Изменение критической температуры халькогенидов железа под влиянием примесных фаз и сверхстехиометрического железа

И. И. Гимазов⁺, А. Г. Киямов^{*}, Н. М. Лядов⁺, А. Н. Васильев^{$\times \circ$}, Д. А. Чареев^{$\times \nabla$}, Ю. И. Таланов⁺¹)

+Казанский физико-технический институт им. Е.К.Завойского РАН, 420029 Казань, Россия

*Казанский федеральный университет, 420008 Казань, Россия

[×] Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия

^оУральский федеральный университет, 620002 Екатеринбург, Россия

⊽Институт экспериментальной минералогии РАН, 142432 Черноголовка, Россия

Поступила в редакцию 22 декабря 2020 г. После переработки 2 марта 2020 г. Принята к публикации 2 марта 2020 г.

Результаты измерения транспортных и магнитных параметров кристаллов халькогенидов железа $Fe_{1+y}Se_xTe_{1-x}$ проанализированы с учетом данных о химическом составе и наличии примесных фаз, полученных с помощью рентгеновской дифрактометрии. Установлено, что ионы избыточного (сверхстехиометрического) железа, так же как и примесные фазы, вызывают напряжения в кристаллической решетке, и это приводит к повышеню температуры перехода в сверхпроводящее состояние. Количество примесных включений в результате спинодального распада растет со временем, что также способствует повышению критической температуры.

DOI: 10.31857/S1234567821070053

1. Введение. Ранее было установлено [1], что повышение критической температуры T_c при замене части селена в соединении FeSe на теллур происходит из-за возникновения напряжений в кристаллической решетке FeTe_{1-x}Se_x. Эти напряжения действуют аналогично внешнему гидростатическому давлению, которое, как известно [2], вызывает рост T_c в FeSe. В таких случаях принято говорить о возникновении внутреннего (или химического) давления в материалах [3]. Снятие внутрикристаллических напряжений путем отжига и медленного охлаждения кристаллов FeTe_{1-x}Se_x приводит к уменьшению доли сверхпроводящей фазы вплоть до 0 [1].

Еще одним фактором, существенно влияющим на сверхпроводящие свойства соединений $\text{FeTe}_{1-x}\text{Se}_x$, является избыточное (сверхстехиометрическое) железо Fe_{exc} , которое практически всегда возникает при синтезе и выращивании кристаллов комплексных (содержащих и Se и Te) халькогенидов железа. Поэтому корректная химическая формула этих соединений записывается как $\text{Fe}_{1+y}\text{Te}_{1-x}\text{Se}_x$ ($x = 0 \div 1$; $y = 0 \div 0.2$). Эффекты избыточного железа разнообразны и неоднозначны по своей направленности.

С одной стороны, дополнительные ионы железа повышают концентрацию свободных электронов и, тем самым, должны улучшать проводимость материала. С другой стороны, их магнитные моменты, не встроенные в регулярную антиферромагнитную решетку, служат дополнительными центрами рассеяния носителей тока, ухудшая проводящие и сверхпроводящие свойства материала [4]. Внедряемые в междоузлье решетки атомы Fe_{exc} создают в ней напряжения, что, как известно [3, 5], должно вызывать повышение T_c . Поэтому избыточное железо неоднозначно воздействует на транспортные характеристики кристаллов $\operatorname{Fe}_{1+y}\operatorname{Te}_{1-x}\operatorname{Se}_x$, что нашло свое отражение в противоречивости выводов о его роли, опубликованных в периодической научной литературе (см., например, [6-9]).

Задача настоящей работы заключается в прояснении влияния избыточного железа и примесных фаз на транспортные и сверхпроводящие свойства кристаллов $Fe_{1+y}Te_{1-x}Se_x$. Для решения этой задачи мы использовали резистивные, магнитные и спектроскопические методы исследования. Химический состав исследованных образцов определялся с помощью энергодисперсионной спектроскопии, а для структурного и фазового анализа применялась порошковая рентгеновская дифрактометрия.

