Сверхструктуры монооксида ниобия

*А. И. Гусев*¹⁾

Институт химии твердого тела Уральского отделения РАН, 620990 Екатеринбург, Россия

Поступила в редакцию 23 декабря 2019 г. После переработки 31 декабря 2019 г. Принята к публикации 31 декабря 2019 г.

На основе симметрийного анализа, представлений о канале перехода беспорядок–порядок и функции распределения впервые предложены кубическая и орторомбические модели сверхструктур Nb₃O₃ и Nb₆O₆ нестехиометрического монооксида ниобия Nb_{0.75}O_{0.75} с двойной дефектностью. Канал перехода беспорядок–порядок, связанный с образованием рассмотренных модельных сверхструктур, включает три сверхструктурных вектора, являющихся лучами $\mathbf{k}_{10}^{(1)}$, $\mathbf{k}_{10}^{(2)}$ и $\mathbf{k}_{10}^{(3)}$ лифшицевской звезды { \mathbf{k}_{10} }. Рассчитаны функции распределения атомов O и Nb по узлам рассмотренных сверхструктур Nb₃O₃ и Nb₆O₆. Показано, что при понижении температуры в результате последовательных превращений беспорядок–порядок могут формироваться кубическая Nb₃O₃, орторомбическая Nb₃O₃ и орторомбическая Nb₆O₆ фазы.

DOI: 10.31857/S0370274X20030108

Среди всех известных соединений кубический монооксид ниобия NbO содержит самое большое число структурных вакансий – по 25 % вакансий в каждой подрешетке [1–3]. Наличие структурных вакансий сразу в двух подрешетках роднит его с монооксидами титана и ванадия, но концентрация вакансий в них заметно меньше и не превышает 16–17 %. Кроме того, монооксиды титана и ванадия обладают широкими областями гомогенности, тогда как монооксид ниобия области гомогенности практически не имеет [3].

Существуют два варианта объяснения структуры монооксида ниобия. В первом варианте считается, что монооксид ниобия имеет кристаллическую структуру типа B1 с неупорядоченным распределением вакансий в подрешетках ниобия и кислорода, входит в группу сильно нестехиометрических соединений, и его состав соответствует Nb_{0.75}■_{0.25}O_{0.75}□_{0.25} (Nb_{0.75}O_{0.75}), где ■ и □ – обозначения вакантных узлов (структурных вакансий) в подрешетках ниобия и кислорода соответственно. В этом варианте на основе неупорядоченного монооксида ниобия возможно образование упорядоченных фаз (сверхструктур). Во втором варианте монооксид ниобия рассматривается как самостоятельная фаза с кубической (пр. гр. $Pm\bar{3}m$) структурой, в которой из четырех узлов каждой подрешетки атомами заняты только три, а узлы, занимающие вершины и центр элементарной ячейки, вакантны. Заметим, что такую фазу логичнее рассматривать как сверхструктуру неупорядоченного монооксида ниобия, что и будет сделано далее.

Монооксид ниобия обладает металлической проводимостью [4, 5]. Его удельное электросопротивление при понижении температуры от 300 до 4.2 К снижается от 21 до 1.8 мком · см, а при температуре ниже 1.38 К монооксид ниобия становится сверхпроводником [4]. Хотя монооксид ниобия не имеет массового технологического применения, однако повышенная диффузия кислорода в NbO делает его перспективной альтернативой металлическому танталу в производстве твердотельных электролитических конденсаторов [6, 7]. Большие потенциальные возможности новых технических применений монооксида ниобия связаны именно с высоким содержанием кислородных вакансий и кислородной диффузией.

Расчеты электронной структуры монооксида ниобия Nb_3O_3 подтверждают формирование вакансионной подзоны и более высокую стабильность этой фазы по сравнению с гипотетическим бездефектным монооксидом NbO (Nb_4O_4) [5, 8, 9]. Однако электронная структура неупорядоченного монооксида $Nb_{0.75}O_{0.75}$ до сих пор не рассчитана [10].

В работах [1,2], а также в других исследованиях [11] и теоретических расчетах [8,9] электронной структуры монооксид ниобия Nb₃O₃ рассматривается как кубическая (пр. гр. $Pm\bar{3}m$) упорядоченная фаза. Никаких соображений о возможных других сверхструктурах монооксида ниобия в литературе нет. На фазовой диаграмме системы Nb–O [12, 13] мо-

 $^{^{1)}\}mathrm{e\text{-}mail:}$ gusev@ihim.uran.ru

Рис. 1. Положения элементарных ячеек: (a) – кубической (пр. гр. $Pm\bar{3}m$) сверхструктуры Nb₃O₃ (Nb₃■O₃□) и (b) – орторомбической (пр. гр. Pmm2) сверхструктуры Nb₆O₆ (Nb₆■₂O₆□₂) в решетке со структурой B1: (◦) – атом кислорода O, (•) – атом ниобия Nb, (□) и (■) – вакансии кислородной и ниобиевой подрешеток соответственно

нооксид ниобия представлен как соединение, не имеющее никаких фазовых превращений. Между тем родственный монооксид титана, в котором наблюдается двухподрешеточное упорядочение [14], имеет несколько упорядоченных фаз (моноклинную, кубическую и другие) [3, 15].

