Влияние облака вторичной плазмы на испарение макрочастиц в установках с магнитным удержанием

О. А. Бахарева¹⁾, В. Ю. Сергеев, И. А. Шаров

Санкт-Петербургский политехнический университет Петра Великого, 195251 С.-Петербург, Россия

Поступила в редакцию 22 сентября 2023 г. После переработки 11 октября 2023 г. Принята к публикации 13 октября 2023 г.

Анализ экспериментальных данных о структуре углеводородных пеллетных облаков на гелиотроне LHD позволил сделать оценки относительных вкладов нейтрального и плазменного экранирования при испарении макрочастиц (пеллетов) в высокотемпературной замагниченной тороидальной плазме. В работе описана методика самосогласованного расчета скорости испарения макрочастицы, характерного размера пеллетного облака и концентрации электронов в его однократно ионизованной части с учетом нейтрального и плазменного экранирования. Для полистироловых макрочастиц, инжектированных в плазму установки LHD, такой расчет дает результаты, согласующиеся с экспериментальными, полученными в начальной фазе испарения, когда скорость испарения определяется тепловыми электронами, а влиянием надтепловой компоненты горячей плазмы на испарение можно пренебречь.

DOI: 10.31857/S1234567823220056, EDN: pinyqb

1. Введение. Одним из эффективных методов управления параметрами разряда и диагностики плазмы установок с магнитным удержанием является инжекция в нее макрочастиц (пеллетов) из различных материалов [1,2]. Важной составляющей при реализации метода является модель испарения макрочастицы, описывающая скорость испарения и параметры пеллетного облака при известных локальных параметрах фоновой плазмы, размере и скорости макрочастицы.

Модель нейтрального экранирования (Neutral Gas Shielding) топливных макрочастиц [3] была использована при получении закона подобия для предсказания измеряемых глубин проникновения в плазму [4]. Ряд важных физических механизмов в этой модели не учитывался: 1) распределение испаряющих частиц по энергии и возможный надтепловой характер такого распределения; 2) плазменное экранирование; 3) электростатическое экранирование; 4) неоднородность испарения по поверхности и др. Учет указанных механизмов приводит к увеличению или уменьшению расчетных значений скорости испарения. Этим объясняется [5] успешность предсказаний глубины проникновения макрочастиц с применением закона подобия [4] и модели [3]. Создание модели испарения, учитывающей указанные физические механизмы для предсказаний в различных экспериментальных условиях, остается сложной актуальной задачей. Попытки создания моделей и кодов, самосогласованно рассчитывающих параметры пеллетного облака и скорость испарения макрочастицы, активно ведутся в настоящее время [6–9]. Заметим, что предсказательная способность модели зависит от результатов их верификации с экспериментальными данными.

Задачей данной работы является развитие модели нейтрального экранирования [10] с учетом самосогласованного расчета ослабления испаряющего теплового потока как нейтральной, так и плазменной компонентами облака. Разработанная модель нейтрального и плазменного экранирования NGPS (Neutral Gas and Plasma Shielding) позволила сравнить результаты расчетов с экспериментальными данными по скорости испарения углеводородной макрочастицы, характерным размерам и плотности пеллетного облака.

2. Модель плазменного и нейтрального экранирования (NGPS). В моделях испарения сферической макрочастицы типичными входными данными являются ее материал, скорость v_p и радиус r_p , а также параметры фоновой плазмы (для максвелловской плазмы — температура T_e и концентрация n_e электронов).

В данной работе развита модель, позволяющая самосогласованно рассчитать скорость испарения углеводородной макрочастицы \dot{N} с учетом ослабления испаряющего теплового потока как нейтральной, так и плазменной частью облака. При этом в модели так-

¹⁾e-mail: o.bakhareva@spbstu.ru

же рассчитывается характерный поперечный размер r_{cl} и концентрация n_{cl} холодных электронов облака. Расчетные значения температуры холодных электронов T_{cl} в модели подбираются с целью одновременного воспроизведения набора экспериментальных данных о $\dot{N}, r_{cl}, n_{cl}, T_{cl}$. Наиболее полный набор таких данных имеется в измерениях параметров пеллетных облаков с помощью изображающего полихроматора при испарении полистироловых $(C_8H_8)_n$ макрочастиц в гелиотроне LHD [11–13]. Поэтому в данной работе предсказания развиваемой модели NGPS сравниваются с этими измерениями, а скорость испарения имеет размерность числа мономеров C_8H_8 в секунду.

Фоновая плазма считается максвелловской и не учитывается электростатическое экранирование потока электронов фоновой плазмы, которое может возникать за счет разности потенциалов на границе пеллетного облака и фоновой плазмы. Одномерный расчет вдоль магнитного поля [14] демонстрирует, что значения потенциала могут быть сопоставимы со значением T_e/e . В работе [10] указывается, что двумерное рассмотрение этой задачи с учетом поперечных токов ионов в пеллетном облаке заметно снижает этот потенциал. Схематически картина испарения в выбранном нами приближении изображена на рис. 1.

