О возбуждении токов обратного направления в токовых слоях

А. Г. Франк¹⁾, С. Н. Сатунин

Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия

Поступила в редакцию 30 сентября 2020 г. После переработки 15 октября 2020 г. Принята к публикации 16 октября 2020 г.

На основе представлений о возбуждении индукционных электрических полей при движении потоков плазмы в магнитном поле впервые дана последовательная интерпретация совокупности явлений на поздних стадиях эволюции токовых слоев. Показано, что индукционные поля неоднородны в пределах ширины слоя и максимальны на его краях, где возникают токи обратного направления. Время появления обратных токов зависит от времени ускорения плазмы и растет для плазмы с тяжелыми ионами. Уменьшение плотности тока и утолщение токового слоя вдали от центра вызвано возбуждением обратных токов, которые проявляются здесь косвенным образом. В областях с обратными токами впервые зарегистрированы токи Холла противоположных направлений по сравнению с ранними этапами эволюции слоя.

DOI: 10.31857/S1234567820220061

1. Процессы магнитного пересоединения лежат в основе многих нестационарных явлений в космической и лабораторной плазме, таких как вспышки на Солнце и звездах, суббури в магнитосферах Земли и планет и др. [1–5]. В результате процессов пересоединения происходит эффективное преобразование энергии магнитного поля в тепловую и кинетическую энергию плазмы, в потоки ускоренных частиц и излучений. Ключевую роль в этих процессах играют токовые слои, т.е. пространственно выделенные области замагниченной плазмы, в которых концентрируется электрический ток и которые служат границей раздела магнитных полей противоположных или различающихся направлений.

Концепция токовых слоев возникла в середине XX в. в связи с поисками механизмов, ответственных за такие грандиозные явления, как вспышки на Солнце. Вслед за развитием теоретических исследований в ряде лабораторий мира были начаты целенаправленные эксперименты, которые позволили детально изучать эволюцию и структуру токовых слоев в различных условиях (см. [6,7] и цитированную там литературу). Вместе с тем, в течение нескольких десятилетий протяженный токовый слой хвостовой области магнитосферы Земли исследуется с помощью различных спутниковых миссий, что позволило получить колоссальный объем данных [5,8].

Несмотря на огромные различия в масштабах, значениях плазменных параметров, величинах маг-

Один из интригующих моментов состоит в возможности появления в токовых слоях электрических токов обратного направления. Такая возможность была предсказана С.И.Сыроватским на основе теоретического анализа структуры "нейтральных" токовых слоев [12]. Затем слои с обратными токами рассматривались теоретически в ряде работ (см. [13] и цитированную там литературу). Экспериментально токи обратного направления были обнаружены у боковых краев токовых слоев на поздней стадии их эволюции [14, 15], причем наряду с появлением обратных токов наблюдалось уменьшение плотности тока и увеличение толщины периферийных областей токовых слоев. Однако до последнего времени вопросы о связи между этими явлениями и с другими процессами в токовых слоях, а также о природе и особенностях появления обратных токов оставались открытыми.

¹⁾e-mail: annfrank@fpl.gpi.ru

нитных полей, токов и др., обнаруживается поразительное качественное сходство между магнитосферными и лабораторными токовыми слоями [9–11], что указывает на единство фундаментальных процессов в лабораторной и космической плазме. Достаточно близкие значения безразмерных параметров, характеризующих магнитосферные и лабораторные токовые слои, позволяют обосновать возможность количественного лабораторного моделирования процессов, происходящих в хвостовой области магнитосферы Земли [10]. Таким образом, изучение структуры и динамики токовых слоев представляет значительный интерес как с фундаментальной, так и с прикладной точек зрения.

В настоящей работе рассмотрены динамические процессы в токовых слоях, которые вызваны движением направленных потоков плазмы в магнитном поле и возбуждением индукционных электрических полей. В результате удалось объяснить причины возникновения обратных токов, особенности их эволюции, а также последствия их появления. Обсуждение этих вопросов базируется на анализе и интерпретации экспериментальных результатов, полученных при изучении токовых слоев с помощью установки TC-3D (ИОФ РАН) [16, 17].

