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Classification of emergent Weyl spinors in multi-fermion systems
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Electrons in solids are described by multi-component

spinors carrying band index. However, at low energies

we may describe electrons by effective spinors with the

essentially reduced number of components. Only those

energy bands are relevant that cross Fermi energy. In

Dirac/Weyl semimetals with Fermi points the emergent

spinors are two component if Fermi energy is close to

the position of the Fermi points. Due to the repulsion

of energy levels the Fermi points are unstable unless

they are protected by topology. Therefore, the effective

description in terms of the two-component spinors typi-

cally survives in the case when the topological invariants

protecting the Fermi points are nonzero.

In the present paper we extend the existing classi-

fication [1] of Weyl points into two directions. First of

all, we notice that in general case of interacting systems

the two topological invariants N3 and N
(3)
3 may be in-

troduced. Both are composed of the Green functions.

They become different in general case. As a result in

case of the minimal values N3, N
(3)
3 = ±1 we obtain the

four topologically distinct types of Weyl fermions. We

call two of them the left-handed and the right-handed

particles, and the other two – the left-handed and the

right-handed “anti-particles”. The latter types of Weyl

points are referred to as the anti-Weyl points, they may

appear only in the presence of interactions. This classi-

fication extends the conventional one, which considers

the two types of relativistic Weyl fermions – the left-

handed, and the right-handed. Another direction for the

extension of the classification of emergent Weyl fermions

is related to consideration of the non-homogeneous sys-

tems following methodology of [2].

We start from the consideration of equilibrium con-

densed matter system with the n-component spinors ψ

at zero temperature. Let us consider the Green functon
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〈x1, t1|Ĝ|x2, t2〉 =
−i
Z

∫

DψDψ̄DΦexp
(

iR[Φ] + (1)

+ i

∫

dt
∑

x

ψ̄x(t)(i∂t − Ĥ(Φ)e−iǫ)ψx(t)
)

ψx1
(t1)ψ̄x2

(t2).

Here hamiltonian Ĥ(Φ) is a Hermitian operator depend-
ing on the field Φ, which provides interactions, R[Φ] is
its action. Sum over points of coordinate space is to be
understood as an integral over d3x for continuous co-
ordinate space. However, we may also consider lattice
tight-binding models, in which case we have the sum
over the lattice points. Factor e−iǫ is introduced here in
order to point out how the poles in Feynmann diagrams
are to be treated. ǫ is assumed to be very small.

Several branches of spectrum of Ĥ repel each other.
Therefore, the minimal number nreduced = 2 of branches
are able to cross each other. And this minimal number
is fixed by topology of momentum space. Let us con-
sider the position of the crossing of 2 branches of Ĥ . At
low energies (close to the Fermi level coinciding with the
branch crossing point) the contribution to the physical
observables of the reduced two-component fermions Ψ,
Ψ̄ dominates over the contribution of the gapped ones.

In the homogeneous case the Green function may be
written as 〈x1, t1|Ĝ|x2, t2〉 = G(t1 − t2, x− y). In order
to construct the topological invariants responsible for
the stability of Fermi points we may also use the Green
function of the reduced low energy theory

G(t1 − t2, x− y) =
−i
Z

∫

DΨDΨ̄DΦ×

× exp
(

iR[Φ]
)

exp
(

i

∫

dt
∑

x

Ψ̄x(t)(im
′
Φ,aσ

a∂t +

+ [µm′Φ,aσ
a −mL

Φ,k(p̂)σ̂
k −mΦ(p̂)]e

−iǫ)Ψx(t)
)

×
×Ψx(t1)Ψ̄y(t2). (2)

Here p is momentum, σa are Pauli matrices, while
mL, m, and m′ are the functions of momenta depend-
ing also on the field Φ. The latter is assumed to be
slowly varying, so that the commutators [p̂,Φ] may
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be neglected. Then we compose the Fourier transform
G(P0, P1, P2, P3) of the Green function. We substitute
to G(P0, P1, P2, P3) the values P0 = iω and Pj = pj for
j = 1, 2, 3. The first topological invariant is given by

N3 =
1

3! 4π2

∫

Σ

Tr
[

G(ω,p)dG−1(ω,p) ∧

∧ dGH(ω,p) ∧ dG−1H (ω,p)
]

. (3)

Here Σ is the three-dimensional hypersurface surround-
ing the Fermi point in 4D momentum space (composed
of 3D momentum space and the axis of ω = p4).

