13)

$$|\Delta\tau| = 4\pi\sqrt{\frac{1}{7}} \qquad g\tau = 12\pi\sqrt{\frac{5}{7}}.\tag{14}$$

Для таких параметров было численно решено уравнение (5). На рисунке 1 приведены диаграммы вероятностей чистых фоковских состояний для нескольких моментов времени. Обратим внимание на

9

то, что уже после пролета 6-го светлого атома сжатое состояние поля практически стабилизировалось. Нам удалось достичь высокого сжатия поля по амплитуде при большем количестве тепловых фотонов и меньшей интенсивности пучка, чем в работе [20], в которой также исследуется неравномерный атомный пучок. Из двух правых графиков на рис. 1 можно сделать вывод о том, что устойчивость динамического равновесия существенно зависит от упорядоченности светлых и темных атомов в пучке. Чем чаще атомы чередуются, тем меньше флуктуации поля и больше степень сжатия. Этот эффект особенно заметен на примере вероятности полного опустошения полевой моды темными атомами.

Теоретическое описание режима детектирования. Генерация однофотонных состояний у полевой моды имеет практический смысл, если вероятность детектирования второго фотона близка к нулю на как можно большем интервале времени после детектирования первого фотона. Тогда источник можно считать однофотонным пистолетом [33]. Однако после выхода фотона из резонатора происходит быстрое восстановление возбужденного состояния поля несколькими светлыми атомами (см. рис. 1). Таким образом существует высокая вероятность зарегистрировать второй фотон за интервал времени, сопоставимый с обратной интенсивностью атомного пучка.

В решении этой проблемы может помочь механизм высвобождения поля с помощью резервуара приемника, который представляет собой смежный резонатор или квантовую точку с резонансным переходом в качестве зонда. Для их учета требуется изменить вид кинетического уравнения (5), добавив в него слагаемые, описывающие резервуар [34]:

$$\frac{d\hat{\sigma}}{dt} = \sum_{i=1}^{N} \delta (t - t_i) \left(\hat{\Upsilon}_i' \hat{\sigma} - \hat{\sigma} \right) + \hat{L} \hat{\sigma} + \hat{R} \hat{\sigma} + i\xi \left(\left(\hat{c}^{\dagger} \hat{a} + \hat{c} \hat{a}^{\dagger} \right) \hat{\sigma} - \hat{\sigma} \left(\hat{c}^{\dagger} \hat{a} + \hat{c} \hat{a}^{\dagger} \right) \right), \tag{15}$$

$$\hat{R}\hat{o} = -\frac{\gamma_r}{2} (1 + n_0) \,\hat{R}_- \hat{o} - \frac{\gamma_r}{2} n_0 \hat{R}_+ \hat{o}, \qquad (16)$$

$$\hat{R}_{-}\hat{o} = \hat{c}^{\dagger}\hat{c}\hat{o} - 2\hat{c}\hat{o}\hat{c}^{\dagger} + \hat{o}\hat{c}^{\dagger}\hat{c},\tag{17}$$

$$\hat{R}_{+}\hat{o} = \hat{c}\hat{c}^{\dagger}\hat{o} - 2\hat{c}^{\dagger}\hat{o}\hat{c} + \hat{o}\hat{c}\hat{c}^{\dagger},\tag{18}$$

$$\hat{o}_i = \hat{\sigma} \otimes \hat{\sigma}_i, \quad \hat{\Upsilon}'_i \hat{\sigma} = \langle \hat{U}_r \hat{o}_i \hat{U}_r^{\dagger} \rangle_{at}, \quad \hat{U}_r = e^{i\hat{V}_r \tau}, \quad (19)$$

$$\hat{V}_r = \hat{V} + \xi \left(\hat{c}^\dagger \hat{a} + \hat{c} \hat{a}^\dagger \right), \tag{20}$$

где ξ — константа связи между рабочей модой и резервуаром, \hat{c} и \hat{c}^\dagger — операторы уничтожения и рождения фотона в моде резервуара, $\hat{\sigma}$ — это оператор плотности полевой подсистемы, которая теперь включает

в себя резонатор и резервуар. Заметим, что при $\xi = 0$ решение уравнения (15) будет совпадать с решением уравнения (5).

