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In this Letter, we calculate the steady-state and first-
order time varying atom-field correlation functions in
the weak-excitation limit of absorptive optical bistabil-
ity from a linearized theory of quantum fluctuations.
We formulate a Fokker—Planck equation in the positive
P representation following the phase-space analysis of
[1] which does not resort to adiabatic elimination. Spe-
cial emphasis is placed on the limit of collective strong
coupling as attained from a vanishing photon-loss rate.
We compare to the cavity-transmission spectrum with
reference to experimental results obtained for macro-
scopic dissipative systems, discussing the role of anoma-
lous correlations arising as distinct nonclassical features.
We follow the notation of Ch.15 in [2]. The steady-state
averages
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demonstrate explicit corrections of order N~! « 1. In
the above expressions, X is the scaled intracavity am-
plitude, N is the number of atoms inside the cavity, 2C
is the cooperativity parameter and £ = 2k/7 is the ra-
tio of the photon loss rate to the spontaneous emission
rate. From Equation (15.103b) of [2] we read that in the
weak-excitation limit,
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Hence, (Al Ad)ss/(AJyAd)ss = 2C, which reveals the
role of atomic cooperativity along the lower branch of
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absorptive bistability. The largest deviation of the ratio
r(X,€) = [{ala)ss/(J+a)ss| from unity occurs for & = 1
as a consequence of impedance matching for the two
decoherence channels (see also Sec.V of [1]). The two
cross-correlation components of order X* are
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In the above expressions,
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is the many-atom effective coupling strength in which
dissipation also plays a role, and ¥ = ~7/2. The
transmitted-light spectrum is C%*(5) = CZ*1(5) +
+ CZ:%2(3) for 5 = —i2(w — wp) /7, where
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The corresponding contribution to the correlation func-
tion for the cavity field is



304 Th. K. Mavrogordatos

FL 5202 _ 4C%¢ 1 ol €+ 1)7_
Ca (T)_X4(1+2C)(€+1) 2G p[ 2 ]X
(6 —1—-40) [sin(GT) _ ~
X { 50 [ 5~ TCOS(GT)] +
+ET sin(G?)}. (8)

The sum of two corresponding components of a light-
matter correlation and the cavity-field autocorrelation,
[CZ%2(F) 4+ CZ:%2(7)]/X* obtained from Egs. (4) and
(8), is compared to the component C%*2(7)/X* alone
in Fig. 1 as we approach the many-atom strong-coupling
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Fig.1. (Color online) Correlations with a squared
Lorentzian distribution. The sum of the two components:
CZ#2(7)/X* and CZ#2(7)/X* is plotted in a solid black
line, superimposed on CZ%*2(7)/X* alone plotted with a
dashed green line. Parameters: £ = 0.05, C' = 40. The in-
set depicts the same quantities, but for £ =~ 1.9, C' ~ 58
(see Fig. 4 of [3])

limit of absorptive bistability [£2C > (£ +1)?/4]. Upon
a further increase of the parameter £2C, the two curves
coincide. On the other hand, the correlation
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dominates at weak-excitation. In the limit & — 0,
C — oo, with £2C > 1 remaining constant, the sum
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tends to zero as £ — 0. Their difference, however, eval-
uating to
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does not vanish as long as atomic coherence is main-
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tained; this is a sign of the competition between a re-
stricted bandwidth in the communication channel across
individual atoms, and the collective strong coupling of
the atomic ensemble to the intracavity field. Monitor-
ing a second channel, provided by an additional low-Q
cavity coupled to the same atomic ensemble, via homo-
dyne detection reveals a negative source-field spectrum
of squeezing S(w) oc Re[CZ7+ (—2iw/~v)] when the local
oscillator is in phase with the mean collective atomic po-
larization, while combining the fields transmitted from
the two cavities yields the cross-correlations of light-
matter interaction in absorptive optical bistability.

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134,/S0021364020170014
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