 $^{^{1)}{\}rm e\text{-mail: gimazov@kfti.knc.ru}}$

Номинальный химический	Реальный состав свеже-	Реальный состав образцов	
состав образцов	приготовленных образцов	после двухлетнего хранения	
FeSe	$Fe_{0.99}Se_{1.01}$	$Fe_{1.12}Se_{1.00}$	
$\mathrm{FeTe}_{0.4}\mathrm{Se}_{0.6}$	$Fe_{1.08}Te_{0.44}Se_{0.56}$	$Fe_{1.19}Te_{0.46}Se_{0.54}$	
$\mathrm{FeTe}_{0.5}\mathrm{Se}_{0.5}$	$Fe_{1.04}Te_{0.49}Se_{0.51}$	$Fe_{1.22}Te_{0.52}Se_{0.48}$	
$FeTe_{0.7}Se_{0.3}$	$Fe_{1.01}Te_{0.67}Se_{0.33}$	${\rm Fe_{1.20}Te_{0.70}Se_{0.30}}$	
$FeTe_{0.9}Se_{0.1}$	$Fe_{1.19}Te_{0.91}Se_{0.09}$	_	

Таблица 1. Номинальный и реальный состав исследованных образцов (свежеприготовленных и после двухлетнего хранения в сухой атмосфере)

2. Экспериментальная техника и методы измерений. В данной работе исследовались монокристаллы $\operatorname{Fe}_{1+y}\operatorname{Te}_{1-x}\operatorname{Se}_x$ с различным содержанием железа ($y = 0 \div 0.27$); соотношение содержания теллура и селена варьировалось от 0 до 0.9. В таблине 1 приведен список исследованных образнов, их номинальный и реальный состав, определенный сразу после приготовления и после длительного (примерно 2 года) хранения в эксикаторе с сухим воздухом. Монокристаллы выращивались методом кристаллизации из раствора в расплаве. Процедура выращивания подробно изложена в работе [10]. Точный химический состав образцов определялся с помощью блока энергодисперсионной рентгеновской спектроскопии (EDX), встроенного в сканирующий электронный микроскоп Carl Zeiss EVO 50 XVP. EDX анализ показал, что кристалл без теллура имеет состав, близкий к стехиометрическому: Fe_{0.99}Se_{1.01}. Образцы с теллуром имели значительный избыток железа сверх стехиометрии (см. табл. 1). Доля избыточного железа Fe_{exc} становится значительно больше после двухгодичного хранения образцов. Кроме того, после хранения спектры EDX обнаруживают присутствие кислорода в образцах, что свидетельствует о химическом взаимодействии поверхностных слоев кристаллов $\operatorname{Fe}_{1+y}\operatorname{Te}_{1-x}\operatorname{Se}_x$ с атмосферным кислородом.

Для определения температуры перехода образцов в сверхпроводящее состояние использовались измерения высокочастотной магнитной восприимчивости с помощью системы из трех катушек: возбуждающей, приемной (с образцом) и компенсирующей [11]. Измерения проводились на частоте 1.37 кГц. Температурная зависимость магнитной восприимчивости двух исследованных образцов показана на рис. 1. Согласно этим данным, объемная доля сверхпроводящей фазы в кристалле FeSe близка к 100 %. При добавлении теллура эта доля значительно уменьшается. Этот факт согласуется с данными мюонных исследований [12], а также с транспортными и магнитными измерениями [13], которые показали, что в соединениях $\operatorname{FeTe}_{1-x}\operatorname{Se}_x$ с $x \leq 0.5$ сверхпроводимость имеет необъемный характер. В то же время

Рис. 1. (Цветной онлайн) Температурная зависимость высокочастотной магнитной восприимчивости свежеприготовленных образцов FeSe и Fe_{1.08} Te_{0.44} Se_{0.56}. Переход в сверхпроводящее состояние, выраженный возникновением и ростом диамагнитной восприимчивости, в образце Fe_{1.08} Te_{0.44} Se_{0.56} намного шире и меньше по величине по сравнению с таковым в FeSe. Измерения сделаны в постоянном магнитном поле $H_a = 25$ Oe, направленном перпендикулярно плоскости *ab* кристалла, на частоте 1.37 кГц

температура начала перехода в сверхпроводящее состояние T_c^{on} в этих кристаллах достаточно высокая ($T_c^{\text{on}} = 12.5 \text{ K} \text{ y Fe}_{1.08} \text{Te}_{0.44} \text{Se}_{0.56}$).