Смысл введения резервуара состоит в том, что динамика атома должна существенно измениться при его пролете через резонатор, обменивающийся фотонами с резервуаром. Можно так подобрать константу связи ξ , что будут выполнены условия режима источника, сформулированные в начале статьи, и атомный пучок перестанет накачивать поле:

$$\exists (\xi = \xi_{\text{shoot}}), \quad n = 0 \to p_b \approx 1,$$
 (21)

где p_b — это вероятность того, что светлый атом вылетит из резонатора в таком же состоянии, в котором он влетел в него. Заметим, что в условии нет требования кратности времени пролета к периоду осцилляций Раби, так как система состоит из трех взаимодействующих квантовых объектов. И атом будет переходить из верхнего уровня на нижний и обратно по сложному временному закону.

Методом перебора мы нашли константу взаимодействия ξ , при которой наиболее точно выполняется условие (21):

$$\xi = \xi_{\text{shoot}} = 3.6g. \tag{22}$$

На рисунке 2 приведена зависимость p_b от времени при включенном резервуаре, когда светлый атом пролетает через резонатор.

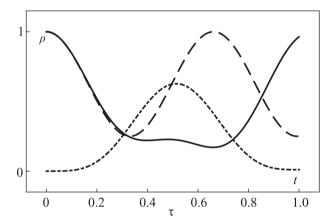


Рис. 2. Сплошная линия описывает вероятность нахождения светлого атома на верхнем уровне при пролете через резонатор, когда резервуар подключен $\xi = \xi_{\rm shoot}$, штрихпунктирная — вероятность появления фотона в резервуаре $\xi = \xi_{\rm shoot}$, пунктирная линия описывает вероятность нахождения светлого атома на верхнем уровне в "режиме ожидания", когда резервуар отключен $\xi = 0$. Графики построены при параметрах пучка (12)–(22)

По графикам на рис. 2 можно сделать вывод о том, что условие (21) является выполненным не пол-

ностью, но уменьшение накачки при включении резервуара имеет место быть. Так, наибольшая полученная вероятность того, что светлый атом не отдаст энергию моде, получилась равной 0.96, что близко к единице, как требует условие (21).

На практике для описания фотонной эмиссии неклассических источников обычно получают автокорреляционную функцию сигналов детектора, из которой потом находят характерные времена релаксации или вторичного возбуждения этого источника. В нашем случае константы распада и взаимодействия задавались в модели искусственно, поэтому мы ограничились качественным рассмотрением статистики детектирования поля микромазера, работающего в режиме однофотонного источника. Характерные времена модели подчиняются системе неравенств:

$$\gamma \ll \gamma_r \sim \tau_p^{-1} \ll \xi \sim \tau^{-1}, \tag{23}$$

где $I = \tau_p^{-1}$ – это интенсивность атомного пучка.

Скорость выхода фотона из резервуара велика по сравнению со скоростью релаксации фотона в резонаторе, так как резервуар является составной частью устройства выведения поля.

Проанализируем статистику поля в режиме источника:

В момент подключения резервуара в резонаторе находился один фотон. Резервуар и мода резонатора быстро обмениваются энергией, поэтому мода отправит фотон в приемник за интервал времени γ^{-1} . Далее скорость рождения второго фотона в полевой моде может быть оценена как произведение интенсивности пучка I на вероятность светлого атома отдать энергию в моду – 0.04 (см. рис. 2). Таким образом время появления второго фотона в резервуаре приемника примерно равно $(0.04 \cdot I)^{-1} = 25\tau_p$.

Учитывая то, что время обнаружения первого фотона γ_r^{-1} намного меньше времени обнаружения второго фотона $25\tau_p$ (23), мы действительно можем рассматривать микромазер в режиме источника как "однофотонный пистолет".

