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On dimension of tetrads in effective gravity
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There are several scenarios of emergent gravity.
Gravity may emerge in the vicinity of the topologically
stable Weyl point [1-5]; the analog of curved spacetime
emerges in hydrodynamics with the so-called acoustic
metric for the propagating sound waves [6]; etc. Here
we consider two very different scenarios, which how-
ever have unusual common property: the tetrad fields
in these theories have dimension of inverse length. As
a result all the physical quantities which obey diffeo-
morphism invariance are dimensionless. This was first
noticed by Diakonov [7] and Vladimirov and Diakonov
(VD) [8, 9] in the scenario, where tetrad fields emerge
as bilinear combinations of the fermionic fields. Tetrads
with dimension of inverse length emerge also in the
model of the superplastic vacuum [10, 11].

In the theory by VD [7-9] the tetrads are composite
fields, which emerge as the bilinear combinations of the
fermionic fields:

ep =1 (WM Vit + Vi Ty ). (1)
This construction is similar to what happens in the spin-
triplet p-wave superfluids in the 3He-B phase [12]. In
the VD scenario two separate Lorentz groups of coor-
dinate and spin rotations are spontaneously broken to
the combined Lorentz symmetry group, Ly x Lg — L.
In the same manner in >He-B the symmetries under
three-dimensional rotations in orbital and spin spaces
are broken to the symmetry group of combined rota-
tions, SO(S)L X SO(S)S — SO(3)J.

Formation of tetrads breaks both the symmetries un-
der discrete coordinate transformations Pr, = (r — —r)
and T, = (t — —t), and the discrete symmetries in
spin space, Ps and Ts. The symmetry breaking scheme
Pr, x Ps — P and T, x Ts — T leaves the combined
parity P and the combined time reversal symmetry 7.

The VD symmetry breaking mechanism can be im-
portant for the consideration of the Big Bang scenario,
in which the gravitational tetrads change sign across the

A

singularity, 6;‘(7’, x) = —e, (—7,%) [13, 14]. The singu-

larity can be avoided by formation of the bubble with
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a vanishing determinant of the metric [15, 16], which
would correspond of the vacuum state with unbroken
symmetry, i.e., with zero tetrad field, e,’j‘ = 0. On the
other hand, the Big Bang can be considered as a symme-
try breaking phase transition Ly x Lg — L, at which the
symmetry between the spacetime with e > 0 and anti-
spacetime with e < 0 is spontaneously broken, where
e is the tetrad determinant. Correspondingly, in super-
fluid 3He the formation of the p-wave order parame-
ter spontaneously breaks the symmetry under coordi-
nate transformation r — —r. The VD scenario has also
the connection to the chiral 3He-A phase: in both sys-
tems the topologically protected Weyl fermions emerge,
which move in the effective tetrad field [5].

According to Eq. (1), the frame field ef transforms
as a derivative and thus has the dimension of inverse
length, [e/}] = 1/[I] (it is assumed that ¢ is scalar un-
der diffeomorphisms) |7, 8]. For Weyl or massless Dirac
fermions one has the conventional action:

S = /d4:r|e|eA“ (vTvAV,9 + He.) . (2)
The action (2) expressed in terms of the VD tetrads is
dimensionless, since [e] = [I]74, [e#] = [I] and [¢] = 1.

The elasticity tetrads describe elasticity theory [10,
11, 17, 18]. In conventional crystals they are gradients
of the three U(1) phase fields X4, A =1,2,3,

euA(Jc) =0, X (). (3)
The surfaces of constant phases, X4(z) = 2mn4,

describe the system of the deformed crystallographic
planes. Being the derivatives, elasticity tetrads have also
canonical dimensions of inverse length. This allows us to
extend the application of the topological anomalies. The
Chern—Simons term describing the 3 + 1 quantum Hall
effect becomes dimensionless. As a result, the prefactor
of term is given by the integer momentum-space topo-
logical invariants in the same manner as in the case of
2+1 dimension.

The elasticity tetrads can be used as the gravita-
tional tetrads for the construction of gravity in the
model of the 3+1 vacuum as a plastic (malleable)
fermionic crystalline medium with A = 0,1, 2,3 [19, 20].
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In plastic vacuum all physical quantities become dimen-
sionless [11]. Such vacuum can be arbitrarily deformed,
and thus the equilibrium microscopic length scale (such
as Planck scale) is absent. All distances are measured in
terms of the integer positions of nodes of plastic crystal,
and the Newton constant, the scalar curvature R, the
cosmological constant A, and particle masses M become
dimensionless [11].

The same is for VD gravity, where “all world scalars
are dimensionless, be it the scalar curvature R, the in-
terval ds, the fermion field v, or any diffeomorphism-
invariant action term” [8]. Example is the mass term:

5= [ daiearoty, ()
[e] = [[]7%, [¢] = 1 and [M] = 1. For bosonic scalar field

S = /d4x\/—g (9" V, @V, @ + M>®?) (5)

one has [g#] = [I]2, [/=g) = [, [] = 1 and [M] = 1.

In both scenarios of emergent gravity, the dimen-
sionless physics is supported by the invariance under
diffeomorphisms. In the VD theory this invariance is
assumed as fundamental. In the superplastic vacuum, it
is invariance under deformations of the 4D crystal. All
this suggests that the dimensionless physics can be the
natural consequence of the diffeomorphism invariance,
and thus can be the property of the gravity, which we
have in our quantum vacuum.

Note the difference with the conventional expression
of the physical parameters in terms of the Planck units,
where the Newton constant G = 1, and all the physical
quantities also become dimensionless. In this approach
the masses of particles are expressed in terms of the
Planck energy, which is assumed to be the fundamental
constant. However, in principle the Planck energy or the
Newton constant may depend on the trans-Planckian
physics, and thus can (and should) be space and coordi-
nate dependent. This occurs in the modified gravity the-
ories, such as the scalar-tensor and f(R) theories (see,
e.g., [21]), and in the so-called g-theory [22]. While in
the VD approach the “fundamental constants” do not
exist, and only dimensionless ratios and the topological
quantum numbers make sense. Then, instead of the fun-
damental constants, the most stable physical quantities
should be used.

The dimensionless physics emerging in the frame
of the VD dimensionful tetrads leads to new topolog-
ical terms in action. Some of the dimensionless param-
eters appear to be the integer valued quantum num-
bers, which describe topology of quantum vacuum. Ex-
ample is the 341 dimensional quantum Hall effect in
topological insulators [11]. When the Chern—Simons ac-
tion is written in terms of the elasticity tetrads with
[eA] = 1/]l], its prefactor becomes dimensionless and

“w
universal, being expressed in terms of integer-valued

momentum-space invariant. The relativistic example is
the chiral anomaly in terms of torsion fields [23, 24]. For
the torsion and curvature in terms of the conventional
tetrads, the gravitational Nieh—Yan anomaly equation
for the non-conservation of the axial current

Ot =N (TAANTa—e* NeP ARap),  (6)
contains the nonuniversal prefactor — the ultraviolet cut-
off parameter A with dimension [A] = 1/[l], which may
depend on the spacetime coordinates, explicitly violat-
ing the topology. In terms of VD tetrads, the prefactor A
becomes dimensionless, [A] = 1, which properly reflects
the topology of the quantum vacuum.
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