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The planar phase is one of the possible superfluid
phases of liquid 3He [1]. It may exist in some region of
the phase diagram of superfluid 3He confined in aero-
gels [2]. The planar phase has two Dirac points in the
quasiparticle spectrum, which are supported by com-
bined action of topology and some special symmetry,
see e.g. [3]. The quasiparticles in the planar phase with
fixed spin behave as Weyl fermions. Similar to the chiral
superfluid 3He-A, they experience the effective gravity
and gauge field produced by the deformation of the or-
der parameter. But there is the following important dif-
ference. In 3He- A, the spin-up and spin-down fermions
have the same chirality, while in the planar phase the
spin-up and spin-down fermions have the opposite chi-
rality. As a result the Weyl fermions in planar phase
form the massless Dirac fermions, see [4].

Here we study the planar phase fermions in the pres-
ence of the topological defect – the hedgehog. The ef-
fective gravity produced by the hedgehog appears to be
similar to the gravitational effect of the global monopole
in general relativity: it gives rise to the conical space
[5–12]. Another consequence of the hedgehog is that the
vielbein, which describes the effective gravity, is the 4×5
matrix, as distinct from the conventional 4 × 4 matrix
in the tetrad formalism of general relativity.

In the general spin triplet p-wave pairing state the
2× 2 matrix of the gap function is:

∆̂ = Ai
ασ

αpi, (1)

where Aαi is the 3× 3 complex matrix [1]. In the planar
phase the particular representative is:

Aαi = c⊥e
iΦ
(

δiα − l̂α l̂
i
)

, (2)

where Φ is the phase of the order parameter and l̂ is the
unit vector. All the other degenerate states of the planar
phase are obtained by spin, orbital and phase rotations
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of the group G = SO(3)S ×SO(3)L ×U(1) (here we ig-
nore the discrete symmetry, since we are only interested
in the global monopole).

The order parameter in Eq. (2) has the symme-
try H = SO(2)J – the symmetry under the com-

mon spin and orbital rotations about the axis l̂. As
the result, the manifold of the degenerate states is
R = (SO(3)S×SO(3)L×U(1))/SO(2)J , which supports
the monopoles (hedgehogs), described by the homotopy
group π2(R) = Z. The particular form of the monopole
with the topological charge N = 1 is:

Aαi(r) = f(r)
(

δiα − r̂αr̂
i
)

, (3)

where r̂ = r/r, and f(r → ∞) = c⊥. The Bogoliubov–
Nambu Hamiltonian for quasiparticles:

(

ǫ(p) ∆̂

∆̂† −ǫ(p)

)

, (4)

where ǫ(p) = c‖(p − pF ), c‖ = vF , and vF and pF are
correspondingly the Fermi velocity and Fermi momen-
tum of the normal Fermi liquid.

The planar phase has the Weyl–Dirac points at p =
= ±pF l̂. Near the Weyl–Dirac nodes the Hamiltonian
is:

H =
∑

a

Γaeia(pi − qAi) . (5)

Here A = pF l̂ is the vector potential of effective gauge
field acting on the massless Dirac fermions; q = ±1 is
the corresponding electric charge; Γa with a = 1, 2, 3, 4
are the Hermitian Γ-matrices with {Γa,Γb} = 2δab:

Γ1 = τ1σx, Γ
2 = τ1σy, Γ

3 = τ1σz , Γ
4 = τ3; (6)

eia are the components of the spatial vielbein with
a = 1, 2, 3, 4 and i = 1, 2, 3:

eia = c⊥(δ
i
a − l̂a l̂

i) for a = 1, 2, 3, ei4 = c‖ l̂
i. (7)

Such vielbein is the 3× 4 matrix, instead of the conven-
tional 3 × 3 matrix of the dreibein. Nevertheless, this
asymmetric vielbein provides the correct expression for
the elements of the effective metric:

gik =
∑

a,b

δabeiae
k
b , a, b = 1, 2, 3, 4, i, k = 1, 2, 3, (8)
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gik = c2‖ l̂
il̂k + c2⊥(δ

ik − l̂il̂k). (9)

This metric coincides with the effective metric in 3He-A
with Weyl nodes, see [4]. The 3 + 1 effective metric is
expressed in terms of the 4× 5 vielbein,

gµν =
∑

a,b

ηabeµae
ν
b , a, b = 0, 1, 2, 3, 4, µ, ν = 0, 1, 2, 3.

(10)
In spite of the asymmetric non-invertible 4× 5 vielbein,
the effective metric is well defined and is invertible:

gik =
1

c2‖
l̂i l̂k +

1

c2⊥
(δik − l̂i l̂k), g00 = −1. (11)

For the monopole one has:

gik(r) = c2⊥δ
ik + (c2‖ − c2⊥)r̂

ir̂k, (12)

ds2 = −dt2 + 1

c2⊥
r2dΩ2 +

1

c2‖
dr2. (13)

Equation (13) represents conical spacetime, which in
GR is produced by the global monopoles (monopoles
without gauge fields, see [5–12]). This spacetime has the
nonzero scalar curvature:

R = 2
1− α2

r2
, α2 =

c2‖
c2⊥
. (14)

The analog of the global monopole was considered in
3He-A [8, 13], where it has the tail – the doubly quan-
tized vortex. This is the analog of the Nambu monopole
[14] terminating cosmic string (see classification of such
composite objects in [15]). In the planar phase the
monopole is topologically stable: the Dirac string of the
monopole in the orbital vector l̂i(r) = r̂i in Eq. (3) is
cancelled by the Dirac string from the monopole in the
spin vector l̂α(r) = r̂α.

Since in superfluid 3He c2‖ > c2⊥, the metric cor-
responds to the spacetime with the solid angle excess
[8, 13], α2 > 1, instead of the angle deficit discussed for
the global cosmic monopoles with α2 < 1. For the cos-
mic monopole in the scalar field η with α2 = 1−8πGη2,
the angle excess corresponds to the repulsive gravity,
G < 0, and super-Planckian field, η2 > 1/|G|.

For c2‖ = c2⊥ ≡ c2 the metric far from the monopole

is flat, gik = c2δik. In cosmology this corresponds to the
absence of the cosmic global monopole, or the absence
of the scalar field in the vacuum, η = 0. However, the
planar phase monopole does not disappear: the singu-
larity remains in the vielbein field, while the metric has
only the localized bump in the curvature and is flat (not
conical) at infinity. The tetrad field monopole in the 4D
Euclidean space (torsional instanton) with the localized
bump in the curvature and the flat metric at infinity
was considered in [16–18].

The planar phase provides an example, when the
gravity for fermions and bosons can be essentially dif-
ferent. While the fermions are described by the 4×5 viel-
bein matrix eµa , the bosons are described by the conven-
tional 4D metric gµν . The vielbein with non-quadratic
matrix eµa may exist in other superfluid phases, including
the ultracold fermionic gases. In the presence of topo-
logical objects, they may give rise to exotic effective
spaces and spacetimes, which are different for fermions
and bosons. One may expect the similar effects in gen-
eral relativity with degenerate metric. Exotic monopole
in gravity with degenerate tetrads was discussed for ex-
ample in [19]. It would be interesting to consider the
transition from the planar phase to the 3He-B with mas-
sive Dirac fermions.
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