В данной работе с помощью симметрийного анализа впервые предложены и рассмотрены модельные упорядоченные фазы монооксида ниобия $\mathrm{Nb}_{0.75}\mathrm{O}_{0.75}.$

Структуру упорядоченных фаз удобно описывать функцией распределения $n(\mathbf{r})$, которая является вероятностью обнаружения атома данного сорта на узле $\mathbf{r} = (x_{\rm I}, y_{\rm I}, z_{\rm I})$ упорядочивающейся решетки Изинга. Отклонение вероятности $n(\mathbf{r})$ от ее значения в случае неупорядоченного распределения можно представить суперпозицией нескольких плоских концентрационных волн [16]. Волновыми векторами этих волн являются сверхструктурные векторы, образующие канал перехода беспорядок–порядок [17, 18]. В методе статических концентрационных волн [16] функция распределения $n(\mathbf{r})$ имеет вид

$$n(\mathbf{r}) = y + \frac{1}{2} \sum_{s} \sum_{j \in s} \eta_s \gamma_s [\exp(i\varphi_s^{(j)}) \exp(i\mathbf{k}_s^{(j)}\mathbf{r}) + \exp(-i\varphi_s^{(j)}) \exp(-i\mathbf{k}_s^{(j)}\mathbf{r})] \equiv y + \frac{1}{2} \sum_{s} \eta_s \times \sum_{j \in s} [\gamma(\mathbf{k}_s^{(j)}) \exp(i\mathbf{k}_s^{(j)}\mathbf{r}) + \gamma^*(\mathbf{k}_s^{(j)}) \exp(-i\mathbf{k}_s^{(j)}\mathbf{r})] \equiv z + \frac{1}{2} \sum_{s} \eta_s \gamma_s \sum_{j \in s} [a_s^{(j)} \cos(\mathbf{k}_s^{(j)}) + b_s^{(j)} \sin(\mathbf{k}_s^{(j)}\mathbf{r})], (1)$$

Письма в ЖЭТФ том 111 вып. 3-4 2020

где – относительная концентрация атомов U данного сорта в упорядочивающейся подре- $\frac{1}{2}\eta_s\gamma_s[\exp(i\varphi_s^{(j)})\exp(i\mathbf{k}_s^{(j)}\mathbf{r}) +$ шетке; величина $+\exp(-i\varphi_{s}^{(j)})\exp(-i\mathbf{k}_{s}^{(j)}\mathbf{r})]\equiv\Delta(\mathbf{k}_{s}^{(j)},\mathbf{r})$ есть стоячая плоская статическая концентрационная волна. порождаемая сверхструктурным вектором $\mathbf{k}_s^{(j)}$ звезды $\{\mathbf{k}_s\};$ η_s – параметр дальнего порядка, соответствующий звезде $\{\mathbf{k}_s\}; \ \eta_s \gamma_s$ и $\varphi_s^{(j)}$ – амплитуда и фазовый сдвиг концентрационной волны, соответственно. Коэффициенты γ_s и $\gamma(\mathbf{k}_s^{(j)}) = \gamma_s \exp(i\varphi_s^{(j)})$ учитывают симметрию кристалла и выбираются так, чтобы полностью упорядоченному кристаллу стехиометрического состава соответствовали параметры дальнего порядка, равные единице. На узлах r, расположенных в кристаллографически эквивалентных позициях, функция $n(\mathbf{r})$ принимает одно и то же значение. Суммирование в (1) ведется только по неэквивалентным сверхструктурным векторам первой зоны Бриллюэна.

Для проведения симметрийного анализа и расчета функций распределения атомов кислорода и ниобия в возможных упорядоченных фазах нужно перейти к обратной решетке этих фаз и найти канал структурного фазового перехода беспорядок– порядок.