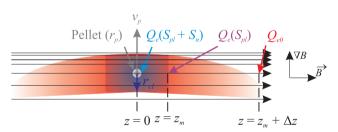


Рис. 1. (Цветной онлайн) Пояснительная схема к модели NGPS

В центре (z=0) находится сферическая макрочастица с радиусом r_p , движущаяся со скоростью v_p поперек магнитного поля. Значение скорости v_p считается неизменным и используется для определения положения макрочастицы в текущий момент времени t. Вблизи макрочастицы находится облако испарившихся с ее поверхности нейтральных частиц, разлетающихся нормально от поверхности. По мере удаления от макрочастицы испаренное вещество прогревается, ускоряется, последовательно ионизуется, растекается вдоль направления z магнитного поля B и дрейфует в направлении большого радиуса установки в результате поляризации пеллетного облака в неоднородном магнитном поле [15].

Для нахождения скорости испарения макрочастицы под воздействием плотности теплового потока электронов фоновой плазмы

$$Q_{e0} = \frac{1}{4} n_e \sqrt{\frac{8T_e}{\pi m_e}} \cdot 2T_e \tag{1}$$

необходимо самосогласованно найти балансное значение S_{bal} суммарной интегральной толщины S нейтрального S_n и плазменного S_{pl} облаков

$$S = S_n + S_{pl} = \int_{r_p}^{\infty} (n_n(z) + n_{pl}(z))dz,$$
 (2)

при которой поток Q_{e0} будет ослаблен до значений $Q_{ep}=Q_e(S_{\rm bal})$ у поверхности макрочастицы. Это определит скорость испарения

$$\dot{N} = \frac{Q_{ep}(S_{\text{bal}}) \cdot 2\pi r_p^2}{\varepsilon_c} = \frac{\delta \cdot Q_{e0} \cdot 2\pi r_p^2}{\varepsilon_c}, \quad (3)$$

и количество испаренного вещества для создания облаков с такой интегральной толщиной. Здесь n_n и n_{pl} — концентрации нейтральных и заряженных тяжелых частиц в нейтральном и плазменном облаках, $2\pi r_p^2$ — эффективная собирающая площадь поверхности макрочастицы для электронов [10], $\varepsilon_s \cong 1.52$ эВ — энергия сублимации мономера полистирола C_8H_8 [16], δ — фактор экранирования теплового потока пеллетным облаком.

Текущий радиус полистироловой макрочастицы $r_p(t)$ в момент времени t рассчитывается в предположении сохранения сферичности с использованием зависимости скорости испарения в промежуток от 0 до t

$$r_p(t) = \left(r_{p0}^3 - \frac{3m_p}{4\pi\rho_p} \int_0^t \dot{N}(\tau)d\tau\right)^{1/3}.$$
 (4)

Здесь r_{p0} – начальный радиус макрочастицы, $m_p=1.73\cdot 10^{-25}\,\mathrm{kr}$ – масса мономера, $\rho_p=1050\,\mathrm{kr}\cdot\mathrm{m}^{-3}$ – плотность полистирола.

В модели NGS [10] скорость испарения \dot{N}_{NGS} и фактор нейтрального экранирования δ_{NGS} рассчитываются из балансного значения интегральной толщины облака нейтралов $S_{n,\mathrm{bal}}^{NGS}$. На рисунке 2 показан пример определения $S_{n,\mathrm{bal}}^{NGS}$ при нахождении испаряющейся полистироловой макрочастицы в разряде # 97812 LHD на большом радиусе 4.33 м [13] в момент измерения параметров плазменного облака с помощью полихроматора.

Плотность теплового потока электронов $Q_{ep}(S)$, проникающего до поверхности макрочастицы сквозь

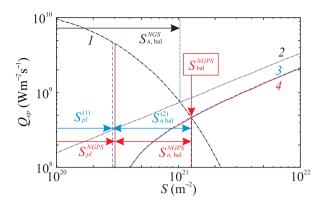


Рис. 2. (Цветной онлайн) Пример вычисления балансных значений интегральной оптической толшины пеллетных облаков в моделях NGS [10] и NGPS для #97812 LHD. Соответствующие параметры макрочастицы и фоновой плазмы указаны в табл. 1. Расчет по модели NGPS сделан при $T_{cl}=2.5\,\mathrm{эB},~\kappa=2$ (отношение суммы излучательных и ионизационных потерь к ионизационным), $n_e = 1.4 \cdot 10^{19} \,\mathrm{m}^{-3}, T_e = 0.8 \,\mathrm{кэВ},$ $r_p = 0.41 \, \text{mm}$

облако с интегральной толщиной S, показана кривой 1 на рис. 2. Падающая зависимость $Q_{ep}(S)$ получена из совместного решения уравнения торможения и кинетического уравнения для электронов (уравнения (2), (7) работы [10])

$$Q_{ep}(S) = \frac{4\pi}{m_e^{1/2} (2\pi T_e)^{3/2}} \int_0^1 \zeta d\zeta \int_0^\infty E^2 f_e(S, E, \zeta) dE,$$
$$f_a(S, E, \zeta) = n_e \sqrt{\frac{E_0(S, E, \zeta)}{E}} \times \frac{L_e(E_0(S, E, \zeta))}{L_e(E)} \exp\left(\frac{E_0(S, E, \zeta)}{T_e}\right). \tag{5}$$

