## Предсказание массы последней открытой частицы аксиально-векторного нонета с квантовыми числами $J^{PC} = 1^{+-}$

М. В. Чижов<sup>1)</sup>, М. Н. Найденов

Кафедра Атомной физики, Физический факультет, Софийский университет, 1164 София, Болгария

Поступила в редакцию 1 июня 2020 г. После переработки 14 июня 2020 г. Принята к публикации 14 июня 2020 г.

В настоящей работе показано, что новое массовое соотношение между массами векторных состояний  $\phi(1020)$  и  $\phi(1680)$ , с квантовыми числами  $\mathbf{J}^{PC} = 1^{--}$  и массой аксиально-векторного состояния  $h_1(s\bar{s})$  со скрытой странностью и квантовыми числами  $1^{+-}$  сохраняется и в случае ненулевых токовых масс кварков. Данное соотношение предсказывает массу недавно открытого коллаборацией BESIII состояния  $h_1(s\bar{s})$  в пределах экспериментальной точности.

DOI: 10.31857/S123456782015001X

**І. Введение.** Известно, что существуют два низколежащих аксиально-векторных нонета мезонных состояний с квантовыми числами их нейтральных компонент  $J^{PC} = 1^{++}$  и  $1^{+-}$ . Первый нонет "A" включает изотриплет  $a_1$  мезонов, два изодублета странных мезонов  $K_{1A}$  и два изосинглетных состояния  $f_1$ . Второй нонет "B" состоит из изотриплета  $b_1$ мезонов<sup>2</sup>), двух изодублетов странных мезонов  $K_{1B}$ и двух изосинглетных состояний  $h_1$ .

Два изосинглетных состояния единичного спина имеют почти чистые  $u\bar{u} + d\bar{d}$  и  $s\bar{s}$  структуры. Хотя идентификация двух состояний  $f_1$  из трех обнаруженных резонансов  $f_1(1285)$ ,  $f_1(1420)$  и  $f_1(1510)$  еще обсуждается, идентификация последнего из двух состояний  $h_1(1170)$  и  $h_1(1415)$  была установлена два года назад. Коллаборация BESIII открыла аксиальновекторную частицу со скрытой странностью  $h_1(s\bar{s})$ [1–3] и подтвердила ее предыдущее обнаружение двумя коллаборациями LASS [4] и Crystal Barrel [5].

Существует интересная ситуация с измеренными и предсказанными значениями массы аксиальновекторного мезона со скрытой странностью и квантовыми числами 1<sup>+-</sup>. Впервые данная частица была обнаружена коллаборацией LASS в 1988 г. с массой  $m_{h_1(s\bar{s})}^{\text{LASS}} = (1380 \pm 20)$  МэВ. Поэтому эта частица получила название  $h_1(1380)$ . Последнее измерение массы данной частицы коллаборацией BESIII  $m_{h_1(s\bar{s})}^{\text{BESIII}} = (1423.2 \pm 2.1 \pm 7.3)$  МэВ [3] и ее среднее значение по всем измерениям  $m_{h_1(s\bar{s})}^{\text{PDG}} = (1416 \pm 8)$  МэВ [6]

потребовало в прошлом (2019) году изменить наименование этого резонанса на  $h_1(1415)$ . Заметим, что в первой версии публикации коллаборации BESIII [2] не было представлено ни одного точного предсказания массы данного состояния. Точное предсказание массы этого состояния  $m_{h_1(s\bar{s})}^{\text{theor}} = (1415 \pm 13)$  МэВ было опубликовано в работе [7] в 2004 г.

Детальное рассмотрение данного предсказания и новые исследования представлены ниже.