В нестехиометрических оксидах со структурой B1 и с вакансиями в двух подрешетках одновременно решетками Изинга, в которых происходит упорядочение, являются кислородная и металлическая гранецентрированные кубические (ГЦК) подрешетки. Векторы трансляции, определяющие положение узлов **г** неметаллической подрешетки, имеют вид

	Позиция	Атомные координаты в идеальной упорядоченной			Значения функций
Атом	И				распределения $n_{\rm O}(x_{\rm I}, y_{\rm I}, z_{\rm I})$
	кратность	структуре			и $n_{ m Nb}(x_{ m I},y_{ m I},z_{ m I})$
		x/a_1	y/a_2	z/a_3	
О 1 (вакансия)	1(a)	0	0	0	$n_{\rm O1} = 3/4 - 3\eta_{10}/4$
O 2	3(c)	1/2	0	1/2	$n_{\rm O2} = 3/4 + \eta_{10}/4$
Nb 1 (вакансия)	1(b)	1/2	1/2	1/2	$n_{\rm Nb1} = 3/4 - 3\eta_{10}/4$
Nb 2	3(d)	0	1/2	0	$n_{\rm Nb2} = 3/4 + \eta_{10}/4$

Таблица 1. Кубическая (пр. гр. # 221 – $pM\bar{3}M$ (O_{h}^{1})) сверхструктура Nb₃O₃: $\mathbf{a}_{1} = \langle 100 \rangle_{B1}, \mathbf{a}_{2} = \langle 010 \rangle_{B1}, \mathbf{a}_{3} = \langle 001 \rangle_{B1}$

$$\mathbf{r} = x_{\mathrm{I}}\mathbf{a}_1 + y_{\mathrm{I}}\mathbf{a}_2 + z_{\mathrm{I}}\mathbf{a}_3,\tag{2}$$

где \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 – основные трансляции ГЦК решетки в направлениях $[100]_{B1}$, $[010]_{B1}$ и $[001]_{B1}$ ($|\mathbf{a}_1| =$ $= |\mathbf{a}_2| = |\mathbf{a}_3| = a$); x_{I} , y_{I} , z_{I} – координаты узлов ГЦК подрешеток, являющиеся целыми и полуцелыми числами. Базисные векторы обратной решетки, соответствующие прямой ГЦК решетке, равны $\mathbf{b}_1 = \{\bar{1} \ 1 \ 1\}$, $\mathbf{b}_2 = \{1 \ \bar{1} \ 1\}$ и $\mathbf{b}_3 = \{1 \ 1 \ \bar{1}\}$ в единицах $2\pi/a_{B1}$.

Элементарная ячейка кубической (пр. гр. $Pm\bar{3}m$) сверхструктуры Nb₃O₃, образующейся в монооксиде ниобия NbO \equiv Nb_{0.75}O_{0.75}, содержащем по 25 % вакансий в подрешетках ниобия и кислорода одновременно, показана на рис. 1а. Векторы трансляции $\mathbf{a} = \{100\}_{B1}, \mathbf{b} = \{010\}_{B1}$ и $\mathbf{c} = \{001\}_{B1}$ элементарной ячейки совпадают с векторами трансляции базисной кристаллической решетки со структурой В1. Найдем канал перехода, т.е. набор векторов звезд, связанных с обсуждаемым фазовым превращением. Базисные векторы обратной решетки \mathbf{b}_{i}^{*} $(\mathbf{b}_{1}^{*} \equiv \mathbf{a}_{Nb_{3}O_{3}}^{*}, \mathbf{b}_{2}^{*} \equiv \mathbf{b}_{Nb_{3}O_{3}}^{*}, \mathbf{b}_{3}^{*} \equiv \mathbf{c}_{Nb_{3}O_{3}}^{*})$ onpegeляются через трансляционные векторы \mathbf{a}_i ($\mathbf{a}_1 \equiv \mathbf{a}$, $\mathbf{a}_2 \equiv \mathbf{b}, \, \mathbf{a}_3 \equiv \mathbf{c})$ элементарной ячейки по формуле $\mathbf{b}_{i}^{*} = 2\pi \frac{\mathbf{a}_{j} \times \mathbf{a}_{k}}{\mathbf{a}_{1}(\mathbf{a}_{2} \times \mathbf{a}_{3})}$, где i, j, k = 1, 2, 3. В соответствии с этим векторы обратной решетки равны $\mathbf{a}^* = \{1 \ 0 \ 0\},$ $\mathbf{b}^* = \{0\,1\,0\}$ и $\mathbf{c}^* = \{0\,0\,1\}$ в единицах $2\pi/a_{B1}$. Легко видеть, что базисные векторы обратной решетки совпадают с лучами звезды {**k**₁₀} [3, 17–19]. Таким образом, кубическая (пр. гр. $Pm\bar{3}m$) упорядоченная фаза Nb₃O₃ образуется по каналу фазового перехода, включающему все три луча $\mathbf{k}_{10}^{(1)} = (\mathbf{b}_1 + \mathbf{b}_2)/2$, $\mathbf{k}_{10}^{(2)} = (\mathbf{b}_1 + \mathbf{b}_3)/2$, $\mathbf{k}_{10}^{(3)} = (\mathbf{b}_2 + \mathbf{b}_3)/2$ лифшицевской звезды { \mathbf{k}_{10} }. Координаты атомов и вакансий в идеальной кубической сверхструктуре Nb₃O₃ приведены в табл. 1.

