Квазичеренковский механизм излучения релятивистских электронов, пролетающих вблизи многослойной призматической мишени

Г.А. Науменко¹⁾, А.П. Потылицын, М.В. Шевелев, Д.А. Шкитов, К.Е. Попов, А.В. Вуколов

Томский политехнический университет, 634050 Томск, Россия

Поступила в редакцию 31 декабря 2019 г. После переработки 11 февраля 2020 г. Принята к публикации 12 февраля 2020 г.

В работе приводятся результаты экспериментальных исследований угловых характеристик излучения в миллиметровом диапазоне длин волн, генерируемого пучком электронов с энергией 6.1 МэВ, пролетающих вблизи многослойной призматической мишени, состоящей из проводящих пластин, разделенных вакуумными промежутками, а также вблизи однородной тефлоновой призмы. Мы провели сравнение угловых распределений излучения для обоих радиаторов и показали, что для тефлоновой призмы угловое распределение хорошо согласуется с классической теорией излучения Вавилова–Черенкова, тогда как для многослойной мишени эволюция угловых распределений не подчиняется известным выражениям с фиксированным значением эффективного показателя преломления. Мы предполагаем, что излучение от многослойной мишени (квазичеренковское излучение) должно описываться тензорным показателем преломления.

DOI: 10.31857/S0370274X20050021

Излучение Вавилова-Черенкова (ИВЧ), возникающее при прохождении заряда через прозрачную среду со скоростью $v = \beta c$, превышающей скорость света в вакууме c/n (n – показатель преломления), широко используется в физике высоких энергий, ядерной физике, физике ускорителей для идентификации элементарных частиц и ядер [1-3], для диагностики пучков ускоренных заряженных частиц [4, 5]. Еще одно перспективное направление применения - создание интенсивных источников электромагнитного излучения [6, 7]. Следует отметить, что область применения и использования ИВЧ ограничена тем, что заряд проходит через среду. В ряде случаев этот факт приводит к снижению точности измерений и ухудшает характеристики диагностируемого пучка.

В последние годы у исследователей возрос интерес к ИВЧ, которое генерируется зарядом, пролетающим вблизи оптической неоднородности в вакууме на расстоянии $h \leq \gamma \lambda/2\pi$ (γ – Лоренц-фактор, λ – длина волны испускаемого излучения) [8, 9]. В некоторых работах (например, [10]) рассматриваемое излучение получило название "черенковское дифракционное излучение" (*Cherenkov Diffraction Radiation*). Ясно, что в этом случае влияние радиатора на траекторию движущихся зарядов сводится к минимуму, что расши-

ряет арсенал средств, применяемых для диагностики пучков.

В работе [11] авторы предложили использовать в качестве источника электромагнитного излучения радиатор в виде конуса, собранного из периодического набора фольг с изменяющимся диаметром при пропускании короткого электронного сгустка вдоль оси конуса. Когерентное переходное излучение (КПИ), возникающее при пересечении сгустком каждой фольги и распространяющееся между соседними фольгами, на выходе из радиатора в вакуум распространяется под углом θ_1 (рис. 1а) относительно импульса электрона аналогично конусу ИВЧ.

Рис. 1. (Цветной онлайн) (а) – Тефлоновая призма, n = 1.41, высота H = 74 мм, длина катета L = 175 мм, $\alpha = 45^{\circ}$, h = 15 мм; (b) – многослойная призма, H = 85 мм, L = 185 мм, d = 26.5 мм, $\alpha = 38^{\circ}$, h = 15 мм

¹⁾e-mail: naumenko@tpu.ru

Авторы работы [11] рассмотрели распространение КПИ в радиаторе как распространение волны в среде с показателем преломления $n_{\rm eff}$ и получили формулу для вакуумного угла $\eta_{\rm vac}$ (между волновым вектором и осью конуса):

296

$$\cos\left(\eta_{\rm vac} + \alpha\right) = \cos\alpha - n \cdot \sin\alpha. \tag{1}$$

В выражении (1) угол *α* – угол при вершине конического радиатора.

Подобную периодическую структуру, состоящую из набора фольг в ряде работ определяют как "одномерный фотонный кристалл" [12, 13]. Существует несколько определений фотонных кристаллов [14–17]. Генерация субмиллиметрового излучения, возбуждаемого в одномерном фотонном кристалле, рассматривалась, например, в работе [13]. На наш взгляд выделение этих структур в отдельный класс "Фотонных кристаллов" является несколько искусственным и надуманным.