Проводящие свойства кристаллов оценивались по величине и температурной зависимости электросопротивления в интервале от 4 до 300 К. Измерение сопротивления проводилось стандартным четырехконтактным способом на постоянном токе величиной 3.6 мA. Токовые и потенциальные контакты крепились с помощью серебряной проводящей пасты на плоскости *ab* кристалла. Таким образом измерялась продольная составляющая сопротивления R_{ab} , которая потом пересчитывалась в удельное сопротивление ρ с учетом размеров кристалла.

3. Результаты и обсуждение. Чтобы решить поставленную задачу – определение роли избыточного железа и примесных фаз на транспортные и сверхпроводящие свойства халькогенидов железа $Fe_{1+y}Te_{1-x}Se_x$, мы анализировали данные о структуре, химическом составе и наличии примесных фаз вместе с результатами измерения сопротивления и высокочастотной магнитной восприимчивости серии кристаллов с изменяющимся в широких пределах соотношением Te/Se. Также осуществлялся контроль содержания железа, его соответствие стехиометрическому составу соединения либо превышение такового. Как оказалось, такие характеристики объектов исследования претерпевают значительные изменения со временем их длительного хранения в атмосфере сухого воздуха. Поэтому анализ этих изменений и соответствующих изменений транспортных и сверхпроводящих параметров дает дополнительные сведения об исследованных эффектах.

На рисунке 2 приведены температурные зависимости удельного сопротивления ρ трех исследованных кристаллов $\operatorname{Fe}_{1+u}\operatorname{Te}_{1-x}\operatorname{Se}_x$. Измерения проводились в нулевом магнитном поле. Для удобства сравнения величины $\rho(T)$ пронормированы на величину удельного сопротивления при температуре 250 К. Видно, что сопротивление кристалла FeSe имеет металлический характер во всем интервале температур от сверхпроводящего перехода до 250 К, причем средний наклон $\rho(T)$ – довольно значительный и характеризуется отношением $\rho(300 \, \text{K}) / \rho(10 \, \text{K}) = 19$. На зависимости $\rho(T)$ при температуре около 90 K отчетливо наблюдается излом, обусловленный переходом от тетрагональной структуры к орторомбической. Все эти факты, так же как узкий переход в сверхпроводящее состояние при $T = 9 \,\mathrm{K}$, свидетельствуют о высоком качестве данного кристалла FeSe и его хорошей однородности.

Рис. 2. (Цветной онлайн) Температурная зависимость нормированного удельного сопротивления $\rho(T)/\rho(250 \text{ K})$ трех исследованных образцов: 1 - FeSe; $2 - \text{Fe}_{1.19} \text{Te}_{0.91} \text{Se}_{0.09}$; $3 - \text{Fe}_{1.08} \text{Te}_{0.44} \text{Se}_{0.56}$

Совсем иная картина наблюдается на кристаллах, содержащих теллур. Зависимость $\rho(T)$ этих образцов имеет прыжковый (полупроводниковый) характер (рис. 2, зависимости 2 и 3). Это связано с наличием избыточного железа Fe_{exc}, которое значительно усиливает рассеяние носителей тока и приводит к их слабой локализации [4]. Как было установлено в ходе рентгеноструктурных исследований [6], ионы сверхстехиометрического железа локализуются в плоскости халькогенов. Такое расположение приводит к тому, что ионы Fe_{exc} действуют не только как поставщики дополнительных электронов в зону проводимости, но и как эффективные центры рассеяния носителей тока, которые при достаточно большой концентрации создают эффект слабой локализации. Этот эффект проявляет себя в форме температурной зависимости сопротивления активационного типа в образцах $\operatorname{Fe}_{1+y}\operatorname{Te}_{1-x}\operatorname{Se}_x$, содержащих большое количество Fe_{exc} (см. рис. 2).

Широкий переход в сверхпроводящее состояние $(5 \div 6 \text{ K})$ также свидетельствует о значительной неоднородности кристаллов $\text{Fe}_{1+y}\text{Te}_{1-x}\text{Se}_x$. В то же время температура начала сверхпроводящего перехода T_c^{on} оказалась достаточно высокой: 14.6 K в кристалле $\text{Fe}_{1.08}\text{Te}_{0.44}\text{Se}_{0.56}$ и 12.5 K в $\text{Fe}_{1.19}\text{Te}_{0.91}\text{Se}_{0.09}$. Очевидно, что неоднородность образцов оказывает двоякое действие на их свойства. С одной стороны, она ухудшает их проводимость, а с другой – возникающие в кристаллах механические напряжения (так называемое "химическое давление") приводят к повышению критической температуры T_c [1].