Выполненный расчет показал, что функция распределения атомов кислорода в кубической (пр. гр. $Pm\bar{3}m$) сверхструктуре Nb₃O₃ монооксида ниобия Nb_{0.75}O_{0.75} имеет вид

$$n_{\rm O}(x_{\rm I}, y_{\rm I}, z_{\rm I}) =$$

= 3/4-(\eta_{10}/4)(\cos 2\pi x_{\rm IO} + \cos 2\pi y_{\rm IO} + \cos 2\pi z_{\rm IO}), (3)

где $x_{\rm IO}, y_{\rm IO}, z_{\rm I}$ – координаты узлов упорядочивающейся кислородной ГЦК подрешетки.

Распределение атомов ниобия в кубической (пр. гр. $Pm\bar{3}m$) сверхструктуре Nb_3O_3 монооксида ниобия $Nb_{0.75}O_{0.75}$ описывается функцией

$$n_{\rm Nb}(x_{\rm I}, y_{\rm I}, z_{\rm I}) = 3/4 +$$

$$+ (\eta_{10}/4)(\cos 2\pi x_{\rm INb} + \cos 2\pi y_{\rm INb} + \cos 2\pi z_{\rm INb}), (4)$$

где $x_{\rm INb}, y_{\rm INb}, z_{\rm INb}$ – координаты узлов упорядочивающейся ниобиевой ГЦК подрешетки.

Для полностью упорядоченной фазы Nb₃O₃ относительные стехиометрические концентрации атомов кислорода $y_{\rm stO}$ и ниобия $y_{\rm stNb}$ равны 3/4.

Значения функций распределения (3) и (4) на узлах, принадлежащих разным кристаллографическим позициям кислородной и ниобиевой подрешеток, приведены в табл. 1.

Ближайшее окружение атомов Nb и ниобиевых вакансий узлами кислородной подрешетки в кубической (пр. гр. $Pm\bar{3}m$) сверхструктуре Nb₃O₃ показано на рис. 2. В обозначениях окружения нижний и верх-

Рис. 2. Типы ближайшего окружения Nb_2^0 и \blacksquare_0^8 узлов подрешетки ниобия в полностью упорядоченных кубической (пр. гр. $Pm\bar{3}m$) Nb_3O_3 и орторомбической (пр. гр. Pmm2) Nb_6O_6 сверхструктурах: (\circ) – атом кислорода O, (\bullet) – атом ниобия Nb, (\Box) и (\blacksquare) – вакансии кислородной и ниобиевой подрешеток соответственно. Все атомы ниобия находятся в окружении Nb_2^0 , вакансии ниобиевой подрешетки – в окружении \blacksquare_0^8

	Позиция	Атомные координаты в			Значения функций
Атом	И	упорядоченной структуре			распределения $n_{\rm O}(x_{\rm I}, y_{\rm I}, z_{\rm I})$
	кратность	с учетом смещений			и $n_{ m Nb}(x_{ m I},y_{ m I},z_{ m I})$
		x/a_1	y/a_2	z/a_3	
О 1 (вакансия)	1(b)	0	1/2	0	$n_{\rm O1} = 3/4 - 3\eta_{10}/4$
О 2 (вакансия)	1(c)	1/2	0	0	$n_{\rm O2} = 3/4 - 3\eta_{10}/4$
O 3	1(a)	0	0	$z_{ m sO3}$	$n_{\rm O3} = 3/4 + \eta_{10}/4$
O 4	1(d)	1/2	1/2	$z_{\rm sO4}$	$n_{\rm O4} = 3/4 + \eta_{10}/4$
O 5	4(i)	1/4	1/4	$1/2 + z_{\rm sO5}$	$n_{\rm O5} = 3/4 + \eta_{10}/4$
Nb 1 (вакансия)	1(a)	0	0	1/2	$n_{\rm Nb3} = 3/4 - 3\eta_{10}/4$
Nb 2 (вакансия)	1(d)	1/2	1/2	1/2	$n_{\rm Nb4} = 3/4 - 3\eta_{10}/4$
Nb 3	2(f)	$x_{\rm sNb3}$	1/2	$1/2 + z_{sNb3}$	$n_{\rm Nb1} = 3/4 + \eta_{10}/4$
Nb 4	4(i)	1/4	1/4	$z_{ m sNb4}$	$n_{\rm Nb2} = 3/4 + \eta_{10}/4$