2. Токовые слои формируются в установке TC-3D, рис. 1, в магнитном поле с особой линией **X** типа, которая расположена на оси 0*z*:

$$\mathbf{B} = \{B_x^0; B_y^0; B_z^0\} = \{hy; hx; B_z^0\}.$$
 (1)

Магнитное поле (1) однородно в *z*-направлении, *h* – градиент магнитного поля в плоскости $(x, y), B_z^0$ – однородная продольная компонента поля. Ось цилиндрической кварцевой вакуумной камеры диаметром $2R_c = 18 \,\mathrm{cm}$ и длиной 100 см совмещена с X линией магнитного поля (1), рис. 1. Камера заполняется аргоном или криптоном до давления ≈ 30 мТорр, и с помощью вспомогательного Θ -разряда в ней создается начальная плазма с концентрацией $N_e \approx (2-5) \times$ $\times \, 10^{14} \, {\rm сm}^{-3}.$ Затем между двумя электродами, введенными в камеру с торцов на расстоянии $\Delta z = 60$ см друг от друга, прикладывается импульсное напряжение U_z , которое возбуждает в плазме электрический ток J_z параллельно **X** линии. Зависимость тока от времени близка к синусоидальной (амплитуда $J_z^0 \approx 30 \div 50$ кА, полупериод T/2 = 6 мкс). Ток J_z инициирует течения плазмы в плоскости (x, y), которые приводят к концентрации тока в окрестности плоскости (y = 0) (при определенных направлениях поля (1) и тока J_z), т.е. к формированию токового слоя, рис. 1.

Структура магнитного поля и токов плазмы исследовалась с помощью системы магнитных зондов, которые перемещались либо вдоль поверхности токового слоя (линия AA', y = 0.8 см), либо поперек слоя, на двух расстояниях от **X** линии (BB', x = -0.8 см, и CC', x = -5 см), рис. 1. В каждой точке зонды регистрировали изменения во времени трех взаимно перпендикулярных компонент магнитного поля, что позволило получить распределения магнитных полей, плотности тока $j_z(y)$, линейной плотности тока $I_z(x) = \int j_z(x,y) \cdot dy$ вдоль поверхности токового слоя и сил Ампера [14, 15].

Тепловые и направленные скорости ионов определялись на основе доплеровских уширений профилей спектральных линий ионов аргона, Ar II 480.6 нм

Рис. 1. Поперечное сечение установки TC-3D: 1 – проводники с токами для возбуждения 2D магнитного поля $\mathbf{B} = \{hy; hx; 0\}$, силовые линии которого показаны штриховыми линиями со стрелками; 2 – вакуумная камера; 3 – система витков Θ -разряда; 4 – токовый слой. AA', BB', CC' – линии перемещения магнитных зондов

и Ar III 379.5 нм [18–20]. Излучение плазмы регистрировалось одновременно по двум взаимно перпендикулярным направлениям: вдоль направления тока (ось z) и вдоль ширины (большего поперечного размера) токового слоя (ось x). При этом было показано, что наиболее интенсивные потоки плазмы возникают в x направлении, вдоль поверхности токового слоя, что обусловлено магнитной структурой слоя [14, 19].

3. Возбуждение тока J_z и формирование токового слоя изменяют структуру исходной магнитной конфигурации (1) [7, 14, 21]. Вблизи поверхности слоя тангенциальная компонента магнитного поля B_x существенно увеличивается, а направление B_x изменяется на противоположное в пределах сравнительно узкой области, где сосредоточен ток плазмы J_z, рис. 2a. Одновременно нормальная к поверхности слоя компонента B_y значительно уменьшается по сравнению с величиной B_y^0 вакуумного поля (1), рис. 2b. Как правило, B_y имеет то же направление, что и B_{u}^{0} , и в пределах токового слоя абсолютная величина B_u растет практически линейно по мере удаления от середины слоя вдоль оси x, при этом производная $\partial B_y/\partial x$ в 2–3 раза меньше, чем градиент h. Вблизи боковых краев слоя B_y резко возрастает и приближается к величине B_{y}^{0} , рис. 2b.