Здесь E_0 – энергия электронов фоновой плазмы, ζ – питч-угол относительно направления магнитного поля, функция неупругих потерь энергии в пеллетном облаке

$$L_e(E) = \frac{Z_p}{B + C \cdot E} \tag{6}$$

и $Z_p=(1+6)\cdot 8=56$ в расчете на один мономер $\mathrm{C_8H_8}.$ Здесь $B=4.7\cdot 10^{14}$ атом \cdot э $\mathrm{B^{-1}\cdot cm^{-2}},$ $C = 8 \cdot 10^{11} \,\mathrm{arom} \cdot \mathrm{эB^{-2}} \cdot \mathrm{cm^{-2}}, \, E$ – энергия электрона в эВ. Будем называть эту зависимость $Q_{ep}(S)$ кинетическим расчетом.

 ${\bf C}$ другой стороны, при заданном Q_{e0} интегральная толщина нейтрального облака S_n растет с плотностью испаряющего поверхность макрочастицы теплового потока Q_{ep} (уравнение (12) работы [10]). Эта зависимость получена решением системы гидродинамических уравнений в нейтральном облаке испаряющейся макрочастицы

$$Q_{ep}(S_n) = \tag{7}$$

$$=0.52\left(\frac{S_n\cdot\varepsilon_s}{r_p}\right)\cdot\left[\frac{(Q_{e0}-Q_{ep}(S_n))(\gamma-1)}{m_pS_n}\right]^{1/3},$$

где $\gamma = 8/6$ – показатель адиабаты испарившегося вещества [10]. Обычно для упрощения расчетов в уравнении (6) используется хорошо выполняющееся приближение $Q_{ep}(S_n) \ll Q_{e0}$. Будем называть эту зависимость $Q_{ep}(S_n)$, показанную на рис. 2 кривой 2, газодинамическим расчетом.

Из рисунка 2 видно, что пересечение кривых 1 и 2 дает балансное значение $S_{n,{
m bal}}^{NGS}\cong 1.04\cdot 10^{21}$ мономеров/м², из которого с помощью выражения (3) определяются значения $\dot{N}_{NGS} \cong 3.29 \times$ $imes 10^{21}$ мономеров \cdot с $^{-1}$ и $\delta_{NGS}\cong 0.044$. Текущий радиус макрочастиц $r_{p,NGS} = 0.41 \,\mathrm{mm}$ рассчитан с помощью уравнения (4) и расчетной зависимости \dot{N}_{NGS} $(R = v_p t).$

Для учета вклада плазменного экранирования в ослабление теплового потока ниже сделаны оценки поперечного размера r_{cl} , плотности n_{cl} и характерного продольного размера Δz плазменного облака с целью рассчитать S_{pl} . Использовались следующие приближения относительно структуры плазменной части облака. Полагается, что, начиная приблизительно с области $z \cong \pm z_m$, в которой достигается однократно ионизованное состояние испарившихся частиц, разлет облака переходит от радиального к одномерному разлету в цилиндрическом канале радиуса r_{cl} вдоль направления магнитного поля. Значение r_{cl} оценивается, исходя из нульмерного уравнения баланса энергии в "нейтральном" облаке, которое показано голубым прямоугольником на рис. 1 и имеет радиус r_{cl} и длину $2z_m$.

Предполагается, что энергия электронов фоновой плазмы $Q_e(S_{pl})$, поступающая на условную границу $z \cong z_m$ с эффективной поперечной площадью $2\pi r_{cl}^2$, расходуется на: 1) ε_s – испарение мономеров с поверхности макрочастицы; 2) $\varepsilon_a \cong A_i \cdot T_{cl}$ – приобретение испаренным веществом ($A_i = 16$ – количество атомов в мономере С₈Н₈) направленной вдоль магнитного поля скорости порядка скорости звука при температуре T_{cl} в области однократной ионизации при $z \cong \pm \Delta z_m$; 3) $\varepsilon_h = 2A_i \cdot (3/2) \cdot T_{cl}$ – нагрев 16 ионов и 16 электронов до температуры T_{cl} ; 4) $\varepsilon_d = 73\,\mathrm{эB}$ – разрыв межатомных связей в мономере [16]; 5) $\varepsilon_i = (A_i/2) \cdot (11.26 + 13.6) \, \mathrm{эВ} - \mathrm{одно}$ кратную ионизацию 8 атомов углерода и 8 атомов водорода; 6) ε_e – излучение, выходящее за пределы пеллетного облака, которое предполагается пропорциональным энергии, потраченной на ионизацию ε_i так, что $\varepsilon_e + \varepsilon_i = \kappa \cdot \varepsilon_i$. Коэффициент κ варьируется в расчетах в пределах от 1, что соответствует отсутствию потерь на излучение, до 2, что соответствует случаю, когда на каждую ионизацию облако теряет эквивалентную энергию посредством излучения из возбужденных состояний. Тогда для оценки r_{cl} получается следующее выражение:

$$r_{cl} = \sqrt{\frac{\varepsilon_s + \varepsilon_a + \varepsilon_h + \varepsilon_d + \kappa \varepsilon_i}{2\pi \cdot Q_e(S_{pl})}}.$$
 (8)