II. Модель. Объяснение механизма спонтанного нарушения киральной симметрии [8] и введение кварков [9, 10] дает нам принципиальную возможность описать все многообразие легких адронных состояний и, в частности, кварк-антикварковых пар. Наиболее хорошо теоретически и экспериментально изученным является нонет псевдоскалярных мезонов, которые возникают как псевдо-голдстоуновские бозоны в результате спонтанного и явного нарушения киральной симметрии. Свойства псевдоскалярного нонета могут быть с хорошей точностью описаны в рамках модели Намбу и Йона-Лазинио (NJL – Nambu, Jona-Lasinio) [11] или в киральной теории возмущений [12]. В тоже время, теоретическая и экспериментальная ситуация, связанная с идентификацией и объяснением свойств членов скалярного нонета как кварк-антикварковых пар пока неудовлетворительна.

В данной работе мы рассмотрим модель нонетов единичного спина, представленную в [7]. Известно, что кроме двух вышеописанных низколежащих аксиально-векторных нонетов, существует и нонет векторных мезонов. Последний состоит из изотриплета  $\rho$  мезонов, двух изодублетов  $K^*$  мезонов и

<sup>&</sup>lt;sup>1)</sup>e-mail: mih@phys.uni-sofia.bg

 $<sup>^{2)}</sup>b_1$ -мезоны состоят из легких u и d кварков. Их обозначение происходит от названия нонета и не имеет никакого отношения к b-кваркам.



Рис. 1. Диаграммы Фейнмана для юкавских взаимодействий. Здесь  $\hat{q}_{\mu} = q_{\mu}/\sqrt{q^2}$ , где  $q_{\mu}$  – входящий четырех-импульс полей  $R_{\mu}$  и  $B_{\mu}$ 

двух изосинглетов  $\omega$  и  $\phi$  мезонов с квантовыми числами 1<sup>--</sup>, которые имеют почти чистые  $u\bar{u} + d\bar{d}$  и  $s\bar{s}$  структуры соответственно. Таким образом, существует очевидная *асимметрия* между числами аксиально-векторных и векторного нонетов.

В работе [7] в рамках расширенной U(1) безмассовой кварковой NJL модели был предложен новый подход к восстановлению данной симметрии. На этом пути было получено также новое соотношение между массами мезонов единичного спина, принадлежащих различным нонетам, которое подтверждается экспериментально. Основная идея заключается в рассмотрении всех возможных лоренцинвариантных локальных юкавских взаимодействий между кварковыми токами  $\overline{\psi}\psi, \overline{\psi}\gamma^5\psi, \overline{\psi}\gamma_\mu\psi, \overline{\psi}\gamma_\mu\gamma^5\psi,$  $\overline{\psi}\sigma_{\mu\nu}\psi$  и соответствующими бозонными полями S, P,  $V_{\mu}, A_{\mu}, T_{[\mu\nu]}{}^{3)}$  с квантовыми числами  $0^{++}, 0^{-+}, 1^{--},$  $1^{++}, (1^{--}, 1^{+-})$ . Кварковый ток  $\overline{\psi}\sigma_{\mu\nu}\psi$  и соответствующее антисимметричное тензорное поле второго ранга  $T_{[\mu\nu]}$  обладают двумя типами различных квантовых чисел: 1<sup>--</sup> и 1<sup>+-</sup>. На массовой поверхности  $T_{[\mu\nu]}$  может быть разложено на векторное поле  $R_{\mu}$  и аксиально-векторное поле  $B_{\mu}$ :

$$T_{[\mu\nu]} = (\hat{\partial}_{\mu}R_{\nu} - \hat{\partial}_{\nu}R_{\mu}) - \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}(\hat{\partial}^{\alpha}B^{\beta} - \hat{\partial}^{\beta}B^{\alpha}) \quad (1)$$

с соответствующими квантовыми числами 1<sup>--</sup> и 1<sup>+-</sup>, где  $\hat{\partial}_{\mu} = \partial_{\mu}/\sqrt{-\partial^2}$ . Обратно, поля  $R_{\mu}$  и  $B_{\mu}$  могут быть выражены через  $T_{[\mu\nu]}$ :

$$R_{\mu} = \hat{\partial}^{\nu} T_{[\mu\nu]}, \quad B_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} \hat{\partial}^{\nu} T^{[\alpha\beta]}, \qquad (2)$$