Чтобы определить, с какими посторонними фазами связаны неоднородность кристаллической структуры и внутренние напряжения, возникающие в ней, были выполнены рентгеноструктурный и фазовый анализы кристаллов, проявляющих неоднородность в виде широкого сверхпроводящего перехода и сопротивления активационного типа. Пример рентгеновской дифрактограммы одного из таких образцов (Fe_{1.19}Te_{0.46}Se_{0.54}) показан на рис. 3. Как можно видеть на этом графике, в кристалле присутствует несколько посторонних фаз: Fe₃O₄, Fe₇Se₈ и Fe₃Se_{2.1}Te_{1.8}. Такие фазы были обнаружены ранее и другими авторами, изучавшими свойства кристаллов Fe_{1+u}Se_xTe_{1-x} [1, 14–17]. Магнетит Fe₃O₄ образуется на поверхности халькогенидов железа при контактах с кислородом атмосферы [18]. Линия кислорода появляется в спектрах EDX после длительного хранения кристаллов в эксикаторе с сухой атмосферой. Присутствие фазы Fe₃O₄ подтверждается измерениями магнитной восприимчивости в зависимости от температуры. На рисунке 4 приведена

Рис. 3. (Цветной онлайн) Рентгеновская дифрактограмма монокристалла $Fe_{1.19}Te_{0.46}Se_{0.54}$, растертого в порошок (черная кривая). Излучение Cu-K_α. Красными вертикальными штрихами в нижней части графика отмечены рассчитанные для этого соединения позиции брегговских пиков. Положения пиков возможных примесных фаз обозначены значками: треугольники (\mathbf{v}) – Fe_3O_4 ; кружки (\circ) – Fe_7Se_8 ; звездочки (*) – $Fe_3Se_{2.1}Te_{1.8}$. На вставке изображена структура кристаллической решетки соединения $Fe_{1+y}Te_{1-x}Se_x$, рассчитанная с помощью программы Diamond (ver. 3.2k) по данным рентгеноструктурного анализа (табл. 2). Положение ионов стехиометрического Fe(I) и избыточного Fe(II) железа обозначено темными и светлыми серыми сферами соответственно

Таблица 2. Параметры кристаллической структуры размолотого в порошок кристалла Fe_{1.19}Te_{0.46}Se_{0.54}, полученные с помощью полнопрофильного анализа дифрактограммы по методу Ритвельда с использованием программы FullProf [22]

Группа симметрии: P4/nmm						
Параметры решетки (Å, градусы)						
a	b	c	α	β	γ	
3.7989	3.7989	5.9272	90.0	90.0	90.0	
Положение ионов в элементарной ячейке						
	S^*	x	y	z	\mathbf{K}'	
Fe(I)	2a	0.75	0.25	0.00000	1.000	
Fe(II)	2c	0.25	0.25	0.76984	0.136	
Se	2c	0.25	0.25	0.26858	0.550	
Te	2c	0.25	0.25	0.26858	0.450	

S* – позиция, К' – коэффициент заполнения.

соответствующая зависимость для одного из образцов, Fe_{1.22}Te_{0.52}Se_{0.48}. На высокотемпературной части графика ($T > T_c$) отчетливо виден излом при $T \simeq 120$ K, характерный для магнитных фазовых переходов. В работах [14, 19] было предложено объяснение этой особенности кривой $\chi(T)$ наличием в

Рис. 4. (Цветной онлайн) Температурная зависимость высокочастотной магнитной восприимчивости монокристалла с номинальным составом FeTe_{0.5}Se_{0.5} (свежеприготовленный – красные линии; после длительного хранения – синие). Ступенька при температуре около 120 К обусловлена антиферромагнитным упорядочением примесной фазы Fe₃O₄. На вставке показан сверхпроводящий переход в увеличенном масштабе

образце примесной фазы магнетита Fe_3O_4 , который претерпевает фазовый переход от кубической к низкотемпературной моноклинной структуре, существующей ниже $T_v = 120 \div 125$ К (переход Вервея) [20, 21].

