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The electron spectrum of standard graphene with
weakly correlated sp-orbitals is described in terms
of Dirac fermions corresponding to one-electron band
cones with a gap which occurs owing to spin-orbit inter-
action. Thus the system has properties of a topological
insulator. In some cases graphene systems demonstrate
strong electron correlations, including twisted magic-
angle bilayer system [1] and monolayer graphene inter-
calated by gadolinium [2].

In the strongly correlated regime the excitation spec-
trum may change drastically. At the same time, the
model still includes Dirac fermions at the nodal points.
Such a spectrum occurs in the mean-field approxima-
tion corresponding to the deconfinement spinon picture
[3]. The corresponding non-magnetic Dirac spin liquid
(DSL) [4] is characterized by a quantum topological or-
der. However, the stability of DSL should be further ex-
amined and is more probable in frustrated systems. In
[5], the spinon picture was applied to bilayer graphene;
here we investigate the corresponding models in more
detail.

In [6], a frustrated ground state for single-side hy-
drogenated (C2H) and fluorinated (C2F) graphene was
predicted, which sheds light on the absence of a conven-
tional magnetic ordering in defective graphene demon-
strated in experiments despite presence of magnetic mo-
ments. This suggests a highly correlated magnetic be-
havior at low temperatures offering the possibility of a
quantum spin-liquid state.

In the present work, we apply to this problem
the gauge-field formalism of quantum electrodynamics
(QED) and chromodynamics (QCD) [7] and treat the
spin-liquid state in terms of U(1) QED and parent SU(2)
QCD theories. The former theory describes deconfine-
ment situation and Dirac spin liquid. The latter theory
includes a monopole operator which carries trivial quan-
tum numbers and the Neel to valence bond solid (VBS)
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quantum phase transition at the quantum critical point
[7]. Such an approach enables us to trace the hierarchy
of symmetries – from SU(2) to U(1) and Z2 spin liquids,
the latter being the most stable one.

In the low energy infrared (IR) limit, the La-
grangian of Quantum Electrodynamics in 2+1 dimen-
sions, QED3, reads [8]:

L = i

4
∑

j=1

ψ̄jD/aψj , (1)

where D/a = γµDa,µ is the gauge covariant Dirac op-
erator, ψj is a two-component Dirac fermion with four
flavors (Nf = 4) labeled by j, ψ̄ = ψ†γ0, aµ is a dynam-
ical U(1) gauge field. The theory assumes that the U(1)
gauge flux, i.e., the total flux of the magnetic field, is
conserved. This noncompact Nf = 4 QED3 theory flows
to a stable critical fixed point in the IR limit.

For bipartite lattices, in the mean field approxima-
tion one can continuously tune the Hamiltonian, with-
out breaking any symmetry or changing the low-energy
Dirac dispersion, to reach a point with particle-hole
symmetry [8]. This theory will then have a larger gauge
symmetry of SU(2)g,

L =
∑

v=1,2

iψ̄vγ
µ(∂µ − iaµ)ψv, (2)

where a is an SU(2) gauge field, and ψ1,2 are two SU(2)-
fundamental fermions. This theory has an SO(5) sym-
metry.

In an alternative theory, the SU(2) gauge symmetry
in QCD3 is lowered to U(1) owing to the Higgs phe-
nomenon [7].

L =
4
∑

i=1

iψ̄iγ
µ(∂µ − iaµ)ψi + (λMa + h.c.), (3)

where aµ is now a U(1) gauge field, and the term Ma

represents instanton tunneling.
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The flavor symmetry of QCD3 atNf = 2 is SO(5). In
both the theories (2) and (3), the Dirac fermions trans-
form in the spinor representation of the SO(5) group,
the SO(5)-vector operators being time-reversal invari-
ant mass operators. None of the duality field theories
possesses the full SO(5) symmetry (combining antifer-
romagnetic and VBS order parameters) explicitly, the
symmetry being at best emergent in the IR limit. One
assumes that at least one of the theories (2) and (3) will
flow to the deconfined critical point in the IR limit [7].

The most probable scenario for the QCD3 theory
(tuned to an SO(5) symmetric point) describes the de-
confined critical point, and perturbing it drives it into
either the VBS phase or the Neel phase [7].