которые благодаря антисимметри<br/>и $T_{[\mu\nu]}$ удовлетворяют очевидным тождествам

$$\partial^{\mu}R_{\mu} \equiv 0, \quad \partial^{\mu}B_{\mu} \equiv 0. \tag{3}$$

Поэтому существующий  $h_1(s\bar{s})$  мезон с квантовыми числами  $1^{+-}$  из аксиально-векторного нонета "B"

может быть описан аксиально-векторным полем  $B_{\mu}$ , что, в свою очередь, требует включения в модель кваркового тока  $\overline{\psi}\sigma_{\mu\nu}\psi$  и соответствующего антисимметричного тензорного поля второго ранга  $T_{[\mu\nu]}$ . Так как векторные поля  $V_{\mu}$  и  $R_{\mu}$  обладают одинаковыми квантовыми числами 1<sup>--</sup>, то они могут смешиваться, что приводит к двум физическим состояниям  $\phi$  и  $\phi'$  для U(1)  $s\bar{s}$  кварковой структуры. Расширяя данную гипотезу на U(3) модель, можно предположить, что низколежащий векторный нонет физических состояний с квантовыми числами 1-- возникает в результате смешивания векторного и тензорного нонетов, аналогично двум физическим состояниям  $K_1(1270)$  и  $K_1(1400)$ , которые являются суперпозицией K<sub>1A</sub> и K<sub>1B</sub> состояний из соответствующих аксиально-векторных нонетов.

Новое соотношение между массами физических состояний  $\phi(1020), \phi' = \phi(1680)$  и  $h_1(s\bar{s})$  [7]

$$2m_{\phi}^2 - m_{\phi}m_{\phi'} + 2m_{\phi'}^2 = 3m_{h_1(s\bar{s})}^2, \qquad (4)$$

которое предсказывает массу неоткрытого тогда еще состояния  $h_1(s\bar{s})$ , было получено в приближении нулевой токовой массы кварка. Таким образом, это соотношение скорее подходит для физических состояний  $\omega(782)$ ,  $\omega' = \omega(1650)$  и  $h_1(1170)$ , которые состоят из легких u и d кварков. Поэтому, чтобы подтвердить соотношение (4) для s кварка, мы рассмотрим случай с ненулевой токовой кварковой массой  $m_0$ .

Для получения соотношения (4) нам необходимо только рассмотреть взаимодействия векторного поля  $V_{\mu}$ , тензорного поля  $T_{[\mu\nu]}$  и скалярного поля Sс полем странного кварка  $\psi$ . Линеаризованный NJL лагранжиан с вспомогательными (без кинетических членов) бозонными полями имеет вид

$$\mathcal{L}_{0} = \overline{\psi}(\not{q} - m_{0})\psi + g_{S}\,\overline{\psi}\psi\,S - \frac{\mu_{S}^{2}}{2}S^{2} + g_{V}\,\overline{\psi}\gamma^{\mu}\psi\,V_{\mu} + \frac{\mu_{V}^{2}}{2}V_{\mu}^{2} + \frac{g_{T}}{2}\,\overline{\psi}\sigma^{\mu\nu}\psi\,T_{[\mu\nu]} + \frac{\mu_{T}^{2}}{4}\left(4\,\hat{\partial}^{\mu}T_{[\lambda\mu]}\hat{\partial}_{\nu}T^{[\lambda\nu]} - T_{[\mu\nu]}T^{[\mu\nu]}\right),\tag{5}$$

Письма в ЖЭТФ том 112 вып. 3-4 2020

<sup>&</sup>lt;sup>3)</sup>Обозначение  $T_{[\mu\nu]} = \frac{1}{2}(T_{\mu\nu} - T_{\nu\mu})$  подразумевает антисимметризацию по индексам Лоренца.