Помимо наличия примесных фаз, рентгеноструктурный анализ позволил выявить и определить положение ионов избыточного железа (табл. 2). Расчеты показали, что ионы Fe_{exc} располагаются в плоскости халькогенов (см. вставку на рис. 3). Эта позиция обозначается символом Fe(II) в отличие от позиции стехиометрического железа Fe(I). Оценки степени занятости позиций Fe(II) в кристаллах после двухгодичного хранения дают величину $0.14 \div 0.20$, что хорошо согласуется со значениями процентного содержания железа, полученными с помощью фотоэлектронной спектроскопии EDX (табл. 1).

Важную информацию о влиянии примесных фаз можно получить из долговременных наблюдений за составом и транспортными характеристиками образцов. (Отметим, что кристаллы хранятся в атмосфере сухого воздуха.) EDX анализ химического состава образцов, сделанный с интервалом в два года, показал, что соотношение элементов заметно изменяется с течением времени. Существеннее всего меняется процентный состав железа: в некоторых образцах он возрастает на ~10 ат.%. Кроме того, незначительно меняется соотношение Te/Se в пользу теллура, в пределах 2 ат.%. Как такие изменения отражаются на свойствах кристаллов $Fe_{1+y}Te_{1-x}Se_x$, можно видеть на рис. 4 и 5.

Рис. 5. (Цветной онлайн) Температурная зависимость сопротивления трех образцов $\operatorname{Fe}_{1+y}\operatorname{Se}_x\operatorname{Te}_{1-x}$, демонстрирует, как изменяется их химический состав и переход в сверхпроводящее состояние при длительном хранении в сухой кислородной атмосфере. Черные точки – R(T) свежеприготовленного кристалла, красные точки получены по прошествии двух лет

Изменение сверхпроводящего перехода кристалла FeSe с ростом доли Fe_{exc} показано на рис. 5а. Переход становится более широким, T_c слегка понижается. Такое поведение критической температуры вполне согласуется с результатами других ранее опубликованных работ (см., например, [23]). Однако в кристаллах с теллуром все происходит по-другому: T_c не только не снижается, но даже взрастает в некоторых случаях (см. рис. 5b, с). Кроме того, переход становится значительно уже, а объемная доля сверхпроводящей фазы существенно возрастает, как это видно по результатам измерений магнитной восприимчивости до и после хранения образцов (см. вставку рис. 4).

Объяснение такого поведения можно сделать на основе предположения о спинодальном распаде соединений $Fe_{1+y}Te_{1-x}Se_x$, выдвинутом в работе [1]. Этот распад приводит к образованию с течением времени примесных фаз, таких как Fe_7Se_8 , $Fe_3Se_{2.1}Te_{1.8}$ и др. Микроскопические включения этих соединений приводят к искажению кристаллической решетки исходного материала, вызывают в ней напряжения и тем самым способствуют повышению температуры перехода в сверхпроводящее состояние.

Сделать оценку искажения кристаллической решетки под действием напряжений можно по уширению брегговских пиков в рентгеновской дифрактограмме и зависимости уширения от угла Θ [24]. Однако использовать для этой цели дифрактограммы, полученные после размалывания кристаллов в порошок, невозможно, так как в процессе размалывания в структуру материала вносится большое количество дефектов. Их наличие приводит к существенно большему уширению пиков по сравнению с уширением, обусловленным примесными фазами и избыточным железом. Поэтому для оценки влияния последнего фактора нами были зарегистрирова-

ны дифрактограммы кристаллов, не подвергавшихся размалыванию в порошок. Такие дифрактограммы не позволяют зафиксировать некогерентные посторонние фазы, но дают возможность обнаружить эффекты дефектов кристаллической структуры, образовавшихся в процессе роста и хранения кристаллов. Анализ зависимости ширины дифрактограммы на полувысоте пика FWHM от угла Θ (точнее – от $\tan \Theta$) (рис. 6) показал, что наклон прямой линии FWHM ($4 \tan \Theta$), который характеризует величину относительного изменения среднего межплоскостного расстояния (FWHM = $4\frac{\Delta d}{d}\tan\Theta$, [24]), меняется от значения 0.038 в свежеприготовленных кристаллах до 0.093 в состаренных. Кроме уширения пиков, было также зафиксировано их расщепление на несколько компонент (см. левую вставку рис. 6). Такое расщепление может свидетельствовать о фазовом расслоении материала образцов на несколько компонент, близких по составу, но с определенным, а не плавно меняющимся отношением Te/Se. Эти факты подтверждают предположение о спинодальном распаде и росте внутренних искажений со временем.

