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Quantum R-matrices as universal qubit gates
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Quantum computers is quite a hot topic nowadays.
They are a very promising device and method of solv-
ing lots of problems. The main problem of the quantum
computers from the practical point of view is the high
probability of errors. Since it has quantum nature the
states are not stable and can dissolve or change. This
limits the time the quantum computer can work and
the size of the programs it can run. To deal with these
problems the quantum correction algorithms are usually
used. These algorithms imply that instead of physical
qubits the logical qubits, consisting of several physical
ones, are considered. The physical qubits inside of the
logical qubit are regularly entangled with each other
thus providing an error corrections. However, the qun-
tum computer with such error corrections require many
more physical qubits which is also a big problem at the
current stage.

Another approach is to try to use qubit models where
the states are more stable. One of the approaches is to
make the states topological, as those are usually much
harder to change. This leads to the idea of the topologi-
cal quantum computer. Many of the models of this quan-
tum computer behave under the laws of the topologi-
cal 3d Chern–Simons theory. There are different models
where the Chern–Simons is an effective theory which in
future could provide us with the topological quantum
computer [1].

The main observables, studied in the Chern–Simons
theory are Wilson-loop averages, and this loops are
usually thought to be related to quantum programs
or algorithms. As we know these Wilson-loop aver-
ages are equal to the knot invariants. According to the
Reshetikhin–Turaev approach [2], these knot invariants
can be constructed from the R-matrices. In this sense
these matrices provide an elementary building blocks
from which the whole knot is constructed. In quantum
information theory such building blocks are called uni-
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versal quantum gates. In [3] it was suggested that quan-
tum R-matrices can indeed be used as universal quan-
tum gates.

In the present papers we continue these studies with
the goal of studying the properties of the R-matrices
as quantum gates and how different other gates can
be constructed from them using Solovay–Kitaev algo-
rithm [4, 5]. We construct an approximation for one-
qubit Hadamard and π/8 gates from fundamental R
and Racah matrices. The generalization to larger ma-
trices and higher representations is a work in progress.

We study the simplest topological theory which is
the Chern–Simons theory. It‘s a 3d topological gauge
theory with Wilson-loop averages as their most inter-
esting observables. These Wilson-loop averages for the
SU(N) gauge group are equal to HOMFLY-PT polyno-
mials. HOMFLY-PT polynomials depend on two vari-
ables A and q, which are connected to the parameters
of the theory:

q = exp
2πi

k +N
, A = qN . (1)

The HOMFLY-PT polynomials can be calculated
as a product of quantum R-matrices – the solutions
of Yang–Baxter equation, this is called Reshetikhin–
Turaev (RT) approach. One of the crucial properties
of the R-matrix is that it acts in the same way on all el-
ements of the representation of the corresponding quan-
tum group. Thus one can move to the R-matrix in the
space of intertwining operators, which describes how it
acts on all irreducible representations in the tensor prod-
uct of a pair of representations. The eigenvalues of such
R-matrices are described in a very simple way for any
representation Q from the product of two representa-
tions R [2]:

λQ = ǫQq
κQ−4κRA−|R|. (2)

The physically meaningful Chern–Simons theories
has integer k and of course integer N . This means that
both q and A are roots of unity. Thus the R-matrix in
the space of intertwining operators is unitary.
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We use the R-matrices which appear for the two-

bridge knots. Namely there appear two diagonal R-

matrices and two Racah matrices which give the non-

diagonal matrices. In this letter we mainly discuss the

fundamental representation. In this case these matrices

are [6]:

T =

(
q/A

−1/qA

)
, T̄ =

(
1

−A

)
,

S = 1√
(q+q−1)(A−A−1)
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q
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 ,

S̄ =




q−q−1
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√
(Aq− 1

Aq
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q
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(Aq− 1

Aq
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A−A−1 − q−q−1
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 . (3)

We use theseR-matrices as universal quantum gates,

which are a set of elementary operations, from which the

quantum programs and algorithms are constructed. To

use our suggest quantum gates we apply the Solovay–

Kitaev theorem [4], which says that if there is a set of

universal quantum gates then any program or algorithm

represented by unitary matrix, can be approximated in

a logarithmic time and with logarithmic number of oper-

ators. It can be proven by providing a specific algorithm

constructing such an approximation, which we refer as

Solovay-Kitaev algorithm [5]. The pseudocode of this

algorithm reads

Algorithm 1 Solovay–Kitaev algorithm

function Solovay–Kitaev (gate U , depth n)

if n = 0 then

return Basic–Approximation (U)

else

Un−1 ← Solovay–Kitaev(U, n− 1)

V,W ← GC-Decompose(U U
†
n−1)

Vn−1 ← Solovay–Kitaev(V, n− 1)

Wn−1 ← Solovay–Kitaev(W, n− 1)

return Vn−1Wn−1V
†
n−1W

†
n−1Un−1

Fig. 1. First approximation for Hadamard gate, knots 74,

923, 74, 923, 94, accuracy ǫ = 0.0068, N = 2, k = 13

We suggest to use the known polynomials and corre-

sponding products of R-matrices for knots up to some

number of crossings (for example 11 or 12) as a basic

approximation. Using this we construct, as an exam-

ple, approximations for Hadamard (see Fig. 1) and π/8-

gates E, which are the most common universal quantum

gates:

H =
1√
2

(
1 1

1 −1

)
, E =

(
1 0

0 e
iπ
4

)
. (4)
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