Рис. 2. Квантовые поправки в собственно-энергетическую часть (a) и самодействия (b), (c) скалярного поля

где  $\mu_S^2$ ,  $\mu_V^2$  и  $\mu_T^2$  – затравочные массовые члены<sup>4)</sup>. Используя соотношения (1)–(3), последние два члена в (5) могут быть представлены как

$$g_T \,\overline{\psi} \sigma^{\mu\nu} \psi \,\hat{\partial}_\mu R_\nu + i g_T \,\overline{\psi} \sigma^{\mu\nu} \gamma^5 \psi \,\hat{\partial}_\mu B_\nu + \frac{\mu_T^2}{2} \left( R_\mu^2 + B_\mu^2 \right) \,. \tag{6}$$

Соответствующие диаграммы Фейнмана показаны на рис. 1.

**III. Квантовые поправки и нарушение симметрии.** Кинетические члены для мезонных полей могут быть получены из квантовых радиационных поправок. Давайте вычислим однопетлевые вклады в собственно-энергетические части для всех бозонных полей. Например, вклад в собственноэнергетическую часть скалярного поля (рис. 2a) имеет вид

$$\Pi^{SS}(q) = ig_S^2 N_C \times \\ \times \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \mathrm{Tr} \left[ (\not p - m_0)^{-1} (\not p - \not q - m_0)^{-1} \right] = \\ = 4ig_S^2 N_C \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{1}{p^2 - m_0^2} - \\ - 2ig_S^2 N_C \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{q^2 - 4m_0^2}{(p^2 - m_0^2)^2} + \text{finite terms} = \\ = 4g_S^2 N_C I_2 - 8g_S^2 N_C m_0^2 I_0 + \\ + 2g_S^2 N_C I_0 q^2 + \text{finite terms}, \tag{7}$$

где

$$I_2 \equiv i \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{1}{p^2 - m_0^2} = \int \frac{\mathrm{d}^4 p_E}{(2\pi)^4} \frac{1}{p_E^2 + m_0^2} > 0 \quad (8)$$

квадратично расходящийся интеграл и

$$I_0 \equiv -i \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{1}{\left(p^2 - m_0^2\right)^2} = \int \frac{\mathrm{d}^4 p_E}{(2\pi)^4} \frac{1}{\left(p_E^2 + m_0^2\right)^2} > 0$$
(9)

Письма в ЖЭТФ том 112 вып. 3-4 2020

– логарифмически расходящийся интеграл.

Первые два члена в последнем равенстве (7) представляют собой дополнительный вклад в массовый член скалярного поля  $m_S^2 = \mu_S^2 + 4g_S^2N_C(2m_0^2I_0 - I_2)$ . Третье слагаемое демонстрирует появление кинетического члена. Для правильной нормировки волновой функции скалярного поля мы должны потребовать выполнение условия

$$2g_S^2 N_C I_0 = 1. (10)$$

Применяя аналогичную процедуру для всех бозонных полей, введенных в (5) и (6),

$$\Pi_{\mu\nu}^{VV} = \frac{4}{3} g_V^2 N_C I_0 (q_\mu q_\nu - q^2 g_{\mu\nu}) - 2g_V^2 N_C (m_0^2 I_0 + I_2) g_{\mu\nu} + \text{finite terms}, \qquad (11)$$

$$\Pi_{\mu\nu}^{VR} = 4g_V g_T N_C I_0 \frac{m_0}{\sqrt{q^2}} (q_\mu q_\nu - q^2 g_{\mu\nu}) + \text{ finite terms},$$
(12)

$$\Pi_{\mu\nu}^{RR} = \frac{2}{3} g_T^2 N_C I_0 (q_\mu q_\nu - q^2 g_{\mu\nu}) + 4g_T^2 N_C I_0 \frac{m_0^2}{q^2} (q_\mu q_\nu - q^2 g_{\mu\nu}) + \text{finite terms}, \quad (13)$$

$$\Pi_{\mu\nu}^{BB} = \frac{2}{3} g_T^2 N_C I_0 (q_\mu q_\nu - q^2 g_{\mu\nu}) - 4g_T^2 N_C I_0 \frac{m_0^2}{q^2} (q_\mu q_\nu - q^2 g_{\mu\nu}) + \text{finite terms}, \quad (14)$$

мы получим полезные соотношения между различными юкавскими константами связи из нормировочных условий для кинетических членов

$$3g_S^2 = 2g_V^2 = g_T^2 = \frac{3}{2N_C I_0}.$$
 (15)

Иными словами, благодаря динамической природе кинетических членов, все взаимодействия в данной модели описываются только одной константой связи, например,  $g = g_S$ .