Из значений скорости испарения \dot{N} (выраженной в мономерах/с) и радиуса облака r_{cl} можно оценить концентрацию электронов

$$n_{cl} = \frac{A_i \cdot \dot{N}}{2\pi r_{cl}^2 \cdot c_s} \tag{9}$$

в однократно ионизованной части облака, разлетающегося вдоль магнитного поля с ионно-звуковой скоростью [17]

$$c_s = \sqrt{\frac{4T_{cl}}{m_H+m_C}} \,, \eqno(10)$$
где m_H и m_C – массы атомов водорода и углерода.

Для вычисления S_{pl} предполагалось, что спад концентрации ионов в облаке в направлении z экспоненциальный с характерной длиной Δz

$$n_{hv} = n_{hvm} \exp\left(-\frac{z - \Delta z_m}{\Delta z}\right). \tag{11}$$

Здесь $n_{hvm} = n_{C^+} + n_{H^+}$ – плотность ионов в точке Δz_m , соответствующей однократной ионизации испарившегося вещества. Данное предположение основано на аналитическом автомодельном решении задачи одномерного разлета плазмы с постоянной температурой [18], а также на результатах численного моделирования углеродных облаков в работе (рис. 11 работы [19]), где показано, что область быстрого роста температуры облака расположена вблизи макрочастицы, а по мере удаления от нее температура изменяется медленно. Для оценки продольного размера облака Δz делаются еще два предположения: 1) вещество покидает облако в поперечном к магнитному полю направлении с ускорением

$$g_{\perp} = -c_s^2 \frac{\nabla B}{B},\tag{12}$$

возникающим в результате поляризации пеллетного облака в неоднородном магнитном поле с относительным градиентом $\nabla B/B$ [15]; 2) разлет облака продольно происходит со скоростью звука. Тогда величину Δz можно оценить как произведение c_s на время прохождения радиуса макрочастицы с ускорением *q* ₁

$$\Delta z = c_s(z) \sqrt{\frac{2r_{cl}}{g_{\perp}}} = c_s(z) \sqrt{\frac{2r_{cl}}{c_s(z)^2 \frac{\nabla B}{B}}} \approx \sqrt{\frac{2r_{cl}}{\frac{\nabla B}{B}}}. \quad (13)$$

Проинтегрировав выражение (13) от z_m до бесконечности и учитывая, что в области однократной ионизации суммарная концентрация тяжелых частиц равна концентрации электронов $n_{hvm} = n_{cl}$, получим следующее выражение для оценки интегральной толщины плазменного облака:

$$S_{pl} = \Delta z \frac{n_{cl}}{A_i} \left(1 - \exp\left(\frac{z_m}{\Delta z} - 2\right) \right). \tag{14}$$

Алгоритм вычисления параметров в модели NGPS описан ниже и использует понятие факторов нейтрального δ_n и плазменного δ_{pl} экранирования в соответствии с выражениями

$$Q_{ep}(S_{\text{bal}}) = \delta_n Q_e(S_{pl}) = \delta_n \delta_{pl} Q_{e0} = \delta Q_{e0}. \tag{15}$$

В месте нахождения макрочастицы задаются r_n , $T_e, n_e, \nabla B/B$. Текущий радиус r_p рассчитывается из уравнения (4) с использованием зависимости скорости испарения $\dot{N}_{NGPS}(\tau)$ в промежуток времени от 0 до t. Величина z_m берется из скейлинга [13] для положения вдоль z максимума излучения линии H_{β} , в котором, как показано в работе [13], более 90 % водорода ионизовано. В расчетах варьируются величины k = 1-2 и $T_{cl} = 2-3$ эВ с целью наилучшего описания набора имеющихся экспериментальных данных o $\dot{N}, r_{cl}, n_{cl}, T_{cl}$.

На первом шаге расчета по модели нейтральноплазменного экранирования N_{GPS} вычисляются скорость испарения N_{NGS} и фактор нейтрального экранирования δ_{NGS} по модели нейтрального экранирования. Далее, фактор плазменного экранирования оценивается как $\delta_{pl}^{(1)}\cong\delta_{NGS}^{1/2}$ согласно анализу, сделанному в работах [5, 20]. Это позволяет определить на первом шаге $Q_e(S_{pl}) = \delta_{pl}^{(1)} Q_{e0}$ и вычислить $r_{cl}^{(1)}$, $n_{cl}^{(1)},~\Delta z^{(1)},~S_{pl}^{(1)}$ из уравнений (8), (9), (13), (14) соответственно. Верхним индексом обозначается номер шага итерации.