Чтобы убедиться в том, что описанные выше эффекты носят объемный, а не поверхностный характер, мы исследовали с помощью энергодисперсионной спектроскопии химический состав состаренного кристалла $Fe_{1.22}Te_{0.52}Se_{0.48}$ на его торцевом срезе, выполненном непосредственно перед измерениями EDX. Микрофотография среза, сделанная с помощью сканирующего электронного микроскопа, показана на верхней панели рис. 7. Результаты анализа элементного состава в зависимости от расстояния z от левой плоской поверхности приведены на нижней панели рисунка. (Масштаб по оси z на верхней и нижней панелях – одинаковый.) Можно видеть, что распределение элементов по мере углубления остает-

Рис. 6. (Цветной онлайн) Дифрактограммы свежеприготовленного кристалла $Fe_{1.04}$ Te_{0.56}Se_{0.44} (красные линии) и кристалла $Fe_{1.22}$ Te_{0.52}Se_{0.48} после двухгодичного хранения (синие линии). На левой вставке показаны изменения формы и ширины одного из брегтовских пиков (002) в малом угловом диапазоне. На правой вставке – зависимость ширины пиков на их полувысоте FWHM от тангенса угла наклона рентгеновского луча Θ . (Излучение Cu-K_α)

ся практически неизменным. Прямая линия, проведенная по точкам, которые характеризуют содержание железа, имеет очень малый отрицательный наклон (-0.001). Такая зависимость лежит в пределах экспериментальных ошибок. Проведенная проверка позволяет сделать заключение о том, что эффекты, обусловленные избыточным железом и спинодальным распадом, происходят во всем объеме кристалла, а не привязаны к его поверхности.

4. Заключение. В результате исследований монокристаллов халькогенидов железа $\operatorname{Fe}_{1+u}\operatorname{Te}_{1-x}\operatorname{Se}_x$, проведенных с помощью рентгеноструктурного анализа, измерений электрического сопротивления и магнитной восприимчивости, установлено, что избыточное (сверхстехиометрическое) железо оказывает влияние на свойства этих материалов двояко: с одной стороны, избыточные ионы Fe приводят к дополнительному рассеянию, увеличивая сопротивление и создавая эффект слабой локализации: с другой стороны, они вызывают напряжения в кристаллической решетке (внутреннее давление), которые способствуют повышению температуры перехода в сверхпроводящее состояние. Второй вывод, который можно сделать на основе полученных результатов, заключается в том, что со временем в кристаллах Fe_{1+y}Te_{1-x}Se_x происходит спинодальный распад с образованием примесных фаз. Эти фазы также создают внутренние напряжения, повышают критиче-

Рис. 7. (Цветной онлайн) Нижняя панель – распределение элементов по толщине состаренного образца Fe_{1.22}Te_{0.52}Se_{0.48}, полученное с помощью энергодисперсионной спектроскопии: красные кружки соответствуют содержанию селена, оранжевые квадраты – Те, черные ромбы – Fe. Прямая синяя линия проведена по точкам содержания железа методом наименьших квадратов. Верхняя панель – микрофотография торцевого среза кристалла. Зелеными линиями отмечены края кристалла (плоскости *ab*). Точки, в которых регистрировались спектры EDX, отмечены серыми кружками

скую температуру и увеличивают объемную долю сверхпроводящей фазы.

Исследования, проводимые И.И.Гимазовым, были поддержаны Российским фондом фундаментальных исследований (грант # 20-32-90063). Выращивание кристаллов выполнялось Д. А. Чареевым и А. Н. Васильевым при поддержке Российского фонда фундаментальных исследований, гранты # 20-02-00561 и 17-29-10007, Правительства Российской Федерации (Постановление # 211, контракт # 02.А03.21.0006) и государственной поддержке Казанского федерального университета. Рентгеноструктурный анализ был выполнен А.Г. Киямовым при финансовой поддержке субсидии, выделенной Казанскому федеральному университету для государственного задания в сфере научной деятельности (проект 0671-2020-0050).