<sup>&</sup>lt;sup>4)</sup>Вид массового члена для антисимметричного тензорного поля был предложен в [13].



Рис. 3. Квантовые поправки в массовые члены и смешивание между векторными бозонами после спонтанного нарушения симметрии. Двойные линии соответствуют одновременно  $R_{\mu}$  или  $B_{\mu}$  бозонам

Самодействия на рис. 2b, с приводят к следующему эффективному потенциалу для скалярного поля

$$V_{\text{eff}} = \frac{m_S^2}{2}S^2 - 2gm_0S^3 + \frac{g^2}{2}S^4.$$
 (16)

Условие экстремума

$$\left. \frac{\mathrm{d}V_{\mathrm{eff}}}{\mathrm{d}S} \right|_{S=\langle S \rangle} = m_S^2 \langle S \rangle - 6gm_0 \langle S \rangle^2 + 2g^2 \langle S \rangle^3 = 0 \quad (17)$$

для отрицательных  $m_S^2$  всегда приводит к абсолютному минимуму эффективного потенциала с нетривиальным решением  $g\langle S \rangle =$  $= (3m_0 - \sqrt{9m_0^2 - 2m_S^2})/2 < 0$ . Это соответствует спонтанному нарушению симметрии, которое приводит к положительной конституентной массе странного кварка

$$m_s = m_0 - g\langle S \rangle > 0. \tag{18}$$

Это также приводит к дополнительным вкладам в массовые члены и смешиванию между векторными бозонами (рис. 3).

Заметим, что здесь нет дополнительного вклада в массовый член векторного поля  $V_{\mu}$ :  $m_V^2 = \mu_V^2 - 2g_V^2 N_C (m_0^2 I_0 + I_2)$ , в то время как его смешивание с векторным полем  $R_{\mu}$  (12) получает таковой после спонтанного нарушения симметрии

$$\Delta \Pi^{VR}_{\mu\nu} = -4g_V g_T N_C I_0 \frac{g\langle S \rangle}{\sqrt{q^2}} (q_\mu q_\nu - q^2 g_{\mu\nu}) + \text{finite terms}$$
(19)

таким образом, оно зависит только от физической конституентной массы странного кварка:

$$\Pi_{\mu\nu}^{VR} + \Delta \Pi_{\mu\nu}^{VR} = \sqrt{\frac{18m_s^2}{q^2}} \left( q_\mu q_\nu - q^2 g_{\mu\nu} \right) + \text{finite terms.}$$
(20)

В свою очередь пол<br/>я $R_{\mu}$  и  $B_{\mu}$  получают дополнительные вклады

$$\Delta \Pi_{\mu\nu}^{RR} = 4g_T^2 N_C I_0 \frac{g^2 \langle S \rangle^2 - 2m_0 g \langle S \rangle}{q^2} \times \\ \times (q_\mu q_\nu - q^2 g_{\mu\nu}) + \text{finite terms}, \qquad (21)$$
$$\Delta \Pi_{\mu\nu}^{BB} = -4g_T^2 N_C I_0 \frac{g^2 \langle S \rangle^2 - 2m_0 g \langle S \rangle}{q^2} \times \\ \times (q_\mu q_\nu - q^2 g_{\mu\nu}) + \text{finite terms}, \qquad (22)$$

в их массовые члены  $m_R^2 = \mu_T^2 - 4g_T^2 N_C I_0(m_0^2 + g^2 \langle S \rangle^2 - 2m_0 g \langle S \rangle) = \mu_T^2 - 6m_s^2$  и  $m_B^2 = \mu_T^2 + 4g_T^2 N_C I_0(m_0^2 + g^2 \langle S \rangle^2 - 2m_0 g \langle S \rangle) = \mu_T^2 + 6m_s^2$ , которые также зависят только от физической конституентной массы странного кварка.