In addition, we define

GH(ω,p) =
1

iω −G(0,p)−1 . (4)

The second topological invariant is defined as

N
(3)
3 =

1

3! 4π2

∫

Σ

Tr
[

GH(ω,p)dG−1H (ω,p) ∧

∧ dGH(ω,p) ∧ dG−1H (ω,p)
]

. (5)

For the minimal values of N3 and N
(3)
3 we classify

the Weyl points according to the following Table 1.

Table 1. Weyl fermions and values of topological invariants

Fermion type N3 N
(3)
3

Left-handed Weyl point +1 +1

Right-handed Weyl point -1 -1

Left-handed anti-Weyl point +1 -1

Right-handed anti-Weyl point -1 +1

In the systems with weak inhomogeneity as above
one may define the two topological invariants. We define

Wigner transformation of Green function G
(M)
W (p, x) =

=
∫

d4〈x+ r/2|Ĝ|x− r/2〉ei(p0r0−pr). Wick rotation we
introduce p0 = iω = iP4, and Pj = pj for j = 1, 2, 3;
x0 = −iX4, Xj = xj , and denote the Euclidean
Wigner transformation of Green function: GW (P,X) =

G
(M)
W (p, x). We also defineQW that obeysQW ∗GW = 1.

Here by ∗ we denote the Moyal product

∗ = e
i

2
(
←−−
∂
Xi

−−→
∂Pi
−
←−−
∂Pi

−−→
∂
Xi ).

The first topological invariant is given by

N3 =
1

3! 4π2 |V|

∫

Σ

∫

d3X Tr
[

GW (P,X) ∗ dQW (P,X)

∗ ∧ dGW (P,X) ∗ ∧dQW (ω, P,X)
]

. (6)

|V| is the three-volume of the system. Here Σ is the
three-dimensional hypersurface surrounding the singu-
larity M(i) of expression standing inside the integral.

The general procedure for the construction of such in-
variants has been proposed in [2]. In addition, we define

QH,W = iω −QW (P,X)
∣

∣

∣

ω=0

and GH,W obeys

QH,W ∗GH,W = 1.

Then the second topological invariant can be defined as

N
(3)
3 =

1

3! 4π2 |V|

∫

Σ

∫

d3X Tr
[

GH,W (P,X) ∗ (7)

dQH,W (P,X) ∗ ∧dGH,W (P,X) ∗ ∧dQH,W (ω, P,X)
]

.

Thus we come to an unexpected conclusion: in gen-
eral case in multi-fermion systems with minimal values

of N3, N
(3)
3 = ±1 the emergent Weyl fermions appear

in four rather than two topologically different classes.

The appearance of anti-Weyl points with N3 = −N (3)
3

has sense only in the presence of the conventional Weyl

fermions with N3 = N
(3)
3 . Without the latter R trans-

formation Ψ → −Ψ, Ψ̄ → Ψ̄ brings Weyl fermions to

the type of “particles” with N3 = N
(3)
3 . At the same

time if both types of Weyl fermions co-exist, the inter-
esting phenomena may occur. For example, a couple of

Weyl fermions (N3, N
(3)
3 ) = (−1,−1) and (−1,+1) may

merge giving marginal Weyl point with (N3, N
(3)
3 ) =

= (−2, 0). We gave an example of the lattice condensed
matter system, in which two right-handed Weyl points
exist. One of them is of the type of a Weyl point while
another one is of the type of the anti-Weyl point. Chang-
ing smoothly parameter α of the system it is possible to
bring it to the state, in which the Weyl point and the
anti-Weyl point merge giving the marginal Weyl point

with N3 = −2 and N
(3)
3 = 0.

We would like to notice that the classification pre-
sented here may be relevant for the high energy physics
and applications of quantum field theory to cosmology
(see [3, 4] and references therein). Then the appearance
of the four (rather than two) topologically distinct types
of Weyl fermions may be assumed from the very be-
ginning. Such a construction may be relevant for the
proper theory of quantum gravity, which should include
the strong fluctuations of vierbein giving rise to all four
types of the Weyl points [4].

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134/S0021364021070031
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