Появление токов обратного направления у боковых концов токового слоя было обнаружено при ис-

Рис. 2. (Цветной онлайн) Распределения магнитных полей и токов в токовом слое. (a) – Поперек слоя, при x = -0.8 см, линия BB' (puc. 1); (b) – вдоль слоя, при y = 0.8 см, линия AA' (puc. 1). B_x и B_y – тангенциальная и нормальная компоненты магнитного поля токового слоя; B_x^0 и B_y^0 – тангенциальная и нормальная компоненты вакуумного магнитного поля; $j_z(y)$ – плотность тока; $I_z(x)$ – ток в области $|y| \le 0.8$ см. Условия эксперимента: Ar, p = 28 мТорр; $B_z = 0$; h = 0.63 кГс/см, $J_z^{max} = 45$ кА; t = 1.9 мкс

следовании эволюции распределения вдоль ширины слоя линейного тока $I_z(x) = \int j_z(x,y) \cdot dy$, рис. 3. Здесь $I_z(x)$ – это ток в пределах области $|y| \leq \Delta y = 0.8$ см, подробнее см. [14]. К моменту времени t = 1.6 мкс токовый слой сформирован, ток $I_z(x)$ имеет одно и то же направление в пределах всего слоя, максимум распределения $I_z(x)$ – в середине слоя (x = 0), у боковых концов слоя $(|x| \cong 6.9 \text{ см})$ ток I_z обращается в нуль. При t = 2.3 мкс на краю слоя (-6.6 см $\geq x \geq -7.8$ см) возникает ток I_z , направление которого противоположно направлению основного тока, протекающего в центральной (большей) части слоя. В последующие моменты (t = 3.5; 4.5 мкс) обратные токи у боковых концов слоя увеличиваются, и распределения $I_z(x)$ достаточно симметричны.

Для сравнения особенностей развития токов обратного направления в различных условиях вычислялись зависимости от времени интегральных величин прямых и обратных токов в пределах половины ширины токового слоя ($-R \le x \le 0$), рис. 4a, b [14]. Токи прямого направления интегрировались по центральной области слоя ($x^{R}(t) \le x \le 0$), а обратные токи – по периферийной области ($-R \le x \le x^{R}(t)$); здесь $x^{R}(t)$ – координата, где ток $I_{z}(x,t)$ изменяет знак. Установлено, что обратные токи могут возникать в широком диапазоне условий, в том числе при развитии слоя в плазме с ионами различной массы,

Письма в ЖЭТФ том 112 вып. 9-10 2020

однако, момент появления обратных токов и их величины различались. Так, при формировании слоя в Ar плазме обратный ток возникал уже при $t \cong 2$ мкс (рис. 4a), тогда как при развитии слоя в Kr обратный ток появлялся лишь при $t \cong 4$ мкс (рис. 4b).

При сравнении эволюции распределений плотности тока $j_z(y)$ в двух поперечных сечениях слоя: в центральной области ($x = -0.8 \,\mathrm{cm}$) и вдали от центра (x = -5 см), было обнаружено их заметное различие. На рисунке 5 приведены для обоих сечений зависимости от времени максимальных плотностей тока $j_z^0(t)$ в средней плоскости слоя (y = 0) и поперечных размеров слоя $2\delta y_{0.5}(t)$ и $2\delta y_{0.1}(t)$ на уровнях плотности тока: $j_z = 0.5 j_z^0$ и $j_z = 0.1 j_z^0$. В процессе формирования токового слоя и вплоть до момента $t \cong 2.5$ мкс происходил быстрый рост j_z^0 и уменьшение размеров $2\delta y_{0.5}$ и $2\delta y_{0.1}$ в обоих сечениях, рис. 5a, b, что отражало сжатие тока в слой. При $t\cong 2.5\,\mathrm{mkc}$ плотности тока достигали максимальных значений: $j_z^0 \cong 2.1 \, \mathrm{\kappa A/cm^2}$ в центральной области и $j_z^0 \cong 1.8\,\mathrm{\kappa A/cm^2}$ при $x=-5\,\mathrm{cm},$ а затем величины j_z^0 уменьшались в обоих сечениях, но с различной скоростью: вдали от центра плотность тока j_z^0 уменьшалась значительно быстрее, чем в середине слоя. Так, отношение максимальных плотностей тока в двух сечениях уменьшалось от $\cong 0.65$ при $t \cong 2.5$ мкс до $\cong 0.38$ при $t \cong 4.0$ мкс. Вдали от центра более быстрое