В работе [18] авторы рассматривали периодическую структуру из набора фольг с заполнением зазора диэлектриком и показали, что эффективный показатель преломления такой структуры $n_{\rm eff}$ (величина, определяющая преломление излучения на границах этих структр) определяется периодом структуры и типом диэлектрика с показателем преломления n. Варьируя эти параметры как исходные, можно изменять величину $n_{\rm eff}$ в широких пределах и, соответственно, угол генерации ИВЧ, которое авторы называют квазичеренковским (quasicherenkov):

$$\eta_{\rm qch} = \arccos\left(1/\beta n_{\rm eff}\right). \tag{2}$$

Для вывода излучения в вакуум необходимо подбирать геометрию радиатора. Так, например, в эксперименте [19] в качестве радиатора, в котором генерируется ИВЧ, использовалась тефлоновая наклонная призма.

Для такой мишени (см. геометрию и обозначения на рис. 1а) угол θ_{ch} между волновым вектором ИВЧ в материале радиатора и импульсом электрона для наклонной входной поверхности радиатора (см. рис. 1а) находится, например, из построения Гюйгенса [9]:

$$\theta_{\rm ch} = \arccos\left(\frac{\cos\theta}{\beta n}\right) - \theta.$$
(3)

Из закона Снеллиуса

$$\sin\theta_2 = n \cdot \sin\theta_1 \tag{4}$$

можно найти угол выхода ИВЧ в вакуум θ_2 (относительно нормали к выходной грани). Из геометрических построений для углов θ_1 , θ_2 , η можно легко получить следующие соотношения:

$$\theta_1 = \pi/2 - \theta_{\rm ch} - \alpha - \theta,$$

$$\eta = \pi/2 - \theta_2 - \alpha - \theta,$$
(5)

где угол θ_{ch} определяется формулой (3), угол θ_1 – угол ИВЧ в диэлектрике (относительно нормали к выходной грани), через угол η обозначен угол выхода ИВЧ в вакуум относительно импульса начального электрона. Используя формулы (3), (4), (5) после ряда тригонометрических преобразований, можно получить:

$$\eta = \arccos\left(n \cdot \sin\left(\arcsin\left(\frac{\cos\theta}{n \cdot \beta}\right) - \alpha\right)\right) - \alpha - \theta.$$
(6)

Для параллельного пролета ($\theta = 0$) из формулы (6) получаем

$$\eta = \arccos\left[\frac{\cos\alpha}{\beta} - \sin\left(\alpha\right)\sqrt{n^2 - 1/\beta^2}\right] - \alpha$$

что согласуется с выражением (1) для $n \gg 1$ при $\beta \approx 1$.

Для случая периодической структуры, подобной предлагаемой в работе [11], целесообразно провести экспериментальное исследование зависимости $n_{\rm eff}$ от параметров и геометрии мишени. Для этого удобно использовать треугольную призму, состоящую по аналогии с [11] из параллельных проводящих пластин, помещенную вблизи пучка релятивистских электронов.

Эксперименты проводились на выведенном пучке микротрона Томского политехнического университета с параметрами, указанными в табл. 1.

Таблица 1. Параметры выведенного пучка релятивистских электронов

-	
Энергия электронов	$E=6.1\mathrm{M} \Im\mathrm{B}$
Лоренц-фактор	$\gamma = 12$
Длительность макроимпульса	≈ 4 мкс
Частота макроимпульсов	$1 \sim 10$ Гц
Длина электронного сгустка	$\sigma_z = 2.4$ мм
Количество электронов в сгустке	$N_e \approx 10^8$
Число сгустков в макроимпульсе	$N_b \approx 10^4$
Расстояние между сгустками	$\Lambda = 114$ мм
Частота ВЧ поля	$\nu_{RF} = 2.63 \ \Gamma \Gamma$ ц
Поперечное сечение пучка	4×2 MM
Угловая расходимость пучка	0.08 рад

Угловые характеристики ИВЧ от тефлоновой призмы (n = 1.41) с параметрами, приведенными

2.5

на рис. 1, измерялись при повороте призмы вокруг вершины на угол θ при сохранении неизменным прицельного параметра h.