На втором шаге вычисляется плотность ослабленного теплового потока (5), доходящего до условной границы нейтрального облака, $Q_{e,pl}^{(2)}=Q_e(S_{pl}^{(1)})\cong 24.8\cdot 10^9\,{\rm Br\cdot m^{-2}}$, что показано левым синим вертикальным пунктирным отрезком на рис. 2. Затем ищется баланс для интегральной толщины нейтрального облака $S_n = S - S_{pl}^{(1)}$ путем приравнивания плотности теплового потока у поверхности макрочастицы $Q_e(S, n_e, T_e)$ из кинетического расчета (5) (кривая 1 на рис. 2) и

$$Q_{ep}(S) = 0.52 \left(\frac{(S - S_{pl}^{(1)}) \cdot \varepsilon_s}{r_p} \right) \cdot \left[\frac{Q_{e,pl}^{(2)} \cdot (\gamma - 1)}{m_p \cdot (S - S_{pl}^{(1)})} \right]^{1/3}$$
(16)

из газодинамического расчета (кривая 3 на рис. 2). Уравнение (16) получено из скейлинга (7) с учетом того, что в нейтральном облаке расходуется практически весь поступающий на него тепловой поток с плотностью $Q_{e,pl}^{(2)}$. Таким образом определяются значения $S_{\mathrm{bal}}^{(2)} = S_{pl}^{(1)} + S_{n,\mathrm{bal}}^{(2)} \cong (3.03 + 9.89) \times$ $\times 10^{20}$ мономеров/м² и $Q_e(S_{\rm bal}^{(2)}) \cong 4.7 \cdot 10^8 \, {\rm Br \cdot m^{-2}}$ показанные на рис. 2 правым синим вертикальным пунктирным отрезком (расчет сделан для значений $T_{cl}=2.5\, {
m pB}$ и k=2). Величина $N_{NGPS}^{(2)}$ находится из значения $Q_e(S_{
m bal}^{(2)})$ и уравнения (3). Далее находятся величины $r_{cl}^{(2)},\,n_{cl}^{(2)},\,\Delta z^{(2)}$ из уравнений (8), (9), (13) и корректируется значение $S_{pl}^{(2)},$ подаваемое на вход следующего шага. Для лучшей сходимости алгоритма в качестве нового приближения для $S_{nl}^{(2)}$ берется среднее значение между $S_{pl}^{(1)}$ и величиной, вычисленной по формуле (14) при значениях $r_{cl}^{(2)} n_{cl}^{(2)}, \, \Delta z^{(2)}$ и

Процедура повторяется до тех пор, пока величина $S_{nl}^{(i)}$ не совпадет со значением, вычисленным на предыдущем шаге $S_{pl}^{(i-1)}$ с заданной точностью, скажем, 5 % от ее величины $S_{nl}^{(i)}$. Таким образом определяется балансное значение $S_{
m bal}^{NGPS}=$ $=S_{pl}^{(i-1)}pprox S_{pl}^{(i)}$, при котором вычисляются $S_{n,\mathrm{bal}}^{NGPS}$ и \dot{N}_{NGPS} . Для условий, соответствующих рис. 2, $S_{pl}^{NGPS}+S_{n,\mathrm{bal}}^{NGPS}\cong (3.05+9.84)\cdot 10^{20}$ мономеров/м², это решение показано сплошными вертикальными отрезками, а сплошная кривая 4 соответствует зависимости $Q_e(S)$, полученной из газодинамического расчета (16) при $S_{pl}^{(2)}.$ В силу быстрой сходимости алгоритма, решение в приведенном примере получено на третьем шаге: $S_{pl}^{NGPS}=S_{pl}^{(2)}\approx S_{pl}^{(3)}$.

Из рисунка 2 видно, что интегральная толщина облака, найденная по плазменно-нейтральной модели $S_{
m bal}^{NGPS} \cong 1.29 \cdot 10^{21}\,{
m Mohomepob/m^2},$ получается приблизительно на 30% больше, чем интегральная толщина облака, рассчитанная для тех же $n_e,\ T_e,\ r_p$ по нейтральной модели $S_{n,{
m bal}}^{NGS}\cong 1.0\cdot 10^{21}$ мономеров/м². Значения плотности теплового потока на поверхности макрочастицы при учете плазменного экранирования снижаются приблизительно в 1.5 раза - со значения $7.4 \cdot 10^8 \,\mathrm{Br} \cdot \mathrm{m}^{-2}$ (по NGS модели) до $4.6 \cdot 10^8 \,\mathrm{Br} \cdot \mathrm{m}^{-2}$

