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One of the oldest modified theories of gravity is uni-

modular gravity, dating back to the paper by Einstein

[1]. The recent rebirth of this idea is connected with pa-

pers [2, 3]. The main point of unimodular gravity con-

sists of the fact that when one requires that the deter-

minant of the metric is fixed, the cosmological constant

arises as an integration constant in the Einstein equa-

tions. The unimodular gravity theories can essentially

be generalized by using the Arnowitt—Deser–Misner

(ADM) [4] approach to gravity.

Such a generalization was suggested recently in pa-

per [5]. If one treats the lapse function N not as La-

grange multiplier, giving one of the constraints of the

theory, but as a given function of the determinant of

the spatial metric γ, then in the equations of motion an

effective matter arises with the equation of state param-

eter w given by w = 2 d lnN(γ)
d ln γ .

Thus, on treating one of the Lagrange multipliers of

the General Relativity, i.e., the lapse function N not as

a Lagrange multiplier, but as a given function of other

variables, we freeze one of the symmetries of the system

and as a result the effective matter content of the theory

becomes richer. This phenomenon is quite well-known

and was pioneered by Dirac in paper [6] dedicated to

electrodynamics.

In spite of its simplicity the model of generalized

unimodular gravity [5] imposes some interesting prob-

lems and opens some attractive prospects due to its un-

expected flexibility. In paper [7] the Hamiltonian for-

malism for this model, treated as a rather complicated

example of a constrained dynamical system [8], was con-

sidered in detail. Especially interesting in this context

is the question of the determination of the number and

the character of the physical degrees of freedom, aris-

ing here. The paper [9] was devoted to the inflation-

1)e-mail: kamenshchik@bo.infn.it

ary model based on generalized unimodular gravity and

the behaviour of linear perturbations in this model was

studied.

However, the model [5] opens some interesting op-

portunities already at the level of a simple minisuper-

space models with finite number of degrees of freedom.

We shall discuss here some of them. For a flat Friedmann

model with the metric ds2 = −N2(t)dt2 + a2(t)dl2, γ =

= a6 and the equation of state is simply w = 1
3
d lnN(a)
d ln a .

One can derive this equation directly from the Fried-

mann model. The Lagrangian for the flat Friedmann

universe without matter can be written as L = ȧ2a
N .

If we now treat the lapse function as a function of the

scale factor a, the variation with respect to a gives the

following Euler–Lagrange equation: 2 äa
N + ȧ2 d(a/N)

da = 0,

where the “dot” signifies the differentiation with respect

to the time parameter t. This equation has the first in-

tegral ȧ2a
N = C, where C is a constant. Dividing this

equation by Na3, we obtain

ȧ2

N2a2
=

1

a2

(
da

dτ

)2

=
C

Na3
, (1)

where τ is the cosmic or synchronous time dτ = Ndt.

This equation can be interpreted as the first Friedmann

equation for a flat universe filled with matter having

the energy density ε = C
Na3 . On remembering the en-

ergy conservation law

dε

da
= −3

ε+ p

a
, (2)

we can immediately find the pressure

p = −1

3
a
dε

da
− ε =

C

3N2a2
dN

da
=

1

3

d lnN

d ln a
ε,

which confirms the relation presented above.

It is known that the observed cosmic acceleration of

the universe requires the presence of a so called dark
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energy with negative pressure. Some observations indi-

cate that the corresponding equation of state parameter

is less than −1: w < −1. Such a kind of dark energy is

called “phantom dark energy”. The evolution in the pres-

ence of such energy implies the future encounter with

a cosmological singularity called “Big Rip” [10, 11]. Its

scale factor and its time derivative tend to infinity.

However, one can imagine a less dramatic scenario

for the development of the universe, wherein the phan-

tom or super-acceleration stage is a temporary one. In

this case the universe should pass through the phantom

divide line which means that the sign of the expression

w + 1 changes. We wish to show that, at least at the

level of the Friedmann model, the generalized unimod-

ular gravity can easily describe the phantom divide line

crossing.

Indeed, it is enough to choose the lapse function as

follows:

N =
D

a5
+ Fa. (3)

On remaining in the field of minisuperspace mod-

els with a finite number of degrees of freedom, we can

already suggest a further simple generalization of uni-

modular gravity. In particular the lapse function can de-

pend not on the determinant of the spatial metric, but

on some other combination of components of the spatial

part of the metric. Let us consider, for example, a hy-

perbolic Kantowski–Sachs universe [12] with the metric

ds2 = N2(t)dt2−b2(t)dr2−a2(t)(dχ2+sinh2 χdφ2). (4)

If we fix the time parameter by choosing the lapse func-

tion as N = a, we can find the metric of the Kantowski–

Sachs universe in an explicit form. One of the possible

solutions is a(t) = a0 cosh
2 t

2 ; b = b0 tanh
t
2 . It is in-

teresting to note that there is a duality between the

Kantowski–Sachs cosmological solutions and the static

spherically symmetric solutions. This duality was found

in paper [13] and further investigated in [14]. If we ex-

change the variables t and r and then make the substi-

tution χ→ iθ, we obtain the following metric [13]:

ds2 = b20 tanh
2 r

2
dt2 − a20 cosh

4 r

2
(dr2 + dθ2 +sin2 θdφ2).

(5)

On introducing a new variable R ≡ a0 cosh
2 r

2 , we

can rewrite the metric obtained in the standard

Schwarzschild form. Let us now suppose that, at the

beginning, we had fixed N = a. In this case the lapse

function is not a function of the determinant of the

spatial metric, thus we are considering a further gener-

alization of unimodular gravity. We obtain a new first

integral of the equations of motion: ȧ2b
N + 2ȧḃa

N −Nb = A.

The expression for a is now the same as before, while the

scale factor b is b = b0 tanh
t
2 − A

a0
. On using the duality

relations, we obtain the following Schwarzschild-type

metric:

ds2 =

[
b20

(
1− a0

R

)
− 2

Ab0
a0

√
1− a0

R
+
A2

a20

]
dt2 −

− dR2

1− a0

R

− R2(dθ2 + sin2 θdφ2). (6)

We see that while the spatial part of the metric has not

changed, the coefficient g00 for dt2 has changed essen-

tially. If the constant A was positive then the metric

coefficient vanishes at

R0 =
a0

1− A2

a2
0b

2
0

> a0,

provided A2 < a20b
2
0. We should then think of how to

describe the continuation of the metric into the region

where R < R0 and then to R < a0. If A is negative

(the energy density of the effective matter is negative)

the expression for b cannot become equal to zero, but

we still stumble upon the problem of its behaviour for

R < a0.
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