Для исследования характеристик излучения от одномерных структур мы использовали многослойную призматическую мишень с параметрами, указанными в подписи к рис. 1b. Толщина и материал пластин ($\Delta d = 1$ мм, медь) выбирались из технологических соображений. Расстояние от выводного патрубка до края мишеней соответствовало 300 мм. В качестве детектора излучения использовался широкополосный детектор DPMM [19, 20], чувствительный к излучению с длинами волн $\lambda = 5 \div 50$ мм. Детектор размещался в фокусе параболического зеркала (фокусное расстояние f = 145 мм, см. рис. 2), что позволяло регистрировать излучение в так называемой "дальней зоне" с угловым разрешением $\Delta \eta =$ $= 4^{\circ}$ [21].

Рис. 2. (Цветной онлайн) Схема измерения угловых распределений интенсивности излучения от призматической мишени

Для электронных сгустков такой длительности излучение в области длин волн $\lambda > 9$ мм становится когерентным, интенсивность которого пропорциональна N_e^2 .

В измерениях мы меняли угол наблюдения η при вращении параболического зеркала вокруг оси, совпадающей с центром выходной грани мишени.

На рисунке 3 приведена эволюция углового распределения ИВЧ от тефлоновой мишени при изменении угла наклона призмы θ . Статистическая ошибка измерений в каждой точке не превышает 4%. Зависимость измеренного угла $\eta_{\rm ch}^{\rm exp}$, соответствующего максимальным значениям распределений, представленных на рис. 3, приведена в табл. 2 и на рис. 4. Здесь же показана теоретическая кривая, рассчитанная по формуле (6). В этой же таблице приводятся теоретические оценки $\eta_{\rm ch}^{\rm est}$ этого угла по формуле (6).

Рис. 3. (Цветной онлайн) Угловые распределения от тефлоновой призмы при различных углах θ ее поворота

Ошибки положения пиков на рис. 4 получены при аппроксимации вершин пиков гауссианом.

Таблица 2. Сравнение экспериментальных углов с теорией для тефлоновой мишени

θ	$\eta_{ m ch}^{ m exp}$	$\eta_{ m ch}^{ m est}$
0°	44.3°	44.7°
6°	41.5°	39.2°
9°	40°	36.8°
15°	37.5°	32.5°
21°	35°	29°

Рис. 4. (Цветной онлайн) Углы η_{ch}^{exp} в максимумах угловых распределений (см. рис. 3) при разных углах поворота мишени. Сплошная линия – теоретическая кривая, рассчитанная по формуле (6)

Расхождение оценок по формуле (6) с экспериментальными данными мы связываем с вкладом дифракционного излучения, возникающего при взаимодействии кулоновского поля электронов с основанием призмы (см. рис. 1а) и дальнейшим его переотражением и интерференцией с полем ИВЧ в материале радиатора.

На рисунке 5 приведены измеренные угловые распределения для многослойной призматической мишени.

Рис. 5. (Цветной онлайн) Угловые распределения от многослойной мишени при различной ее ориентации θ

В таблице 3 приведены значения углов η_{ch}^{exp} в зависимости от угла поворота призмы θ и эффективные показатели преломления, посчитанные по формуле (6).

Таблица 3. Значение эффективного показателя преломления для многослойной мишени

θ	$\eta_{ m ch}^{ m exp}$	$n_{ m eff}$
0°	49°	1.49
10°	39.5°	1.47
20°	31.2°	1.44
30°	27.3°	1.45

Как и в случае диэлектрической призмы, наблюдается уменьшение угла для максимума η_{ch}^{exp} при повороте призмы. Однако зависимость между η_{ch}^{exp} и θ не описывается выражением (6) для фиксированного значения n_{eff} . Значение эффективного показателя преломления n_{eff} , "связывающего" углы η_{ch}^{exp} и θ , приведены в табл. 3.

Для рассматриваемого слоистого призматического радиатора коэффициент преломления $n_{\rm eff}$ не является константой и зависит от угла поворота призмы θ . Заметим, что вклад дифракционного излучения, возникающего при взаимодействии кулоновского поля электронов с основанием призмы (см. рис. 1b) в этой мишени отсутствует.

Мы предполагаем, что величина $n_{\rm eff}$ не является скалярной величиной, а носит тензорный характер.