Таблица 2. Орторомбическая (пр. гр. #25 – Pmm2 (C_{2v}^1)) сверхструктура Nb₆O₆: $\mathbf{a}_{Pmm2} = \langle 1\bar{1}0 \rangle_{B1}$, $\mathbf{b}_{Pmm2} = \langle 110 \rangle_{B1}$, $\mathbf{c}_{Pmm2} = \langle 001 \rangle_{B1}$

ний индексы показывают число кислородных вакансий в первой и второй координационных сферах узла подрешетки ниобия. В идеальной полностью упорядоченной кубической (пр. гр. $Pm\bar{3}m$) сверхструктуре Nb₃O₃ все атомы ниобия находятся в окружении Nb₂⁰, а вакансии ниобиевой подрешетки – в окружении \blacksquare_0^8 (рис. 2).

Именно для этой идеальной кубической (пр. гр. $Pm\bar{3}m$) сверхструктуры Nb_3O_3 выполнены известные расчеты электронной структуры [5,8,9]. Но реальные упорядоченные фазы, как правило, имеют атомные смещения.

Наличие атомных смещений снижает симметрию и переводит кубическую (пр. гр. $Pm\bar{3}m$) сверхструктуру Nb₃O₃ в орторомбическую (пр. гр. *Ртт*2) сверхструктуру Nb₆O₆, имеющую элементарную ячейку с удвоенным объемом (рис. 1b). Векторы трансляции этой элементарной ячейки равны $\mathbf{a}_{Pmm2} = \{1 - 10\}_{B1}, \mathbf{b}_{Pmm2} = \{110\}_{B1}$ и $\mathbf{c}_{Pmm2} = \{001\}_{B1}$. В соответствии с этим векторы обратной решетки упорядоченной фазы Nb₆O₆ равны $\mathbf{a}^*_{Pmm2} = \{1/2 - 1/2 \, 0\}, \, \mathbf{b}^*_{Pmm2} = \{1/2 \, 1/2 \, 0\}$ и $\mathbf{c}_{Pmm2}^* = \{0\,0\,1\}$ в единицах $2\pi/a_{B1}$. Их комбинирование и трансляции показывают, что в первой зоне Бриллюэна базисной ГЦК решетки находятся все те же три луча $\mathbf{k}_{10}^{(1)} = (\mathbf{b}_1 + \mathbf{b}_2)/2, \ \mathbf{k}_{10}^{(2)} = (\mathbf{b}_1 + \mathbf{b}_3)/2,$ $\mathbf{k}_{10}^{(3)} = (\mathbf{b}_2 + \mathbf{b}_3)/2$ лифшицевской звезды $\{\mathbf{k}_{10}\}.$ Координаты атомов и вакансий в упорядоченной орторомбической (пр. гр. *Pmm2*) фазе Nb₆O₆ $x = x_{\mathrm{I}} + x_s, y = y_{\mathrm{I}} + y_s$ и $z = z_{\mathrm{I}} + z_s$ с учетом атомных смещений x_s, y_s и z_s приведены в табл. 2.

Функция распределения атомов кислорода в орторомбической (пр. гр. Pmm2) сверхструктуре Nb₆O₆ монооксида ниобия Nb_{0.75}O_{0.75} имеет вид

$$n_{\rm O}(x_{\rm I}, y_{\rm I}, z_{\rm I}) = 3/4 +$$

$$+ (\eta_{10}/4)(\cos 2\pi x_{\rm IO} + \cos 2\pi y_{\rm IO} - \cos 2\pi z_{\rm IO}) \equiv \equiv 3/4 + (\eta_{10}/4)[\cos 2\pi (x_{\rm O} - x_{\rm sO}) + + \cos 2\pi (y_{\rm O} - y_{\rm sO}) - \cos 2\pi (z_{\rm O} - z_{\rm sO})],$$
(5)

где $x_{\rm O}, y_{\rm O}, z_{\rm O}$ – координаты узлов упорядочивающейся кислородной ГЦК подрешетки с учетом смещений; $x_{\rm sO}, y_{\rm sO}$ и $z_{\rm sO}$ – относительные величины смещений соответствующих атомов кислорода.