Рис. 3. (Цветной онлайн) Распределения тока $I_z(x)$ в пределах област
и $|y| \le 0.8$ см в последовательные моменты времени. Условия эксперимента см. рис. 2

уменьшение j_z^0 сопровождалось увеличением поперечных размеров слоя, или его "утолщением", рис. 5b, что контрастирует с постоянством обоих размеров слоя в центре вплоть до момента $t \cong 5.0$ мкс, рис. 5a. Подчеркнем, что увеличение меньшего поперечного размера (толщины) вдали от середины токового слоя практически совпадало по времени с появлением у боковых концов слоя токов обратного направления.

4. Стадия формирования токового слоя и начало метастабильной стадии во многих случаях сопровождаются возбуждением токов Холла, которые обусловлены движением электронов относительно инерционных и малоподвижных ионов [22]. На основании

Рис. 4. (Цветной онлайн) (а) и (b) – Зависимости от времени интегральных значений токов в пределах области $(-R \le x \le 0)$ в токовых слоях, формируемых в плазме с ионами Ar и Kr: 1 – интегралы токов прямого направления $Y_z^{(+)}(t) = \int I_z(x,t) dx$ по области $(x^R \le x \le 0)$; 2 – интегралы токов обратного направления $Y_z^{(-)}(t)$ по области $(-R \le x \le x^R)$; 3 – интегралы суммарных токов $Y_z^{\Sigma}(t) = Y_z^{(+)} + Y_z^{(-)}$ по области $(-R \le x \le 0)$. (c) – Зависимость от времени продольной компоненты квадрупольного магнитного поля B_z , создаваемой токами Холла, при (x = -5 см; y = +0.8 см) в токовых слоях, формируемых в плазме с ионами Ar и Kr. Условия эксперимента: $h = 0.63 \text{ кГс/см}; J_z^{\text{max}} = 45 \text{ кA}; \text{ Ar}, p = 28 \text{ мТорр}; Kr, p = 36 \text{ мТорр}$

обобщенного закона Ома можно определить плотность токов Холла \mathbf{j}^H в плоскости (x, y):

$$\mathbf{j}^{H} = -(\sigma/ceN_e)[j_z \times \mathbf{B}_{\perp}]. \tag{2}$$

Здесь j_z – плотность основного тока в слое, \mathbf{B}_{\perp} – поперечное по отношению к току j_z магнитное поле, N_e – концентрация электронов, σ – проводимость

Рис. 5. (Цветной онлайн) Зависимости от времени плотности тока $j_z^0(t)$ в средней плоскости токового слоя (y = 0) и поперечных размеров слоя на уровнях плотности тока $j_z = 0.5j_z^0$ и $j_z = 0.1j_z^0$ в двух поперечных сечениях слоя: (a) – x = -0.8 см; (b) – x = -5 см. Условия эксперимента см. рис. 2

плазмы. В пределах токового слоя токи Холла образуют четыре замкнутых токовых контура, создавая квадрупольное магнитное поле B_z [22]. Вблизи средней плоскости слоя ($y \approx 0$) токи Холла направлены вдоль оси x от обоих боковых краев к середине слоя.

В процессе эволюции слоя токи Холла довольно быстро затухают, что проявляется в уменьшении B_z компоненты квадрупольного поля, рис. 4с. Затухание токов Холла связано с началом движения ионов вслед за электронами вдоль поверхности токового слоя в x направлении, от середины слоя к боковым краям. Время затухания токов Холла возрастает для ионов большей массы [22], что видно из сравнения зависимостей $B_z(t)$ для слоев, формировавшихся в плазме с ионами Ar или Kr, массы которых различаются вдвое, рис. 4с. Интервал времени, в течение которого в слое существуют токи Холла, качественно характеризует временную задержку, с которой происходит ускорение ионов.