- S. Hartwig, N. Schäfer, M. Schulze, S. Landsgesell, D. Abou-Ras, Ch.G.F. Blum, S. Wurmehl, A. Sokolowski, B. Büchnerb, and K. Prokes, Physica B: Condensed Matter 531, 102 (2018).
- J. P. Sun, K. Matsuura, G.Z. Ye, Y. Mizukami, M. Shimozawa, K. Matsubayashi, M. Yamashita, T. Watashige, S. Kasahara, Y. Matsuda, J.-Q. Yan, B. C. Sales, Y. Uwatoko, J.-G. Cheng, and T. Shibauchi, Nat. Commun. 7, 12146 (2016).
- Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015).
- 4. T. J. Liu, X. Ke, B. Qian, J. Hu, D. Fobes, E.K. Vehstedt, H. Pham, J.H. Yang, M.H. Fang, L. Spinu, P. Schiffer, Y. Liu, and Z. Q. Mao, Phys. Rev. B 80, 174509 (2009).
- L. Li, Z. R. Yang, Z. T. Zhang, L. Pi, S. Tan, and Y. H. Zhang, New J. Phys. **12**, 063019 (2010).
- M. Bendele, P. Babkevich, S. Katrych, S. N. Gvasaliya,
 E. Pomjakushina, K. Conder, B. Roessli,
 A. T. Boothroyd, R. Khasanov, and H. Keller,
 Phys. Rev. B 82, 212504 (2010).
- Sh. Cao, Sh. Shen, L. Chen, Sh. Yuan, B. Kang, and J. Zhang, J. Appl. Phys. **110**, 033914 (2011).
- A. Kumar, A. Pal, R. P. Tandon, and V. P. S. Awana, Solid State Commun. 151, 1767 (2011).
- K. E. Ingle, K. R. Priolkar, A. Pal, R. A. Zargar, V. P. S. Awana, and S. Emura, Supercond. Sci. Technol. 28, 015015 (2015).
- D. Chareev, E. Osadchii, T. Kuzmicheva, J.-Y. Lin, S. Kuzmichev, O. Volkovad, and A. Vasiliev, Cryst. Eng. Commun. 15, 1989 (2013).

- 11. M. Nikolo, Am. J. Phys. 63, 57 (1995).
- R. Khasanov, M. Bendele, A. Amato, P. Babkevich, A.T. Boothroyd, A. Cervellino, K. Conder, S.N. Gvasaliya, H. Keller, H.-H. Klauss, H. Luetkens, V. Pomjakushin, E. Pomjakushina, and B. Roessli, Phys. Rev. B 80, 140511(R) (2009).
- T. J. Liu, J. Hu, B. Qian et al. (Collaboration), Nature Mater. 9, 716 (2010).
- M. G. Rodriguez, G. Polla, C. P. Ramos, and C. Acha, J. Alloys Compd. 649, 1031 (2015).
- N. Zhang, Ch. Liu, J.-L. Zhao, T. Lei, J.-O. Wang, H.-J. Qian, R. Wu, L. Yan, H.-Zh. Guo, and K. Ibrahim, Chin. Phys. B 25, 097402 (2016).
- S. B. Harris and R. P. Camata, Data in Brief 27, 104778 (2019).
- R. Kumar and G. D. Varma, Phys. Status Solidi B 257, 1900952 (2020).
- N. Zhang, Ch. Liu, J.-L. Zhao, T. Lei, J.-O. Wang, H.-J. Qian, R. Wu, L. Yan, H.-Zh. Guo, and K. Ibrahim, Chin. Phys. B 25, 097402 (2016).
- E. H. H. Lim, K. Y. Tan, J. Y. C. Liew, M. M. A. Kechik, S. A. Halim, S. K. Chen, K. B. Tan, and X. Qi, Journal of Superconductivity and Novel Magnetism 28, 2839 (2015).
- E. J. W. Verwey and P. W. Haayman, Physica 8, 979 (1941).
- F. Watz, Journal of Physics: Condensed Matter 14, R285 (2002).
- J. Rodriguez-Carvajal, Physica B: Condensed Matter 192, 55 (1993).
- T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y.S. Hor, J. Allred, A.J. Williams, D. Qu, J. Checkelsky, N.P. Ong, and R.J. Cava, Phys. Rev. B **79**, 014522 (2009).
- D. Balzar and S. Popović, J. Appl. Crystallogr. 29, 16 (1996).