(по NGPS модели). Это приводит, соответственно, к уменьшению расчетной скорости испарения от $\dot{N}(Q_{ep}(S_{n,{
m bal}}^{NGS}))\cong 3.3\cdot 10^{21}\,{
m Mohomepob}\cdot{
m c}^{-1}$ до $\dot{N}_{NGPS}\cong 2.0\cdot 10^{21}\,{
m mohomepob}\cdot{
m c}^{-1}$ (см. табл. 1). Интегральная толщина нейтральной части облака по NGPS модели $S_{n,\mathrm{bal}}^{NGPS}\cong 9.8\cdot 10^{20}$ мономеров/м² слабо отличается от $S_{n,\mathrm{bal}}^{NGS}$ и оказывается приблизительно в 3 раза больше, чем интегральная толщина плазменной части облака $S_{pl}^{NGS}\cong 3.0\cdot 10^{20}$ мономеров/м². Приблизительное равенство $S_{n,{
m bal}}^{NGPS}$ и $S_{n,{
m bal}}^{NGS}$ связано со следующим обстоятельством. Как отмечалось в работе [10], ослабление максвелловского теплового потока электронов в облаке грубо может быть представлено как уменьшение его значения при неизменной температуре, а интегральная толщина в нейтральной модели $S_{n,\mathrm{bal}}$ слабо зависит от концентрации поступающих на облако электронов, но существенно зависит от их температуры.

Таблица 1. Локальные параметры фоновой плазмы, экспериментально измеренные и рассчитанные по модели NPGS параметры макрочастицы и пеллетного облака, в момент их измерения изображающим полихроматором для разрядов с инжекцией полистироловых макрочастиц в LHD

#	97812	97814
$n_e, 10^{19} \text{ m}^{-3}$	1.4	1.9
T_e , кэВ	0.8	1.3
v_p , м/с	467	462
$\dot{N}_{\rm C8H8},~10^{21}~{\rm c}^{-1}$	2.3*	5.1*
$r_{p, \text{C8H8}}, \text{MM}$	0.4	0.22
$n_{ce}, 10^{22} \text{ m}^{-3}$	8.2	14.4
T_{ce} , эВ	2.2	2.2
$r_{H\beta}$, MM	2.6	2.0
r_{CII} , MM	4.4	4.0
$\nabla B/B, 10^{-4} \text{ m}^{-1}$	1.13	1.00
z_m , mm	5.4	4
Результаты	моделирования	
κ	2	2
T_{cl} , эВ	2.5	2.5
$\dot{N}_{NGS}, 10^{21} \text{ c}^{-1}$	3.3*	4.6*
$r_{p,NGS}$, mm	0.39	0.28
$\dot{N}_{NGPS}, 10^{21} \text{ c}^{-1}$	2.0*	3.2*
$r_{p,NGPS}$, MM	0.41	0.31
$n_{cl}, 10^{22} \text{ m}^{-3}$	8.3	20.8
r_{cl} , mm	2.7	2.2

^{*}В мономерах С₈Н₈.

3. Результаты моделирования испарения полистироловых макрочастиц на стеллараторе LHD. В таблице 1 представлены параметры полистироловых макрочастиц, пеллетных облаков и локальные параметры фоновой плазмы в момент фотографирования облака с помощью изображающего полихроматора для двух разрядов установки LHD с мощностью нагрева нейтральными пучками 9.3 МВт, тороидальным магнитным полем 2.75 Тл [11–13]. Инжекция велась в экваториальной плоскости установки со стороны слабого магнитного поля. Здесь n_e и T_e – измеренные концентрация и температура фоновой плазмы; скорость $v_p \cong 470\,\mathrm{m/c}$ и начальный радиус $r_{p0} \cong 0.45\,\mathrm{mm}$ макрочастиц в этих разрядах близки; n_{ce} и T_{ce} – измеренные концентрация [12] и температура [11] электронов облака; экспериментальные скорость испарения $\dot{N}_{
m C8H8}$ и радиус $r_{n \text{ C8H8}}$ макрочастиц в момент измерения параметров облаков с помощью изображающего полихроматора, поперечные размеры облака (половина расстояния между максимумами на поперечном распределении интенсивности излучения) $r_{H\beta}$ и r_{CII} в линиях ${\rm H}\beta$ и CII, величины $\Delta B/B,\,z_m$ известны из экспериментальных данных [9].

Результаты моделирования испарения по моделям NGS и NGPS представлены в табл. 1 и иллюстрируются на рис. 3, 4. В разряде # 97812 экспериментальные скорости испарения $\dot{N}_{\rm C8H8}$ сравниваются с рассчитанными по моделям \dot{N}_{NGS} и \dot{N}_{NGPS} . Из рисунка 3 видно, что вариация параметров модели плазменно-нейтрального экранирования $T_{cl}=$ = (2-3) эВ и $\kappa=(1-2)$ незначительно влияют на результат моделирования скорости испарения \dot{N}_{NGPS} . В дальнейшем расчеты велись при значениях $T_{cl}=$ = 2.5 эВ и $\kappa=2$.

