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Joule–Thomson cooling in graphene
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Collective effects of electron interactions may pre-
vail over impurity scattering in a very clean sample.
Electrons then flow like a viscous fluid [1], as observed
in graphene in a certain range of temperatures [2–7].
Spectacular consequences of hydrodynamic electronic
transport include negative local resistivity [2, 3, 4, 7],
violation of ballistic bound on conductance [2, 6, 8, 9]
(Gurzhi effect [1]), breakdown of Wiedemann–Franz law
[5, 9, 10], and negative magnetoresistance [9, 11]. An-
other possible manifestation of hydrodynamic mode of
transport, discussed here, is cooling of electron fluid that
passes through a narrow constriction. In the solid state
setting electric current normally generates heat, and
cooling of electron flow may look counterintuitive, but in
fluid mechanics this phenomenon, the Joule–Thomson
(JT) effect [12], is well known and underlies a widely
used method of gas refrigeration.

Consider two strips of graphene connected by a nar-
row bridge and subject to a constant voltage δU . As-
suming that one strip is kept at temperature T1 and
denoting electron temperature in the other by T2, the
cooling/heating effect can be characterized by the tem-
perature drop δT = T1 − T2 relative to the potential
difference δµ = µ1 − µ2 = eδU :

δT = αδµ, (1)

where µ1 and µ2 are chemical potentials on the two sides
of the bridge. The dimensionless coefficient α can take
either sign and is defined such that α > 0 corresponds
to cooling.

Textbook derivations of the JT effect start with the
enthalpy conservation: δ[(ǫ+ P )/n] = 0, where ǫ and P
are the energy density and pressure of the electron fluid
and n is the charge carrier density. Thermodynamic re-
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lation ǫ+ P = µn+ Ts, where s is the entropy density,
then yields

α = −
A+ T ∂ŝ

∂µ

Aŝ+ T ∂ŝ
∂T

, (2)

where ŝ = s/n is specific entropy and A = 1. The ra-
tionale to introduce a special notation for a constant
equal to one is that a more accurate calculation gives
A ≈ 2/3, while the overall functional form of the cooling
coefficient remains the same.

Electrons in graphene form a 2d Fermi gas with lin-
ear dispersion relation, and their pressure is given by

P = 4T

∫

d2p

(2π~)2

∑

q=±

ln
(

1 + e
qµ−vF |p|

T

)

, (3)

where vF is the Fermi velocity, q labels particles/holes,
and the overall factor of four takes into account valley
and spin degeneracy. We tacitly assume that holes and
electrons are in thermodynamic equilibrium, which is
not a good approximation at the neutrality point, where
our derivation is not applicable.

The rest of thermodynamic quantities can be calcu-
lated from dP = ndµ + sdT . When applied to (2) the
standard thermodynamic machinery gives

1

α
=

3A F
F ′

A+ 2− 3 FF ′′

F ′2

− ξ, ξ =
µ

T
, (4)

where
F(ξ) = Li3(− e ξ) + Li3(− e−ξ). (5)

In the two limiting cases we get:

α
µ≫T≃ 3Aµ

2(1 +A)π2T
, α

µ≪T≃ − T

(1 +A)µ
. (6)

The JT effect results in cooling in the Fermi liquid
regime (µ ≫ T ) and in heating in the Dirac fluid case
(µ≪ T ). The sign of the effect changes at an inversion
point, which for the physical case of A = 2/3 lies at
µinv = 3.32T .
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The thermodynamic derivation of the JT effect rests
on enthalpy conservation, but enthalpy production in
the moving electron fluid cannot be neglected. The
viscous heating turns out to be the prime source of
enthalpy production and leads to order one effects,
while Ohmic resistivity only gives small corrections. The
derivation is based on the hydrodynamic theory of elec-
tron transport in the commonly used Stockes approxi-
mation:

η∂2vi −
η

λ2
vi = ∂iP, ∂iv

i = 0, (7)

where vi is the electron velocity, η is the shear viscosity
of the electron fluid and λ is the momentum-relaxation
length.

The solution is known explicitly when λ = ∞ [8]:

P = P0 −
4ηu

a
Im

z
√

a2

4 − z2
,

vx =
2uy

a
Re

z
√

a2

4 − z2
,

vy =
2u

a
Re

√

a2

4
− z2 − 2uy

a
Im

z
√

a2

4 − z2
. (8)

Here z = x+iy, a is the width of the bridge, and u is the
maximal velocity attained by the fluid. The square root
is analytic on the complex plane with a semi-infinite cut
representing the constriction.

The flow is sustained by the pressure drop:

δP =
8ηu

a
. (9)

The entropy production rate in the moving fluid is cal-
culated according to

vi∂iŝ =
η

nT

(

v2

λ2
+

Π2

2

)

, Πij = ∂ivj + ∂jvi. (10)

Integrating the rate along the midflow (and setting
λ = ∞) gives:

−δŝ = 2ηua

nT

+∞
∫

−∞

dy y2

(

a2

4 + y2
)

5

2

=
16ηu

3anT
=

2

3nT
δP. (11)

The relation δP = nδµ + sδT then results in the same
formula (2) for the JT coefficient, but with A = 2/3.

When momentum relaxation is taken into account,
the coefficient A starts to depend on the dimensionless
ratio a/λ. Assuming that this ratio is small, a≪ λ, cor-
rections due to momentum relaxation and Ohmic heat-
ing appear to be quadratic in the small parameter a/λ,
but are logarithmically enhanced:

A =
2

3

(

1 +
a2

32λ2
ln
L

λ

)

, (12)

where L is the total size of the system.
In conclusion, hydrodynamic nature of electron flow

in biased graphene leads to JT cooling when the cur-
rent is forced through a narrow constriction. Cooling
occurs in the Fermi liquid regime, for sufficiently large
charge imbalance or at sufficiently low temperatures.
For lower chemical potentials the JT effect results in
heating, which is most pronounced in the Dirac liq-
uid regime at µ ≪ T . Although similar to conventional
Joule heating the mechanics behind this effect is quite
different, in particular the temperature increment is lin-
ear in applied voltage and not quadratic. It is necessary
to keep in mind however that our derivation becomes
invalid close to the neutrality point.

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134/S0021364020030030
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Y. Sun, U. Drechsler, R. Zierold, C. Felser, and B. Gots-
mann, Nat. Commun. 9, 4093 (2018); 1706.05925.

10. A. Lucas, J. Crossno, K.C. Fong, P. Kim, and
S. Sachdev, Phys. Rev. B 93, 075426 (2016); 1510.01738.

11. A. Lucas, R.A. Davison, and S. Sachdev, Proc. Natl.
Acad. Sci. USA 113, 9463 (2016); 1604.08598.

12. W. Thomson and J. P. Joule, Philos. Trans. R. Soc. Lon-
don 143, 357 (1853).

Письма в ЖЭТФ том 111 вып. 3 – 4 2020


