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+Dipartimento di Fisica e Astronomia, Università di Bologna and Istituto Nazionale di Fisica Nucleare,
via Irnerio 46, 40126 Bologna, Italy

∗L.D. Landau Institute for Theoretical Physics Russian Academy of Sciences, 117940 Moscow, Russia

×Dipartimento di Fisica e Chimica, Università di L’Aquila, 67100 Coppito, L’Aquila, Italy
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The Kasner solution [1] of the Einstein equations

for an empty Universe having the spatial geometry of

Bianchi-I type is usually presented in the “cosmological

form”:

ds2 = dt2 − a20t
2p1dx2 − b20t

2p2dy2 − c20t
2p3dz2. (1)

In the original paper by Kasner [1] the positive defi-

nite metric with the dependence on one coordinate was

considered. Introducing the normal spacetime signature,

one can recover not only the cosmological metric (1), but

also a stationary metric that depends on one spatial co-

ordinate:

ds2 = a20(x− x0)
2p1dt2 − dx2 − b20(x− x0)

2p2dy2 −
− c20(x− x0)

2p3dz2. (2)

The metric (2) has a singularity at the hypersurface

x = x0, where the value x0 is arbitrary. The Kasner

indices p1, p2 and p3 satisfy the relations

p1 + p2 + p3 = p21 + p22 + p23 = 1. (3)

A convenient parametrization of the Kasner indices was

presented in paper [2]:

p1 = − u

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
,

p3 =
u(1 + u)

1 + u+ u2
. (4)

It is interesting to compare the Kasner solution (2) with

the external spherically symmetric Schwarzschild solu-

tion [3]. This solution has a singularity in the center of
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coordinates. To avoid it Schwarzschild also invented an

internal solution [4] generated by a ball with constant

energy density and isotropic pressure. At the boundary

of the ball the pressure disappears and the external and

internal solutions are matched. Then there is no singu-

larity in the center of the ball.

The solutions of the Einstein equations in the pres-

ence of an infinite plane or an infinite slab of a finite

thickness with the metric

ds2 = a2(x)dt2 − dx2 − b2(x)dy2 − c2(x)dz2, (5)

were also discussed in literature [5]. When b(x) = c(x),

these solutions are matched with special cases of the

Kasner metric (2) such as the Rindler solution [6] with

p1 = 1, p2 = p3 = 0 and the Weyl–Levi–Civita solution

[7, 8] with p1 = − 1
3 , p2 = p3 = 2

3 .

In our paper [9] we found an explicit form of two

exact solutions in the spacetime with an infinite slab

of thickness 2L. In both cases pressure vanishes at the

boundaries of the slab. Outside the slab these solutions

are matched with the Rindler spacetime and with the

Weyl–Levi–Civita spacetime. Here we describe general

properties of the solutions of the Einstein equations

when there is an isotropy in yz-plane, i.e., b(x) = c(x),

and explicitly construct a particular exact solution that

differs from two solutions found in paper [9]. Besides,

we discuss solutions with b(x) 6= c(x), that are matched

in the empty part of the space with the general Kas-

ner solutions and not with its particular cases where

p2 = p3. We are not able to write down an explicit solu-

tion of this kind, however, analyzing the corresponding

differential equations we can show that such solutions

do exist. Moreover, we prove that one of these empty

half-spaces should have Kasner singularity.
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We introduce new functions

A =
a′

a
, B =

b′

b
, C =

c′

c
, (6)

which permit us to write down the Einstein equations

in a convenient form. We would like to find solutions of

these equations inside the slab such that the pressure

vanishes on its boundary. If B = C, then the general

solution is

B = C = −2

3
k tan k(x+ x0), k =

√
3ρ

2
. (7)

We still have some freedom of choice for the function A.

The simplest option is

A(x) = α(x− L)2 + β(x − L) + γ, (8)

where

β = A′(L) = −1

3
k2 tan2 2kL+

2

3
k2

cos2 2kL ,

γ = A(L) =
1

3
k tan 2kL, (9)

and the coefficient α is defined from the quadraric equa-

tion:

16α2L4 + α(−4L− 16βL3 + 8γL2) +

+ β + 4β2L2 + γ2 − 4βγL− 2

3
k2 = 0. (10)

For x > L we shall have a Weyl–Levi–Civita spacetime,

while for x < −L we shall have a Rindler spacetime.

Suppose now that B(x) 6= C(x), and their values at

the boundary x = −L are also different: B(−L) = B0,

C(−L) = C0. Then A(−L) = A0 = − B0C0

B0+C0
; these

three numbers constitute a Kasner triplet, multiplied

by a constant, and the parameter from Eq. (4) u = C0

B0
.

At the other boundary the metric should be matched

with an empty space Kasner solution for x ≥ L

ds2 = ã20(x− xR)
2p̃1dt2 − dx2 − b̃20(x− xR)

2p̃2dy2 −
− c̃20(x− xR)

2p̃3dz2, (11)

with the singularity at x = xR, and a triplet of the

Kasner indices p̃1, p̃2, p̃3.

In contrast to the case B(x) = C(x), we cannot find

an explicit particular solution of the Einstein equations

in the slab that matches with two Kasner half-spaces.

However, the analysis of the system of the Einstein equa-

tions with their boundary conditions permits us to show

that such solutions do exist. We prove also that at least

one of the Kasner empty half-spaces possesses a singu-

larity. Thus, in contrast to the Schwarzschild solution,

the Kasner type singularity cannot be avoided by intro-

ducing some simple matter distribution in the Universe.

Full text of the paper is published in JETP Letters

journal. DOI: 10.1134/S0021364020060016
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