Дискуссия. Сложность поставленной задачи заключалась в том, что если пучок содержит атомы двух типов, то уравнение (5) нельзя привести к известному кинетическому уравнению микромазера по типу (1) с помощью простого интегрирования левой и правой части:

$$\int_{t-T}^{t+T} \frac{dt'}{2T} \left[\frac{d\hat{\sigma}}{dt'} = \sum_{i=1}^{N} \delta(t' - t_i) \left(\hat{\Upsilon}_i \hat{\sigma} - \hat{\sigma} \right) + \hat{L} \hat{\sigma} \right], \quad (24)$$

$$\frac{d\hat{\rho}}{dt} = \sum_{i,(t_i \in A)} \hat{\Upsilon}_i \frac{\hat{\sigma}(t_i)}{2T} - \hat{\rho} + \hat{L}\hat{\rho}, \tag{25}$$

где A – это временной интервал между t-T и t+T. Проблема заключается в том, что при разных атомах в пучке оператор $\hat{\Upsilon}_i$ нельзя вынести из-под знака суммы, чтобы сделать усреднение оператора $\hat{\sigma}$ в первом слагаемом и заменить на $\hat{\rho}'$. Эту проблему можно было бы решить, используя приближение:

$$\forall i, \ \hat{\Upsilon}_i \hat{\sigma} = \left(1 + \hat{\Lambda}_i\right) \hat{\sigma} \approx \hat{\sigma}.$$
 (26)

В этом случае, если $2T < \gamma^{-1}$, то справедливо:

$$\hat{\sigma}(t_i) \approx \prod_{k=1}^{i-1} \left(1 + \hat{\Lambda}_k \right) \hat{\sigma}(t_1) \approx \hat{\sigma}(t_1) + \sum_{k=1}^{i} \hat{\Lambda}_k \hat{\sigma}(t_1). \tag{27}$$

Учитывая, что существует два типа атомов, мы можем разделить сумму в (27) на две, в каждой из которых оператор $\hat{\Lambda}_k$ может быть вынесен из-под знака суммы. И тогда уравнение (25) примет простой вид:

$$\frac{d\hat{\rho}}{dt} = \frac{N_a}{2T} \left(\hat{\Upsilon}_a \hat{\rho} - \hat{\rho} \right) + \frac{N_b}{2T} \left(\hat{\Upsilon}_b \hat{\rho} - \hat{\rho} \right) + \hat{L} \hat{\rho}, \quad (28)$$

где N_a и N_b – это число темных и светлых атомов за время усреднения 2T.

Стационарное решение уравнения (28) можно считать состоянием динамического равновесия, только если выполняется условие (26), в чем нельзя быть всегда уверенными. Поэтому в данной статье мы искали точное решение динамического уравнения (5), используя явный вид операторов $\hat{\Upsilon}_i$ и \hat{L} для заданной последовательности атомов.

Заключение. В работе рассмотрен принцип накачки микромазера с помощью атомного пучка, который содержит атомы на верхнем уровне и атомы на нижнем уровне в равных долях. Подобный принцип позволяет поддерживать полевую моду резонатора в однофотонном состоянии с эффективностью около 97–99 % (см. рис. 1). Для перехода микромазера в режим активного излучателя следует подключить к резонатору резервуар приемника фотонов. При этом правильно подобрав константу их взаимодействия, можно добиться существенного эффекта антигруппировки, который соответствует излучению "однофотонного пистолета" в радио диапазоне.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант #18-32-00250).

 U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, Phys. Scr. 91, 051001 (2016).

