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Jet quenching with T -dependent running coupling
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It is accepted that the strong suppression of the

high-pT particle spectra in AA collisions (usually called

the jet quenching) observed at RHIC and LHC, is due

to parton energy loss (radiative and collisional) in the

quark-gluon plasma (QGP). The jet quenching is one

of the major signals of the QGP formation in relativis-

tic AA collisions. The main contribution to the parton

energy loss comes from the radiative mechanism due to

induced gluon emission [1–5]. The effect of the collisional

energy loss turns out to be relatively weak [6, 7].

The available pQCD approaches to the radiative en-

ergy loss [1–5] are limited to the one gluon emission.

The effect of multiple gluon radiation is usually ac-

counted for in the approximation of independent gluon

emission [8]. Altogether, the pQCD calculations within

this approximation give a rather good agreement with

the jet quenching data from RHIC and LHC (see e.g.

[9] and references therein). However, it was found that,

in the formulation with a unique temperature indepen-

dent QCD coupling, the simultaneous description of the

RHIC and LHC data requires to use somewhat smaller

αs at the LHC energies [9–12] (in [13, 14] a similar dif-

ference between jet quenching at RHIC and LHC en-

ergies has been found in terms of the transport coef-

ficient q̂). In [9–12] this fact has been demonstrated

within the light-cone path integral (LCPI) approach to

induced gluon emission [2], using the method developed

in [15, 16], for running αs which is frozen at low mo-

menta at some value αfr
s . There it was found that the

RHIC data support a significantly larger value of αfr
s

than the LHC data. One of the reasons for this difference

may be somewhat stronger thermal suppression of the

effective QCD coupling in a hotter QGP at the LHC en-

ergies. To draw a firm conclusion on this possibility it is

highly desirable to perform calculations with a temper-

ature dependent αs. And of course, it is clear that, even

without respect to the problem with a joint description
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of the RHIC and LHC jet quenching data, an observa-

tion of the temperature dependence of αs from the jet

quenching data would be of great importance on its own.

The case of the T -dependent coupling has not been dis-

cussed so far in the literature on jet quenching. In this

work we perform such an analysis. We adapt the LCPI

formalism to the case of the T -dependent running αs,

and perform a joint analysis of the jet quenching data

on the nuclear modification factor RAA from RHIC on

0.2TeV Au + Au collisions obtained by PHENIX [17] for

π0-meson and from the LHC on 5.02TeV Pb + Pb col-

lisions obtained by ALICE [18], ATLAS [19], and CMS

[20] for charged hadrons.

We consider the central rapidity region around y =

= 0. Our method for calculating the nuclear modifica-

tion factorRAA is similar to the one used in our previous

jet quenching analyses [16, 12, 9]. For our basic version

we use parametrization of running coupling αs(Q, T )

which has a short plateau αfr
s around Qfr ∼ κT , and

then falls ∝ Q at small Q. This ansatz is motivated by

the lattice calculation of the effective QCD coupling in

the QGP [21] and the results obtained within the func-

tional renormalization group [22]. We have determined

the optimal values of the parameter κ fitting the data on

the nuclear modification factor RAA in 0.2TeV Au + Au

collisions at RHIC and in 5.02TeV Pb + Pb collisions

at the LHC. We have found that the RHIC data re-

quire somewhat smaller value of the parameter κ than

the LHC data. But nevertheless the theoretical RAA

for 0.2 Au + Au collisions calculated with the optimal

κ adjusted to fit the LHC data, is in reasonable agree-

ment with the RHIC data (χ2/d.p. ≈ 0.7−0.8). This dif-

fers drastically from the results for the T -independent

αfr
s , which leads to rather strong disagreement with

the RHIC data (χ2/d.p. ≈ 4.4−4.8) for the optimal

value αfr
s fitted to the LHC data. Thus, our analysis

shows that the T -dependent αs may largely eliminate

the problem of different optimal QCD coupling for the

RHIC and LHC energies. For parametrization with flat
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αs at Q < Qfr with Qfr = κT we obtained very sim-

ilar results. We have checked that, in principle, for the

T -dependent coupling by a relatively small increase of

αs(Q, T ) at Q ∼ (1−3)ΛQCD, as compared to the one-

loop formula, for κ fitted to the LHC data one can sig-

nificantly improve agreement with the RHIC data in the

low pT region. Such an increase of the αs(Q, T ) is not

unrealistic, e.g., it may mimic an enhancement of the in-

duced gluon emission at T ∼ Tc [23, 24] in the presence

color-magnetic monopoles [25].

Our results may be viewed as the first direct evi-

dence of the increase of the thermal suppression of αs

with rising QGP temperature.
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