Pis’ma v ZhETF, vol. 112, iss. 10, pp. 686 - 687
© 2020 November 25
Can the highly symmetric SU (4) spin-orbital model be realized
in α-ZrCl3?
A. V. Ushakov+, I. V. Solovyev+∗×, S. V. Streltsov+∗1)
+Institute of Metal Physics, Russian Academy of Sciences, 620041 Ekaterinburg, Russia
Ural Federal University, 620002 Ekaterinburg, Russia
×International Center for Materials Nanoarchitectonics, National Institute for Materials Science,
1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Submitted 1 October 2020
Resubmitted 12 October 2020
Accepted 18
October 2020
DOI: 10.31857/S1234567820220097
Highly symmetric models play a special role not only
α-ZrCl3 at temperatures ∼ 500 K in the same way they
in the condensed matter physics, but in a whole physics.
do in Li2RuO3 [18].
A special efforts were put into studying of highly sym-
We found that α-ZrCl3 appears to be an insulator
metric spin and spin-orbital models, since they are im-
even at the GGA level in contrast to metallic α-RuCl3.
portant for description of magnetic materials. In partic-
The lowest in energy t2g orbitals looking towards each
ular it was shown that in case of the common-face geom-
other in edge-sharing geometry form molecular orbitals
etry the Kugel-Khomskii spin-orbital Hamiltonian has
and this results in strong bonding-antibonding splitting
unexpectedly high symmetry [1, 2]. Another example is
seen in the density of states plot (Fig.1). Two electrons
the Kitaev model, which naturally appears in layered
of the dimer occupy the bonding state leading to the in
materials with the honeycomb lattice and heavy transi-
the non-magnetic ground state, while α-RuCl3 is mag-
tion metal ions, such as Ir4+ or Ru3+ [3-7] with a pos-
netic.
sibility of spin-liquid ground state realization. Recently
Yamada and co-authors [8] noticed that α-ZrCl3 with
one electron residing in the relativistic jeff = 3/2 man-
ifold can be a physical realization of SU(4) symmetric
spin-orbital model.
In the present paper we performed ab initio study to
check the hypothesis about realization of this model in
α-ZrCl3. We used the generalized gradient approxima-
tion (GGA) [9] and projector augmented-wave (PAW)
method as realized in the VASP code [10] for the calcu-
lations.
We used data of α-RuCl3 [6] for the structural opti-
mization of α-ZrCl3 as a starting point and relaxed all
possible parameters in magnetic GGA. As a result α-
ZrCl3 dimerizes (Zr-Zr distance turns out to be smaller
than in Zr metal [11]). The dimers are parallel to each
other. Similar dimerization has been observed in α-
RuCl3 under pressure [12], TiCl3 [13] and many other ti-
tanites [14-17]. While the lowest in energy configuration
corresponds to parallel dimers, the other one with arm-
chair geometry is rather close in energy and one might
expect that dimers might start to flow over the lattice in
Fig. 1. (Color online) The partial densities of states of α-
ZrCl3 calculated in the GGA and GGA + U + SOC ap-
proximations for the dimerized structure with parallel
1)e-mail: streltsov.s@gmail.com
dimers
686
Письма в ЖЭТФ том 112 вып. 9 - 10
2020
Can the highly symmetric SU(4) spin-orbital model be realized in α-ZrCl3?
687
Further we construct an effective five-orbital
4.
S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den
Hubbard-type model for Zr 4d bands using the Wannier
Brink, Y. Singh, P. Gegenwart, and R. Valenti, J. Phys.
Cond. Matt. 29, 493002 (2017).
functions technique and dimerized crystal structure,
obtained from the optimization in the frameworks of
5.
H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and
S. E. Nagler, Nat. Rev. Phys. 1, 264 (2019).
GGA [19]. Without spin-orbit coupling, the t2g levels
6.
R. D. Johnson, S. C. Williams, A. A. Haghighirad,
are split by 8 and 186 meV, separating the lowest-middle
J. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li,
and middle-highest levels, respectively. The spin-orbit
H. O. Jeschke, R. Valenti, and R. Coldea, Phys. Rev.
coupling constant has been estimated to be about
B 92, 235119 (2015).
70 meV. It additionally splits the lowest t2g levels.
7.
J. Zheng, K. Ran, T. Li, J. Wang, P. Wang, B. Liu,
Thus, the crystal field, though not particularly strong,
Z. Liu, B. Normand, J. Wen, and W. Yu, Phys. Rev.
lifts the orbital degeneracy, substantially modifies the
Lett. 119, 227208 (2017).
jeff = 3/2 character of the lowest energy states and kills
8.