Распределение атомов ниобия в орторомбической (пр. гр. *Pmm2*) сверхструктуре Nb₆O₆ описывается функцией

$$n_{\rm Nb}(x_{\rm I}, y_{\rm I}, z_{\rm I}) = 3/4 - - (\eta_{10}/4)(\cos 2\pi x_{\rm IO} + \cos 2\pi y_{\rm IO} - \cos 2\pi z_{\rm IO}) \equiv \equiv 3/4 - (\eta_{10}/4)[\cos 2\pi (x_{\rm Nb} - x_{\rm sNb}) + + \cos 2\pi (y_{\rm Nb} - y_{\rm sNb}) - \cos 2\pi (z_{\rm Nb} - z_{\rm sNb})],$$
(6)

где $x_{\rm Nb}, y_{\rm Nb}, z_{\rm Nb}$ – координаты узлов упорядочивающейся ниобиевой ГЦК подрешетки с учетом атомных смещений; $x_{\rm sNb}, y_{\rm sNb}$ и $z_{\rm sNb}$ – относительные величины смещений соответствующих атомов ниобия.

Обратим внимание, что в упорядоченной орторомбической (пр. гр. Pmm2) сверхструктуре Nb₆O₆ все атомы ниобия и вакансии ниобиевой подрешетки имеют такое же окружение, как в кубической (пр. гр. $Pm\bar{3}m$) упорядоченной фазе Nb₃O₃: Nb₂⁰ для атомов ниобия и \blacksquare_{0}^{8} для ниобиевых вакансий (рис. 2). Разница состоит лишь в наличии небольших атомных смещений.

Используя тот же канал перехода, включающий три луча $\mathbf{k}_{10}^{(1)}$, $\mathbf{k}_{10}^{(2)}$ и $\mathbf{k}_{10}^{(3)}$ лифшицевской звезды $\{\mathbf{k}_{10}\}$, можно получить другие функции распределения атомов О и Nb в своих ГЦК подрешетках, приводящие еще к одной орторомбической (пр. гр. *Pmmm*) сверхструктуре Nb₃O₃ (рис. 3). Векторы трансляции

raosinga o. oproposion		(D_{2h})	сверхетрукту	pa 110303. a	$1 = (100/B1, \mathbf{u}_2 = (010/B1, \mathbf{u}_3 = (001/B1))$
	Позиция	Атомные координаты в			Значения функций
Атом	И	идеал	ьной упорядоч	ченной	распределения $n_{\rm O}(x_{\rm I}, y_{\rm I}, z_{\rm I})$
	кратность	структуре		и $n_{ m Nb}(x_{ m I},y_{ m I},z_{ m I})$	
		x/a_1	y/a_2	z/a_3	
01	1(a)	0	0	0	$n_{\rm O1} = 3/4 + \eta_{10}/4$
O 2	1(d)	1/2	0	1/2	$n_{\rm O2} = 3/4 + \eta_{10}/4$
O 3	1(g)	0	1/2	1/2	$n_{\rm O3} = 3/4 + \eta_{10}/4$
О 4 (вакансия)	1(f)	1/2	1/2	0	$n_{\rm O4} = 3/4 - 3\eta_{10}/4$
Nb 1	1(b)	1/2	0	0	$n_{\rm Nb1} = 3/4 + \eta_{10}/4$
Nb 2	1(c)	0	0	1/2	$n_{\rm Nb2} = 3/4 + \eta_{10}/4$
Nh 3	1(e)	0	1/2	0	$n_{\rm NL,2} = 3/4 + n_{10}/4$

1/2

1/2

1/2

Таблица 3. Орторомбическая (пр. гр. #47 – Pmmm (D_{2h}^1)) сверхструктура Nb₃O₃: $\mathbf{a}_1 = \langle 100 \rangle_{B1}$, $\mathbf{a}_2 = \langle 010 \rangle_{B1}$, $\mathbf{a}_3 = \langle 001 \rangle_{B1}$

1(h)

 Nb_3O_3 (space group *Pmmm*)

Рис. 3. Положение орторомбической (пр. гр. *Pmmm*) элементарной ячейки сверхструктуры Nb₃O₃ в решетке со структурой *B*1: (◦) – атом кислорода O, (•) – атом ниобия Nb, (□) и (■) – вакансии кислородной и ниобиевой подрешеток соответственно

 $\mathbf{a} = \{100\}_{B1}, \mathbf{b} = \{010\}_{B1}$ и $\mathbf{c} = \{001\}_{B1}$ орторомбической элементарной ячейки этой сверхструктуры совпадают с векторами трансляции базисной решетки со структурой *B*1. Все атомы и вакансии в идеальной орторомбической (пр. гр. *Pmmm*) сверхструктуре Nb₃O₃ находятся в однократных позициях (табл. 3).