На начальной стадии испарения в области $R \geq$ $\geq 4.33\,{\rm M}$ скорость испарения N_{NGPS} , найденная по модели плазменно-нейтрального экранирования, хорошо согласуется с экспериментально измеренными значениями. Модель NGS [10] в этой области дает завышенные до двух раз значения \hat{N}_{NGS} по сравнению с экспериментальными значениями $\dot{N}_{
m C8H8}$. Ближе к центру плазменного шнура экспериментально измеренная скорость испарения становится выше рассчитанной как по NGS, так и по NGPS моделям. По всей видимости, как обсуждается в работе [21] для испарения водородных макрочастиц в LHD и для испарения Li макрочастиц в Heliotron-E [22], это происходит благодаря заметному увеличению скорости испарения под воздействием надтепловых ионов при NBI нагреве плазмы. В обсуждаемых в нашей работе NGS и NGPS моделях этот механизм не учитывается. В результате в эксперименте макрочастица начинает испаряться при $R \leq$ 4.33 м с заметно большими скоростями испарения, чем это предсказывается плазменно-нейтральной моделью. При этом глубина проникновения макрочастицы в плазму, вычисленная по модели NGS [10],

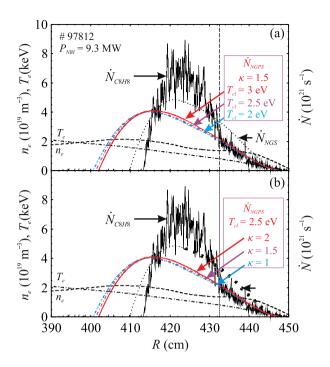


Рис. 3. (Цветной онлайн) Влияние вариации параметров модели NGPS на результат моделирования кривой испарения в разряде #97812 LHD. Вертикальными пунктирными линиями отмечено положение макрочастицы во время измерения параметров облака с помощью изображающего полихроматора [11–13]

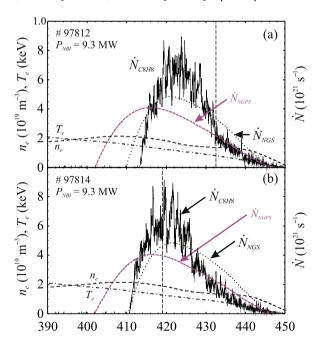


Рис. 4. (Цветной онлайн) Сравнение экспериментальных и расчетных кривых испарения полистироловых макрочастиц в разрядах #97812 и #97814 LHD. Расчет по модели NGPS выполнен при $T_{cl}=2.5$ эВ и $\kappa=2$

в конечном итоге оказывается ближе к экспериментально наблюдаемой.

Похожие результаты имеют место и для разряда #97814, эволюция скорости испарения для которого показана на рис. 4b. Это демонстрирует, как упоминалось выше, что учет различных механизмов приводит к увеличению или уменьшению расчетных значений скорости испарения вблизи значений, предсказываемых моделью нейтрального экранирования. Таким образом, в модели NGS не учитывается плазменное экранирование и испарение надтепловыми ионами. Это приводит к взаимной компенсации при расчете скорости испарения, и, как следствие, к лучшему совпадению с экспериментальными значениями скорости испарения в области повышенного из-за надтепловых ионов испарения и глубины проникновения макрочастицы.

Как видно из рис. 2, 3, в разряде #97812 момент измерения параметров пеллетного облака приходится на начало области повышенного испарения, и значение $r_{p,NGPS} = 0.41 \,\mathrm{mm}$, рассчитанное по модели NGPS, близко к экспериментальному $r_{p, \text{C8P8}} =$ = 0.4 мм. Для этого разряда расчет по модели NGPS при $T_{cl}=2.5\,\mathrm{эB}$ и $\kappa=2$ дает значения $\dot{N}_{NGPS}=$ $2.1 \cdot 10^{21}$ мономеров/с, $n_{cl} = 8.3 \cdot 10^{22}$ м $^{-3}$, $r_{cl} = 0.27$ см. Таким образом, вычисленная в модели концентрация однократно ионизованной части облака n_{cl} также неплохо согласуется с экспериментально измеренным значениям концентрации холодных электронов $n_{ce} = 8.2 \cdot 10^{16} \, \text{cm}^{-3}$. Вычисленный характерный поперечный размер однократно ионизованной части облака r_{cl} лежит в диапазоне между $r_{H\beta} = 0.26\,\mathrm{cm}$ и $r_{\rm CII} = 0.44\,{\rm cm},$ содержащем область, в которой, по нашим представлениям, будет преобладать состояние однократной ионизации ионов C^+ и H^+ . Неплохое согласование одновременно расчетной скорости испарения, концентрации электронов и характерного поперечного размера облака с соответствующими экспериментальными значениями получено впервые в модели нейтрально-плазменного экранирования для условий, в которых незначительно влияние надтепловых ионов на испарение. В разряде #97814момент измерения параметров облака производится на более поздней стадии испарения, где имеет место значительное влияние надтепловых ионов на процесс испарения и на формирование пеллетных облаков. Соответственно, скорость испарения, размеры и плотность облака, найденные по модели NGPS без учета надтепловых ионов, не воспроизводят экспериментально измеренные величины, как видно из табл. 1. Вычисление скорости испарения макрочастицы и параметров облака в областях с заметной по-

пуляцией надтепловых ионов в принципе возможно при дальнейшем усовершенствовании нейтральноплазменной модели, в которой будет учтено взаимодействие быстрых частиц фоновой плазмы с пеллетными облаками, как это сделано, например, в рабо-Tax [21, 22].