Потоки плазмы, которые возникали в токовых слоях и двигались в x направлении, были обнаружены и изучались в ряде работ [18–20]. Скорости плазмы v_x со временем увеличивались, и во многих случаях средняя энергия направленного движения ионов W_x превышала тепловую энергию ионов. При развитии токового слоя в Ar плазме скорости направленного движения ионов достигали величин $v_x \cong (2-3) \cdot 10^6 \text{ см/с к}$ моментам времени $t \cong (2 \div 2.5)$ мкс [20].

5. Движение потоков плазмы со скоростями v_x в поперечном магнитном поле B_y должно приводить к возбуждению индукционных электрических полей $E'_z(x)$:

$$E'_{z}(x) = (1/c) \cdot \{v_{x}(x)B_{y}(x)\}.$$
(3)

Направление полей $E'_{z}(x)$ противоположно направлению исходного электрического поля E_z^0 , которое возбуждало ток J_z и приводило к формированию токового слоя. При этом локальная величина $E'_{z}(x)$ зависит как от скорости плазмы $v_x(x)$, так и от напряженности нормальной компоненты $B_{u}(x)$. В центральной области слоя $(|x| \cong 0)$ скорости малы, $|v_x| \cong 0$, но по мере движения плазмы от середины слоя к боковым краям скорости v_x увеличиваются. Нормальная компонента $|B_y|$ также мала в центре и значительно возрастает у боковых краев слоя $(|x| \gg 0)$, рис. 2b. Отсюда следует, что возникающие при движении потоков плазмы электрические поля $E'_{z}(x)$ должны быть существенно неоднородными в пределах слоя и должны резко увеличиваться у его боковых краев.

Под действием полей $E'_z(x)$ в токовом слое возбуждаются электрические токи j'_z противоположного направления по отношению к основному току в слое *j*_z. Суперпозиция основного и обратного токов приводит к уменьшению основного тока в пределах всего слоя, однако, в силу неоднородности $|v_x|$ и $|B_{y}|$ проявления этого эффекта различны в разных областях. В центральной области слоя электрические поля E'_{z} и, следовательно, обратные токи j'_z малы, основной ток максимален, и роль обратных токов незначительна. Напротив, вблизи боковых краев, где напряженность E'_z существенно увеличивается, обратные токи j'_z должны вносить определяющий вклад в суммарный ток, в особенности с учетом уменьшения основного тока на периферии слоя, рис. 3. Действительно, обратный ток появляется, прежде всего, на самом краю токового слоя, при $x \cong -(7 \div 8) \,\mathrm{cm}.$

У боковых краев токового слоя, при $|x| \cong (7 \div 8) \,\mathrm{cm}$, где $|B_y| \cong (2.5 \div 3.7) \cdot 10^3 \,\mathrm{\Gamma c}$ и скорости потоков Ar плазмы $|v_x| \cong 3 \cdot 10^6 \,\mathrm{cm/c}$, напряженность индукционного поля можно оценить как $E'_z \cong 90 \,\mathrm{B/cm}$. Начальное поле, которое при t = 0 составляло $E^0_z \cong 150 \,\mathrm{B/cm}$ и со временем уменьшалось, к моменту $t \cong 2.3 \div 3.0 \,\mathrm{mkc}$ не превышало $E^0_z \cong 40 \,\mathrm{B/cm}$. Таким образом, $|E'_z| > |E^0_z|$ у боковых

концов слоя, что позволяет объяснить появление обратных токов именно в этих пространственных областях.

Время появления обратных токов у боковых концов слоя естественно связать с приходом в эти области ускоренных потоков плазмы, которые двигаются в x направлении от середины слоя к его краям. Интервал времени, в течение которого плазменные потоки достигают достаточно больших скоростей, можно оценить на основании времени затухания токов Холла, которое увеличивается для плазмы с ионами большей массы, рис. 4с. Соответственно, наблюдается и более позднее появление обратных токов в токовых слоях, сформированных в плазме с более тяжелыми ионами, ср. рис. 4а и b.