M. G. Yamada, M. Oshikawa, and G. Jackeli, Phys. Rev.
SU(4) invariance of the spin-orbital model.
Lett. 121, 97201 (2018).
The hopping integrals connecting occupied (o) states
9.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
and unoccupied (u) states of the nearest sites i and
Lett. 78, 1396 (1997).
j have been calculated to be tooij = -1.262 eV and
10.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
touij = 0.136 eV in α-ZrCl3. A very large hopping be-
(1996).
tween occupied orbitals results in bonding-antibonding
11.
S. V. Streltsov and D. I. Khomskii, Physics-Uspekhi 60,
splitting ∼ 2.5 eV. Using superexchange theory and esti-
1121 (2017).
mates for U and JH we found exchange coupling of the
12.
G. Bastien, G. Garbarino, R. Yadav, F. J. Martinez-
Casado, R. Beltrán Rodr´ıguez, Q. Stahl, M. Kusch,
Heisenberg model as rather weak J ∼ 0.26 meV. The
S. P. Limandri, R. Ray, P. Lampen-Kelley, D.G. Man-
constrained random phase approximation (cRPA) [19]
drus, S. E. Nagler, M. Roslova, A. Isaeva, T. Doert,
yields U = 1.53 and JH = 0.58 eV. These values were
L. Hozoi, A. U. B. Wolter, B. Büchner, J. Geck, and
used in the subsequent GGA + U + SOC calculations.
J. van Den Brink, Phys. Rev. B 97, 241108 (2018).
Basically U renormalizes GGA energy differences be-
13.
S. Ogawa, J. Phys. Soc. Japan 15, 1901 (1960).
tween different solutions discussed above, but it does
14.
M. Isobe, E. Ninomiya, A. N. Vasil’ev, and Y. Ueda,
not change the ground state of α-ZrCl3.
J. Phys. Soc. Jpn. 71, 1423 (2002).
One may notice, that formation of molecular or-
15.
S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 77,
bitals helps to quench orbital moment, which is tiny
064405 (2008).
(∼ 10-3µB) for α-ZrCl3. However, in some dimerized or
16.
A. Seidel, C. A. Marianetti, F. C. Chou, G. Ceder, and
trimerized structures the spin-orbit coupling may play
P. A. Lee, Phys. Rev. B 67, 20405 (2003).
some role [20-22].
17.
M. Schmidt, W. Ratcliff, P. G. Radaelli, K. Refson,
S. Streltsov is grateful to A. Gubkin for help with
N. M. Harrison, and S. W. Cheong, Phys. Rev. Lett. 92,
analysis of structural data in [23], to H. Jeschke for con-
56402 (2004).
sultations on the crystal optimization of α-RuCl3 and
18.
S. A. J. Kimber, I. I. Mazin, J. Shen, H. O. Jeschke,
especially to G.Jackeli and D.I.Khomskii for various
S. V. Streltsov, D.N. Argyriou, R. Valenti, and
D. I. Khomskii, Phys. Rev. B 89, 081408 (2014).
stimulating discussions on spin-orbital physics.
19.
I. V. Solovyev, J. Phys.: Condens. Matter 20, 293201
This work was supported by the Russian Science
(2008).
Foundation through RSF 20-62-46047 research grant.
20.
J. Terzic, J. C. Wang, F. Ye, W. H. Song, S. J. Yuan,
Full text of the paper is published in JETP Letters
S. Aswartham, L. E. DeLong, S. V. Streltsov,
journal. DOI: 10.1134/S002136402022004X
D. I. Khomskii, and G. Cao, Phys. Rev. B
91,
235147 (2015).
21.
S. V. Streltsov, G. Cao, and D. I. Khomskii, Phys. Rev.
1. K. I. Kugel, D. I. Khomskii, A. O. Sboychakov, and
B 96, 014434 (2017).
S. V. Streltsov, Phys. Rev. B 91, 155125 (2015).
22.
E. V. Komleva, D. I. Khomskii, and S. V. Streltsov,
2. D. I. Khomskii, K. I. Kugel, A. O. Sboychakov, and
arXiv:2007.15230.
S. V. Streltsov, JETP 122, 484 (2016).
23.
B. Swaroop and S. N. Flengas, Can. J. Phys. 42, 1886
3. G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,
(1964).
017205 (2009).
Письма в ЖЭТФ том 112 вып. 9 - 10
2020