4. Заключение. Развита модель, позволяющая самосогласованно вычислять скорость испарения макрочастицы и параметры пеллетных облаков с учетом не только нейтрального, но и плазменного экранирования. Модель верифицирована на экспериментальных данных по испарению полистироловых макрочастиц на гелиотроне LHD.

В области, где можно пренебречь влиянием быстрых частиц на испарение, скорость испарения, вычисленная по модели нейтрального и плазменного экранирования, расчетные значения радиуса и плотности плазменного пеллетного облака неплохо соответствуют экспериментально измеренным величинам. При этом расчетная скорость испарения по модели только нейтрального экранирования в этой области примерно в 1.5-2 раза превышает измеренные экспериментальные значения.

В областях, где можно ожидать значительного влияния быстрых ионов на испарение макрочастицы и на формирование облака холодной вторичной плазмы, предсказания модели отличаются от экспериментальных измерений. Поэтому требуется дальнейшее усовершенствование модели нейтральноплазменного экранирования посредством учета взаимодействия быстрых частиц фоновой плазмы с пеллетными облаками.

Работа поддержана ГК Росатом и Минобрнауки России в рамках Федерального проекта 3 (U3), проект # FSEG-2023-0018 "Разработка и создание систем струйной и пеллет инжекции с повышенными производительностью и ресурсом".

^{1.} B. V. Kuteev, Tech. Phys. 44, 1058 (1999).

^{2.} B. Pégourié, Plasma Phys. Control. Fusion 49, R87

^{3.} P.B. Parks and R.J. Turnball, Phys. Fluids 20, 1735 (1978).

^{4.} L.R. Baylor, G. L. Schmidt, W. A. Houlberg, S. L. Milora, C. W. Gowers, W. P. Bailey, M. Gadeberg, P. Kupschus, J. A. Tagle, D. K. Owens, D. K. Mansfield, and H. K. Park, Nucl. Fusion 32, 2177 (1992).

^{5.} V. A. Rozhansky and I. Y. Senichenkov, Plasma Phys. Rep. **31**, 993 (2005).

^{6.} L.L. Lengyel, K. Büchl, G. Pautasso, L. Ledl, A. A. Ushakov, S. Kalvin, and G. Veres, Nucl. Fusion **39**, 791 (1999).

- 7. F. Koechl, B. Pégourié, A. Matsuyama, H. Nehme, V. Waller, D. Frigione, L. Garzotti, G. Kamelander, V. Parail, and JET EFDA contributors, J. E. (2012), Modelling of pellet particle ablation and deposition: the hydrogen pellet injection code HPI2, EUROfusion Preprint EFDA-JET-PR(12)57 (2012); https://scipub.euro-fusion.org/wp-content/uploads/
- 2014/11/EFDP12057.pdf.R. Samulyak, S. Yuan, N. Naitlho, and P. Parks, Nucl. Fusion 61, 046007 (2021).
- J. McClenaghan, L. Lao, P. Parks, W. Wu, J. Zhang, and V. Chan, Nucl. Fusion 63, 036015 (2023).
- V. Y. Sergeev, O. A. Bakhareva, B. V. Kuteev, and M. Tendler, Plasma Phys. Rep. 32, 363 (2006).
- I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, N. Tamura, B. V. Kuteev, and S. Sudo, Rev. Sci. Instrum. 86, 043505 (2015).
- I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, B. V. Kuteev, N. Tamura, and S. Sudo, Tech. Phys. Lett. 44, 384 (2018).
- I. A. Sharov, V. Yu. Sergeev, I. V. Miroshnikov, N. Tamura, and S. Sudo, Plasma Phys. Control. Fusion 63, 065002 (2021).

- 14. V. A. Rozhansky, Sov. J. Plasma Phys. 15, 638 (1989).
- V. Rozhansky, I. Senichenkov, I. Veselova, and R. Schneider, Plasma Phys. Control. Fusion 46, 575 (2004).
- S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).
- 17. Л. Г. Лойцянский, *Механика экидкости и газа*, учеб. для вузов, 7-е изд., испр., Дрофа, М. (2003).
- 18. В. А. Рожанский, Теория плазмы, Лань, СПб. (2012).
- D. K. Morozov, V. I. Gervids, I. Y. Senichenkov, I. Y. Veselova, V. A. Rozhansky, and R. Schneider, Nucl. Fusion 44, 252 (2004).
- O. A. Bakhareva, V. Y. Sergeev, and I. A. Sharov, JETP Lett. 117, 207 (2023).
- A. Matsuyama, B. Pégourié, R. Sakamoto, J. S. Mishra,
 G. Motojima, and H. Yamada, Plasma Phys. Control.
 Fusion 54, 035007 (2012).
- V. Y. Sergeev, K. V. Khlopenkov, B. V. Kuteev, S. Sudo, K. Kondo, H. Zushi, S. Besshou, F. Sano, H. Okada, T. Mizuuchi, K. Nagasaki, T. Obiki, and Y. Kurimoto, Plasma Phys. Control. Fusion 40, 1785 (1998).