В работе [18] утверждалось, что механизм резонансного переходного излучения можно рассматривать как квазичеренковский механизм. Как отмечалось выше, авторы статьи [11] предложили слоистый конический радиатор для генерации ТГц излучения при использовании механизма резонансного переходного излучения. По оценкам, приведенным в этой работе, интенсивность квазичеренковского излучения из конической слоистой мишени может существенно превышать интенсивность ИВЧ для диэлектрического радиатора. В работе [22] была предложена геометрия радиатора на основе метаматериала, позволяющего генерировать "нерасходящийся" (nondivergent) пучок. В отличии от этих работ, в которых использовался средний эффективный показатель преломления, в нашей работе показана зависимость показателя преломления от геометрии мишени.

По результатам исследований мы предлагаем использовать для генерации квазичеренковского излучения механизм резонансного дифракционного излучения [23]. Радиатор, так же как и в [11], является коническим с осевым вакуумным каналом для пропускания электронного пучка.

В предлагаемой геометрии радиатора (рис. 6) электронный пучок теряет энергию только на излучение, а ионизационные потери отсутствуют. Кроме того, периодическая структура радиатора будет приводить к монохроматизации спектра квазичеренковского излучения.

Рис. 6. (Цветной онлайн) Геометрия излучения от многослойной конической мишени

Результаты исследований спектрального состава излучения от призматической слоистой мишени будут опубликованы в следующей статье.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант # 18-52-50002).

Авторы признательны Н. А. Винокурову за полезную дискуссию.

- 1. Дж. Джелли, Черенковское излучение и его применение, Изд-во иностр. лит., М. (1960).
- В.П. Зрелов, Излучение Вавилова-Черенкова и его применение в физике высоких энергий, Атомиздат, М. (1968).
- T. Ypsilantis and J. Seguinot, Nucl. Instr. and Meth. A 343, 30 (1994).
- A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, Phys. Rev. Lett. 103, 095003 (2009).
- K. Kan, T. Kondoh, T. Kozawa, K. Norizawa, A. Ogata, J. Yang, and Y. Yoshida, Bunch length measurement using coherent Cherenkov radiation, in Proceedings of the 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators DIPAC-2011, TUPD30, Hamburg, Germany, May 16–18 (2011).
- 6. N. Sei and T. Takahashi, Sci. Rep. 7, 17440 (2017),
- A.V. Smirnov, Nucl. Instr. and Meth. A 771, 147 (2015).
- T. Takahashi, Y. Shibata, K. Ishi, M. Ikezawa, M. Oyamada, and Y. Kondo, Phys. Rev. E 62, 8606 (2000).
- M. V. Shevelev and A. S. Kon'kov, J. Exp. Theor. Phys. 118, 501 (2014).

- R. Kieffer, L. Bartnik, M. Bergamaschi et al. (Collaboration), Phys. Rev. Lett. **121**(5), 054802 (2018).
- N. A. Vinokurov and Y. U. Jeong, Phys. Rev. Lett. 110, 064805 (2013).
- Ch. Luo, M. Ibanescu, S.G. Johnson, and J.D. Joannopoulos, Science 299, 368 (2003).
- L. Vovchenko, O. Lozitsky, Ig. Sagalianovv, L. Y. Matzui, V. V. Oliynyk, and V. L. Launets, Nanoscale Res. Lett. 12, 269 (2017).
- H. Benisty, V. Berger, M.-J. Gerard, D. Maystre, and A. Tchelnokov, *Photonic Crystals*, Springer, Belin (2005).
- Е. Л. Ивченко, А. Н. Поддубный, ФТТ 48(3), 540 (2006).
- В. А. Кособукин, Окно в Микромир, Физико технический институт им. А. Ф. Иоффе РАН 4, 4 (2002).
- 17. В. Г. Федотов, А. В. Селькин, Наносистемы: физика, химия, математика **2**(1), 109 (2011).
- X. Lin, S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljai, and I. Kaminer, Nature Phys. 18, 816 (2018).
- G. A. Naumenko, A. P. Potylitsyn, M. V. Shevelev, and Yu. A. Popov, JETP Lett. 94(4), 258 (2011).
- G.A. Naumenko, A.P. Potylitsyn, P.V. Karataev, M.A. Shipulya, and V.V. Bleko, JETP Lett. 106(2), 127 (2017).
- B. N. Kalinin, G. A. Naumenko, A. P. Potylitsyn, G. A. Saruev, L. G. Sukhikh, and V. A. Cha, JETP Lett. 84(3), 110 (2006).
- A. V. Tyukhtin and V. V. Vorobev, Phys. Rev. Lett. 108, 184801 (2012).
- A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, *Diffraction radiation from Relativistic Particles*, Springer, Berlin (2011).