Функция распределения атомов кислорода в орторомбической (пр. гр. *Pmmm*) сверхструктуре Nb₃O₃ монооксида ниобия Nb_{0.75}O_{0.75} имеет вид

$$n_{\rm O}(x_{\rm I}, y_{\rm I}, z_{\rm I}) = 3/4 -$$

$$-(\eta_{10}/4)(-\cos 2\pi x_{\rm IO} - \cos 2\pi y_{\rm IO} + \cos 2\pi z_{\rm IO}), \quad (7)$$

где $x_{\rm IO}, y_{\rm IO}, z_{\rm IO}$ – координаты узлов упорядочивающейся кислородной гцк подрешетки.

Распределение атомов ниобия в орторомбической (пр. гр. *Pmmm*) сверхструктуре Nb₃O₃ монооксида ниобия Nb_{0.75}O_{0.75} описывается функцией

 $n_{\rm Nb4} = 3/4 - 3\eta_{10}/4$

 $n_{\rm Nb}(x_{\rm I}, y_{\rm I}, z_{\rm I}) = 3/4 +$

+ $(\eta_{10}/4)(\cos 2\pi x_{\rm INb} + \cos 2\pi y_{\rm INb} + \cos 2\pi z_{\rm INb}),$ (8)

где x_{INb}, y_{INb}, z_{INb} – координаты узлов упорядочивающейся ниобиевой ГЦК подрешетки.

Для полностью упорядоченной орторомбической (пр. гр. Pmmm) фазы Nb₃O₃ относительные стехиометрические концентрации атомов кислорода $y_{\rm stO}$ и ниобия $y_{\rm stNb}$, как и в случае кубической сверхструктуры, равны 3/4.

Значения функций распределения (7) и (8) на узлах кислородной и ниобиевой подрешеток орторомбической (пр. гр. Pmmm) фазы Nb_3O_3 приведены в табл. 3.

Ближайшее окружение атомов Nb и ниобиевых вакансий узлами кислородной подрешетки в орторомбической (пр. гр. Pmmm) сверхструктуре Nb₃O₃ показано на рис. 4. В орторомбической (пр. гр. Pmmm) сверхструктуре Nb₃O₃ атомы ниобия, занимающие позиции 1(b) и 1(e), имеют окружение Nb₂⁰, а атомы ниобия, занимающие позиции 1(c), имеют окружение Nb₀⁸. Вакансии ниобиевой подрешетки находятся в окружении \blacksquare_2^0 (рис. 4).

Полезную информацию о характере ближнего порядка и типах ближайшего окружения атомов и вакансий в сверхструктурах монооксида ниобия можно получить с помощью ядерного магнитного резонанса. Эти исследования позволили бы установить, какая или какие из модельных сверхструктур действительно образуются в монооксиде ниобия.

Неупорядоченная кубическая (пр. гр. Fm3m) фаза монооксида ниобия имеет точечную группу $m\bar{3}m$, которая включает все 48 элементов симметрии h_1 - h_{48}

Nb 4 (вакансия)

Рис. 4. Ближайшее окружение Nb⁰₂ узлов (b) и (e), окружения Nb⁸₀ узлов (c) и ■⁰₂ узлов (h) подрешетки ниобия в идеальной орторомбической (пр. гр. *Pmmm*) сверхструктуре Nb₃O₃: (◦) – атом кислорода O, (•) – атом ниобия Nb, (□) и (■) – вакансии кислородной и ниобиевой подрешеток, соответственно

группы полной симметрии куба. Точечные группы симметрии кубической (пр. гр. $Pm\bar{3}m$) сверхструктуры Nb₃O₃ и орторомбических (пр. гр. *Pmm*2 и Pmmm) сверхструктур Nb₆O₆ и Nb₃O₃ Ti₅O₅ включают 48 $(h_1 - h_{48})$, четыре $(h_1, h_4, h_{26}, h_{27})$ и восемь (h₁-h₄, h₂₅-h₂₈) элементов симметрии [3, 11, 13] и являются подгруппами точечной группы базисной неупорядоченной кубической (пр. гр. $Fm\bar{3}m$) фазы NbO. Поэтому переход от неупорядоченного монооксида ниобия к любой из этих сверхструктур является превращением беспорядок-порядок. Превращения одной сверхструктуры в другую являются переходами порядок-порядок. Образование рассмотренных сверхструктур монооксида ниобия происходит по каналу перехода, включающему лучи только лифшицевской звезды $\{\mathbf{k}_{10}\}$. В идеальном случае это позволяет предполагать, что превращения типа упорядочения в монооксиде ниобия удовлетворяют теоретико-групповому критерию Ландау для фазовых переходов второго рода и могут реализовываться как переходы второго рода. Вместе с тем наличие заметных атомных смещений в модельной орторомбической (пр. гр. Pmm2) сверхструктуре Nb₆O₆ дает основания полагать, что упорядочение с образованием этой фазы может быть фазовым переходом первого рода. Подтвердить или опровергнуть это можно на основе экспериментальных данных о фазовых равновесиях в монооксиде ниобия, но таких сведений в литературе до сих пор нет. Ранее предположения о роде фазовых переходов типа упорядочения на основе симметрийных соображений и метода Монте-Карло были высказаны для сульфида серебра [20–22] и антиферромагнитной модели Гейзенберга на кубической решетке [23].