- 2. A. Lvovsky, e-Print: arXiv: 1401.4118v2, 1 (2014).
- 3. L. Mandel and E. Wolf, *Optical Coherence and Quantum Optics*, Cambridge University Press, Cambridge (1995), p. 1194.
- 4. Ю. М. Голубев, И. В. Соколов, ЖЭТФ 87, 408 (1984).
- 5. Т.Б. Карлович, С.Я. Килин, Оптика и спектроскопия **91**, 375 (2001) [Т.В. Karlovich and S.Ya. Kilin, Optics and Spectroscopy **91** 343 (2001)].
- N. V. Larionov and M. I. Kolobov, Phys. Rev. A 88, 013843 (2013).
- J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, and H.J. Kimble, Nature 425, 268 (2003).
- 8. N. Kukharchyk, D. Sholokhov, O. Morozov, S. L. Korableva, J. H. Cole, A. A. Kalachev, and P. A. Bushev, Opt. Lett. **43**, 935 (2018).
- 9. А. А. Шухин, А. А. Калачев, Известия РАН. Сер. физ. **80** 861 (2016).
- M. Akbari and A. A. Kalachev, Laser Phys. Lett. 13, 115204 (2016).
- М. В. Рахлин, К. Г. Беляев, С. В. Сорокин, И. В. Седова, Д. А. Кириленко, А. М. Можаров, И. С. Мухин, М. М. Кулагина, Ю. М. Задиранов, С. В. Иванов, А. А. Торопов, Письма в ЖЭТФ 108, 201 (2018).
- М. В. Рахлин, К. Г. Беляев, Г. В. Климко, И. В. Седова, М. М. Кулагина, Ю. М. Задиранов, С. И. Трошков, Ю. А. Гусева, Я. В. Терентьев, С. В. Иванов, А. А. Торопов, Письма в ЖЭТФ 109, 147 (2019).
- 13. A.V. Naumov, Phys.-Uspekhi 56, 605 (2013).
- I. Yu. Eremchev, M. Yu. Eremchev, and A. V. Naumov, Phys.-Uspekhi 62, 294 (2019).
- 15. D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett. ${\bf 54},\,551$ (1985).
- 16. V. A. Reshetov and I. V. Yevseyev, Laser Phys. Lett. ${\bf 1},$ 124 (2004).
- J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).
- S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A 78, 063828 (2008).

- H. Walther, B. T. H. Varcoe, B. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).
- V. A. Reshetov, E. N. Popov, and I. V. Yevseyev, Laser Phys. Lett. 7 218 (2010).
- P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34, 3077 (1986).
- D. Yu, L.C. Kwek, L. Amico, and R. Dumke, Phys. Rev. A 95, 053811 (2017).
- L. Jin, M. Pfender, N. Aslam, P. Neumann, S. Yang, J. Wrachtrup, and R.-B. Liu, Nat. Commun. 6, 8251 (2015).
- B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, Nature 403, 743 (2000).
- G. S. Agarwal and Y. Zhu, Phys. Rev. A 92, 023824 (2015).
- A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature 449, 328 (2007).
- M. Alexanian, S. Bose, and L. Chow, J. Mod. Opt. 45, 2519 (1998).
- A. Z. Khoury and T. B. L. Kist, Phys. Rev. A 55, 2304 (1997).
- M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, Phys. Rev. Lett. 82, 3795 (1999).
- 30. B.-G. Englert, arXiv:quant-ph/0203052 (2002) URL: https://arxiv.org/pdf/quant-ph/0203052.pdf.
- 31. A.F. Kockum and F. Nori, Quantum Bits with Josephson Junctions, in Fundamentals and Frontiers of the Josephson Effect, ed. by F. Tafuri, Springer (Springer Series in Materials Science), 286, 703 (2019).
- A. L. Grimsmo and A. Blais, npj. Quantum Inf. 3, 1 (2017).
- M. Thornton, A. Sakovich, A. Mikhalychev, J. D. Ferrer,
 P. de la Hoz, N. Korolkova, and D. Mogilevtsev, Phys. Rev. Appl. 12, 064051 (2019).
- 34. Г. П. Мирошниченко, Наносистемы: физика, химия, математика ${f 2},$ 47 (2011).