В результате эффективный свободный лагранжиан для бозонов единичного спина приобретает следующий вид

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2} (V_{\mu} \ R_{\mu}) \begin{pmatrix} q^2 - m_V^2 & \sqrt{18m_s^2 q^2} \\ \sqrt{18m_s^2 q^2} & q^2 - m_B^2 + 12m_s^2 \end{pmatrix} \times \\ \times \begin{pmatrix} V^{\mu} \\ R^{\mu} \end{pmatrix} - \frac{1}{2} B_{\mu} (q^2 - m_B^2) B^{\mu}.$$
(23)

В работе [7] было показано, что массы изовекторных состояний  $\rho$ ,  $\rho' = \rho(1450)$ ,  $b_1$  и массы легких изосинглетов  $\omega$ ,  $\omega'$ ,  $h_1(1170)$  удовлетворяют гипотезе максимального смешивания между состояниями  $V_{\mu}$  и  $R_{\mu}$ . Это приводит к дополнительному условию

$$m_V^2 = m_B^2 - 12m_s^2. (24)$$

Нули определителя матрицы между дублетами  $(V_{\mu} \ R_{\mu})^T$  соответствуют массам физических  $\phi$  и  $\phi'$  мезонов, в то время как  $h_1(s\bar{s})$  мезон имеет массу  $m_B$ . Используя формулы Виета

$$m_{\phi}^2 + m_{\phi'}^2 = 2(m_V^2 + 9m_s^2), \ m_{\phi}m_{\phi'} = m_V^2$$
 (25)

для биквадратного уравнения  $(q^2)^2 - 2(m_V^2 + 9m_s^2)q^2 + m_V^4 = 0$  и соотношение (24), мы можем воспроизвести массовую формулу (4) без предположения о безмассовости начального кварка. **IV. Заключение.** В данной работе мы показали, что новое массовое соотношение (4) для случая U(1) странного кварка с ненулевой токовой массой  $m_0$  имеет тот же самый вид, что и для изначально безмассового кварка. Поэтому предсказание массы аксиально-векторного состояния  $h_1(s\bar{s})$  со скрытой странностью и квантовыми числами 1<sup>+-</sup>, опубликованное в [7], остается справедливым. Данное предсказание также подтверждено экспериментально коллаборацией BESIII [3].

- M. Ablikim, M.N. Achasov, X.C. Ai et al. (BESIII Collaboration), Phys. Rev. D 91, 112008 (2015).
- M. Ablikim, M. N. Achasov, S. Ahmed et al. (BESIII Collaboration), arXiv:1804.05536v1 [hep-ex].
- M. Ablikim, M. N. Achasov, S. Ahmed et al. (BESIII Collaboration), Phys. Rev. D 98, 072005 (2018).
- 4. D. Aston, N. Awaji, T. Bienz et al. (LASS

Collaboration), Phys. Lett. B 201, 573 (1988).

- A. Abele, J. Adomeit, C. Amsler et al. (Crystal Barrel Collaboration), Phys. Lett. B 415, 280 (1997).
- M. Tanabashi, K. Hagiwara, K. Hikasa et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update.
- 7. M. Chizhov, JETP Lett. 80 73 (2004), hep-ph/0307100.
- Y. Nambu, A "Superconductor" Model of Elementary Particles and its Consequencies, Talk given at a conference at Purdue (1960), reprinted in Broken Symmetries, Selected Papers by Y. Nambu, ed. by T. Eguchi and K. Nishijima, World Scientific, Singapore, New Jersey, London, Hong Kong (1995).
- 9. M. Gell-Mann, Phys. Lett. 8 214 (1964).
- 10. G. Zweig, preprint CERN-TH-401, January 17 (1964).
- Y. Nambu and G. Jona-Lasinio, Phys. Rev. **122**, 345 (1961); ibid. **124**, 246 (1961).
- 12. G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).
- 13. M.V. Chizhov, Mod. Phys. Lett. A 8 2753 (1993).