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Rattling phonon modes in quadruple perovskites
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Anharmonic vibrations of weakly bound ions in an

oversized atomic cage formed by the other atoms are

commonly known as rattling. They have been observed

in materials such as VAl10+δ [1], clathrates [2], dode-

caborides [3], filled skutterudites [4], β-pyrochlore ox-

ides [5]. Rattling or other types of anharmonicity can

lead, e.g., to Schottky-type anomaly of specific heat at

low temperature [6], result in significant increase of elec-

tron effective mass [7–9], suppress thermal conductiv-

ity [10, 11] or be a driving force for the superconductiv-

ity [7–9, 12].

Recently, the rattling has been suggested for quadru-

ple perovskite CuCu3V4O12 synthesized under a high-

pressure [13]. In quadruple perovskites AA’3B4O12 the

A site ions are icosahedrally (twelve neighbors) coordi-

nated by oxygen atoms. The thermal displacement pa-

rameter of Cu ions at A site in CuCu3V4O12 was found

to be quite large, Uiso ≈ 0.045 Å2 at 300 K. Together

with unusual behavior of specific heat Cp(T ) this led to

suggestion of possible rattling in CuCu3V4O12 [13].

In the present paper we report direct evidence of a

rattling mode in CuCu3V4O12 and another recently syn-

thesized quadruple perovskite CuCu3Fe2Re2O12. The

total energy density functional theory (DFT) calcula-

tions clearly show rattling distortions along [111] direc-

tion related to the Cu vibration.

The electronic structure calculations were performed

in the local density approximation taking into account

Coulomb repulsion within LDA+U method [14] using

the Vienna ab initio simulation package (VASP) [15].

The experimental crystal structure data with the space

groups Im3̄ (# 204) and Pn3̄ (# 201) reported in [13]

and [16] for CuCu3V4O12 and CuCu3Fe2Re2O12, re-

spectively, were used.
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The crystal structure of quadruple perovskites

AA’3B4O12 on example of CuCu3Fe2Re2O12 is shown

in Fig. 1a. CuCu3V4O12 has a similar structure with

V ions occupying both octahedral positions. Crystallo-

graphically, there are two different Cu positions. Our

calculations, as well as previous results [17] show that

Cu at A sites (i.e. those, which are in icosahedra) have

3d10 electronic configuration, i.e., these are Cu1+ ions.

Cu ions at A′ site have local magnetic moment and

these are Jahn–Teller active Cu2+ ions.

In CuCu3V4O12 distance between Cu1+ and sur-

rounding oxygen ions (2.548 Å) is much larger than the

sum of corresponding ionic radii 2.13 Å [18]. This is the

reason why there develops a localized phonon mode with

Cu vibrating in this large O12 cage, a rattling mode.

The dependence of DFT +U total energy on Cu1+ dis-

placement has a minimum at ∼0.35 Å distortion. Thus

our calculations directly demonstrate presence of the

rattling mode in CuCu3V4O12. Moreover, this mode

does not seem to be specific for this particular mate-

rial, and therefore we tested whether rattling vibrations

are present in another quadruple perovskite, namely, re-

cently synthesized CuCu3Fe2Re2O12 [16].

There are several possible types of rattling. Indeed,

as one can see from Fig. 1a there are two Cu1 ions in the

unit cell: those sitting in the center of cube and in its

corners. Therefore, rattling distortions of these two Cu1

ions can be in the same [111] direction (in-phase distor-

tion), or in the opposite directions when we have two

different Cu1-Cu1 distances (out-of-phase distortions).

Moreover, there are two inequivalent by symmetry out-

of-phase distortions with Cu1 ions moving to Fe or Re

ions between them. Fig. 1b summarizes results of calcu-

lations for these 3 types of possible rattling distortions.

One can see that this is the out-of-phase distortion to

Fe ions, which gives the lowest total energy.
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Fig. 1. (Color online) (a) – Crystal structure of quadruple perovskites AA’3B4O12 on example of CuCu3Fe2Re2O12. There
are two types of Cu ions: Cu1 (light blue) is in a large cage, A site, and can rattle, while Cu2 (dark blue) is in square-planer
coordinated A

′ site. FeO6 and ReO6 octahedra are shown by yellow and green, respectively. In CuCu3V4O12, both these
octahedra are filled by V ions instead of Fe and Re. (b) – Total energy vs Cu1 displacement along [111] direction, when two
different Cu1 ions in a unit cell are shifted both to Re, one to Re and one to Fe, and both to Fe atoms, and (c) along [001],
[110], and [111] directions in CuCu3Fe2Re2O12

We checked other directions of possible rattling dis-

tortions and found that there are indeed local minima in

[001], along [110] directions, but all of them have higher

energies than the one along [111] direction, see Fig. 1c.

This result demonstrates that the potential for the rat-

tling has a complex form with many local minima and

can not be described by a simplified double-well shape.

In conclusion, we provide theoretical evidence of

the presence of rattling modes in quadruple perovskite

CuCu3V4O12. We predict the same phenomenon in the

recently synthesized CuCu3Fe2Re2O12. The [111] direc-

tion of Cu1 rattling turns out to be the most energeti-

cally favourable.
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