The Dirac spin liquid can be unstable with respect to
proliferation of monopoles, and different ordered states
can be reached from DSL, the symmetry properties
of the magnetic monopoles being different on different
lattices [4]. For bipartite lattices, there is always one
monopole operator which transforms trivially under all
microscopic symmetries owing to the existence of a par-
ent SU(2) gauge theory. This is a spin singlet which
carries no non-trivial quantum numbers and therefore
provides an allowed perturbation to the Hamiltonian,
destabilizing DSL. On the non-bipartite lattices such a
destabilization does not occur.

Thus the situation for bipartite (honeycomb) and
non-bipartite (triangle) lattices is different. For bipar-
tite situation, there is no additional topological symme-
try since the flux of SU(2) gauge field (unlike that of
U(1) field) is not conserved [8]. For the non-bipartite
lattice, monopoles do not prevent stability of spin liq-
uid (DSL is transformed to Z2 spin liquid by inclusion
of the Higgs field). For frustrated bipartite lattices, spin
liquid is expected to exist at the quantum critical point
only, but the quantum critical behavior can be observed
at finite temperatures.

As discussed in [9], experimental data for twisted bi-
layer graphene indicate that the electron charge density
is concentrated on a moire triangular lattice, so that
the consequences of local correlations should be similar
to those on the triangular lattice. On the other hand,
symmetry and topological aspects of the band struc-
ture require that the model should be formulated using
the Wannier orbitals of a honeycomb lattice. Besides
the minimal phenomenological model of antiferromag-
netism on the triangular lattice, the authors of [9] con-
sidered the model where the spin density is centered on
the bonds of the dual bipartite honeycomb lattice. The
half-filled triangular lattice model and the quarter-filled
honeycomb-lattice model can be consistent with exper-
imental observations. The half-filled honeycomb-lattice
model requires the additional Kekule VBS order which
is in agreement with the Monte Carlo calculations.

Triangular versus honeycomb lattice problem for bi-
layer graphene was considered in [10]. Although the
charge density is concentrated on the triangular lattice
sites of the moire pattern, the Wannier states of the
tight-binding model must be centered on different sites
which form a honeycomb lattice.

Generalized triangular lattice Hubbard models have
been proposed to describe flat moire bands in twisted
van der Waals transition metal dichalcogenide heterobi-
layers [11]. Recently a heterostructure of ABC-stacked
trilayer graphene and boron nitride, which also forms a
triangular moire superlattice even at zero twist angle,
was studied [12].

An effective Heisenberg model was built in [6] for the
C2H and and C2F systems, which includes competing
exchange interactions on different p-orbitals and com-
bines features of honeycomb and triangle lattices. The
case of C2H turns out to be more complicated due to the
presence of the two nonequivalent magnetic sublattices
comprising the honeycomb lattice. Thus frustration can
lead to a DSL state provided that monopoles are irrel-
evant.

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134/S0021364020040025

1. Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken,
J. Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe,
T. Taniguchi, E. Kaxiras, R.C. Ashoori, and P. Jarillo-
Herrero, Nature 556, 80 (2018).

2. S. Link, S. Forti, A. Stoehr, K. Kuester, M. Roes-
ner, D. Hirschmeier, C. Chen, J. Avila, M.C. Asen-
sio, A.A. Zakharov, T.O. Wehling, A. I. Lichtenstein,
M. I. Katsnelson, and U. Starke, Phys. Rev. B 100,
121407(R) (2019).

3. P.A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys.
78, 17 (2006).

4. X.-Y. Song, Ch. Wang, A. Vishwanath, and Y.-Ch. He,
Nat. Commun. 10, 4254 (2019).

5. V.Yu. Irkhin and Yu.N. Skryabin, JETP Lett. 107, 651
(2018).

6. A.N. Rudenko, F. J. Keil, M. I. Katsnelson, and
A. I. Lichtenstein, Phys. Rev. B 88, 081405(R) (2013).

7. C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and
T. Senthil, Phys. Rev. X 7, 031051 (2017).

8. X.-Y. Song, Y.-Ch. He, A. Vishwanath, and Ch. Wang,
arXiv:1811.11182.

9. A. Thomson, S. Chatterjee, S. Sachdev, and
M. S. Scheurer, Phys. Rev. B 98, 075109 (2018).

10. H.C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys.
Rev. X 8, 031089 (2018).

11. F. Wu, T. Lovorn, E. Tutuc, and A.H. MacDonald,
Phys. Rev. Lett. 121, 026402 (2018).

12. G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, L. Chit-
tari, K. Watanabe, T. Taniguchi, Z. Shi, Y. Zhang, and
F. Wang, Nature Phys. 15, 237 (2019).

Письма в ЖЭТФ том 111 вып. 3 – 4 2020 7
∗