6. Более быстрое уменьшение тока j_z^0 при x == -5 см по сравнению с центральной областью токового слоя ($x = -0.8 \,\mathrm{cm}$), начиная с момента t >> 2.5 мкс, рис. 5, также, по всей вероятности, вызывается появлением токов обратного направления. Однако при $x = -5 \, \text{см}$ величины B_y и v_x значительно меньше, чем у боковых концов слоя, так, $|B_{y}| \cong 1.1 \cdot 10^{3} \, \text{Гc}, \text{ рис. 2b. B}$ результате возникающие здесь обратные токи j'_z меньшей величины, чем у боковых краев слоя, непосредственно не наблюдаются, но приводят к эффекту более быстрого уменьшения плотности основного тока j_z^0 , чем в центре. В свою очередь, уменьшение тока j_z^0 и, следовательно, уменьшение тангенциальной компоненты магнитного поля B_x вызывали в поздние моменты времени уменьшение сил, которые ранее приводили к сжатию тока и плазмы в пределы слоя. Так, при $t \approx 4.0$ мкс силы сжатия были в ≈ 6 раз меньше, чем при $t \cong 2.5$ мкс, что приводило к утолщению токового слоя при x = -5 см.

Таким образом, генерация в токовом слое токов обратного направления проявляется, как в явном так и в неявном виде. В первом случае непосредственно регистрируются обратные токи, тогда как во втором наблюдается более быстрое уменьшение плотности основного тока и утолщение токового слоя.

7. Как следует из соотношения (2), в тех областях токового слоя, где возникли обратные токи, можно ожидать изменения направлений, как токов Холла, так и движения ионов вдоль поверхности слоя (вдоль оси x). Косвенные указания на изменение направления токов Холла в периферийных областях слоя были получены при анализе изменений отклонения токового слоя от средней плоскости во внешнем продольном магнитном поле B_z^0 [23].

В настоящей работе впервые представлены результаты, свидетельствующие об изменении направ-

Рис. 6. (Цветной онлайн) Распределения тока $I_z(x)$ в пределах области $|y| \leq 0.8 \,\mathrm{cm}$ и продольной компоненты квадрупольного магнитного поля B_z при y == +0.8 cм в последовательные моменты времени. Условия эксперимента: Ar, $p = 28 \,\mathrm{mTopp}; B_z = 0; h =$ = 0.57 кГс/см, $J_z^{\mathrm{max}} = 45 \,\mathrm{kA}$

ления токов Холла в тех областях слоя и в те моменты времени, когда возникали обратные токи, рис. 6. В ранний момент времени, t = 1.5 мкс, распределения вдоль ширины слоя линейного тока $I_z(x)$ и продольной компоненты магнитного поля $B_z(x)$, создававшейся токами Холла, соответствуют "классическому" слою с одним направлением тока I_z и квадрупольным полем $B_z(x)$ [22]. Однако при t = 2.1 мкс, когда в области $x = -(7 \div 8)$ см появился ток I_z обратного направления, в этой же области изменился знак B_z компоненты, что указывает на изменение направления токов Холла. В последующие моменты, t = 2.4; 3.0 мкс, квадрупольное поле B_z уменьшалось в центральной области слоя из-за затухания токов Холла, тогда как на краю, при $x \leq -6$ см, отрицательная B_z компонента увеличивалась синхронно с ростом обратного тока Iz. Это означает, что в областях, где появились обратные токи, движение электронов было направлено в противоположную сторону по сравнению с ранними моментами времени, т.е. от боковых краев к середине слоя.

В областях с обратными токами должно изменяться на противоположное и направление сил, которые ускоряют ионы, что может приводить к заметному замедлению движения плазменных потоков. Возможно, что с этим эффектом связан характер изменения со временем энергии потоков плазмы W_x , когда после стадии роста и достижения некоторого максимального значения энергия W_x довольно быстрого уменьшалась, см. [18, 20]. Можно предполагать, что обратные токи, возникшие в токовом слое благодаря движению потоков плазмы, затем вызывают торможение, либо даже прекращение движения этих потоков.

8. Выводы. Появление токов обратного направления в токовых слоях и их основные особенности интерпретируются в рамках концепции о возбуждении индукционных электрических полей при движении плазменных потоков в магнитном поле. Установлено, что возникающие электрические поля существенно неоднородны в пределах ширины токового слоя, что обусловлено неоднородным характером скоростей движения плазмы и напряженности нормальной компоненты магнитного поля. У боковых краев слоя индукционные поля достигают максимальных значений, где они могут превысить по абсолютной величине начальное электрическое поле, которое инициировало формирование токового слоя. Этот вывод согласуется с результатами эксперимента, согласно которым обратные токи действительно возникают у боковых краев слоя.