Наибольшее понижение симметрии, равное 24, соответствует образованию орторомбической (пр. гр. *Pmm2*) сверхструктуры Nb₆O₆ с атомными

смещениями. С учетом симметрийного анализа в монооксиде ниобия при понижении температуры может реализовываться следующая последовательность превращений: неупорядоченный кубический (пр. гр. $Fm\bar{3}m$) NbO \rightarrow кубическая (пр. гр. $Pm\bar{3}m$) сверхструктура Nb₃O₃ \rightarrow орторомбическая (пр. гр. Pmmm) сверхструктура Nb₆O₆ с атомными смещениями.

Выполненный симметрийный анализ возможных сверхструктур кубического монооксида ниобия показал, что с понижением температуры в результате последовательных превращений беспорядок–порядок и порядок–порядок могут формироваться кубическая Nb_3O_3 , орторомбическая Nb_3O_3 и орторомбическая Nb_6O_6 фазы.

Исследование выполнено при финансовой поддержке Российского научного фонда (проект #19-73-20012) в ИХТТ УрО РАН.

- G. Andersson and A. Magnelli, Acta Chem. Scand. 11, 1065 (1957).
- A. L. Bowman, T. C. Wallace, J. L. Yarnell, and R. G. Wenzel, Acta Cryst. 21, 843 (1966).
- А. А. Ремпель, А. И. Гусев, *Нестехиометрия в твер*дом теле, Физматлит, М. (2018), 640 с.
- J. K. Hulm, C. K. Jones, R. A. Hein, and J. W. Gibson, J. Low Temp. Phys. 7, 291 (1972).
- E. Z. Kurmaev, A. Moewes, O. G. Bureev, I. A. Nekrasov, V. M. Cherkashenko, M. A. Korotin, and D. L. Ederer, J. Alloys Comp. **347**, 213 (2002).
- Y. Qiu, D. Smyth, and J. Kimmel, Act. Passive Electronic Components 25, 201 (2002).
- C. Nico, M. R. N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M. P. F. Graca, M. A. Valente, F. M. Costa, and T. Monteiro, J. Phys. Chem. C 115, 4879 (2011).
- W. W. Schulz and R. M. Wentzcovitch, Phys. Rev. B 48, 16986 (1993).

- A.K. Efimenko, N. Hollmann, K. Hoefer et al. (Collaboration), Phys. Rev. B 96, 195112 (2017).
- C. Nico, T. Monteiro, and M. P. F. Graca, Progress Mater. Sci. 80, 1 (2016).
- D. Bach, H. Stormer, R. Schneider, D. Gerthsen, and J. Verbeeck, Microsc. Microanal. 12, 416 (2006).
- Binary Alloy Phase Diagrams, ed. by T. B. Massalski, P. R. Subramanian, H. Okamoto, and L. Kasprzak, 2nd ed., ASM Intern. Publ., Materials Park, OH (1990), v. 3. p. 2749.
- K. T. Jacob, C. Shekhar, M. Vinay, and Y. Waseda, J. Chem. Eng. Data 55, 4854 (2010).
- А. А. Валеева, А. А. Ремпель, А.И. Гусев, Письма в ЖЭТФ 71, 675 (2000).
- М. Г. Костенко, А. А. Ремпель, Письма в ЖЭТФ 106, 151 (2017).
- А.Г. Хачатурян, Теория фазовых превращений и структура твердых растворов, Наука, М. (1974), 384 с.

- A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides, Springer, Berlin (2001), 607 p.; https://doi.org/10.1007/978-3-662-04582-4.
- А.И. Гусев, Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле, Физматлит, М. (2007), 856 с.
- О.В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, М. (1986), 368 с.
- А. А. Ремпель, С.И. Садовников, Г. Клинзер, В. Шпренгель, Письма в ЖЭТФ 107, 6 (2018).
- С. И. Садовников, А. И. Гусев, Письма в ЖЭТФ 109, 605 (2019).
- А.И. Гусев, С.И. Садовников, ЖЭТФ 156, 1147 (2019).
- М. К. Рамазанов, А. К. Муртазаев, Письма в ЖЭТФ 109, 610 (2019).