Показано, что момент появления обратных токов определяется интервалом времени, которое необходимо для ускорения плазмы. Время ускорения возрастает с увеличением массы ионов, что соответствует более позднему появлению обратных токов при формировании токового слоя в плазме с более тяжелыми ионами.

Показано, что сравнительно быстрое уменьшение плотности тока и увеличение поперечных размеров, или "утолщение", токового слоя вдали от центральной области вызывается появлением токов обратного направления не только у боковых краев, но в пределах всего токового слоя. Обратные токи меньшей величины не регистрировались непосредственно, но проявлялись косвенным образом.

В областях токового слоя с обратными токами впервые зарегистрированы токи Холла противоположных направлений по сравнению с токами Холла на ранних этапах эволюции слоя. Показано, что направление сил, которые ускоряют ионы, также должно изменяться на противоположное, что может вызывать торможение потоков плазмы.

Работа выполнена в рамках Государственного задания "Фундаментальные проблемы динамики, удержания и нагрева плазмы в трехмерных магнитных конфигурациях" # 0024-2018-0045.

- S.I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981).
- 2. D. Biscamp, *Magnetic Reconnection in Plasmas*, Cambridge Univ. Press, Cambridge (2000).
- Э. Прист, Т. Форбс, Магнитное пересоединение, Физматлит, М. (2005).
- 4. Б. Б. Кадомцев, УФН **151**, 3 (1987).
- Л. М. Зеленый, А. В. Артемьев, Х. В. Малова, А. А. Петрукович, Р. Накамура, УФН 180, 973 (2010).
- M. Yamada, R. Kurlsrud, and H. Ji, Rev. Mod. Phys. 82, 603 (2010).
- 7. А.Г. Франк, УФН **180**, 982 (2010).
- W. Baumjohann, A. Roux, O. Le Contel, R. Nakamura, J. Birn, M. Hoshino, A. T. Y. Lui, C. J. Owen, J.-A. Sauvaud, A. Vaivads, D. Fontaine, and A. Runov, Ann. Geophys. 25, 1365 (2007).
- A. V. Artemyev, A. A. Petrukovich, A. G. Frank, I. Y. Vasko, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 118, 2789 (2013).
- А. Г. Франк, А. В. Артемьев, Л. М. Зеленый, ЖЭТФ 150, 807 (2016).
- Е. В. Юшков, А. Г. Франк, А. В. Артемьев, А. А. Петрукович, Р. Накамура, Физика плазмы 44, 1126 (2018).
- 12. С.И. Сыроватский, ЖЭТФ 60, 1727 (1971).
- B. V. Somov, *Plasma Astrophysics*, Springer, N.Y. (2013), Pt. II.
- А. Г. Франк, С. Н. Сатунин, Физика плазмы 37, 889 (2011).
- A.G. Frank, N.P. Kyrie, and S.N. Satunin, Phys. Plasmas 18, 111209 (2011).
- A. G. Frank, Plasma Phys. Contr. Fusion **41**, Suppl. 3A, A687 (1999).
- 17. С. Ю. Богданов, Н. П. Кирий, В. С. Марков, А. Г. Франк, Письма в ЖЭТФ **71**, 72 (2000).
- Н. П. Кирий, В. С. Марков, А. Г. Франк, Физика плазмы 36, 387 (2010).
- А. Г. Франк, Н. П. Кирий, В. С. Марков, Е. В. Воронова, Физика плазмы 44, 483 (2018).
- Н. П. Кирий, А. Г. Франк, Д. Г. Васильков, Физика плазмы 45, 313 (2019).
- A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Lett. A 373, 1460 (2009).
- 22. A.G. Frank, S.G. Bugrov, and V.S. Markov, Phys. Plasmas 15, 092102 (2008).
- А. Г. Франк, С. Н. Сатунин, Письма в ЖЭТФ 100, 83 (2014).