ОРБИТЫ 451 ШИРОКОЙ ВИЗУАЛЬНО-ДВОЙНОЙ ЗВЕЗДЫ

© 2019 г. И. С. Измайлов^{1*}

¹Главная (Пулковская) астрономическая обсерватория РАН, Санкт-Петербург, Россия Поступила в редакцию 16.08.2018 г.; после доработки 04.09.2018 г.; принята к публикации 04.09.2018 г.

На основании позиционных наблюдений впервые определены орбиты 130 визуально-двойных звезд и улучшены орбиты 321 звезды. Гистограмма распределения эксцентриситетов для всех полученных орбит соответствует соотношению f = 2e. Распределение по периодам имеет два выраженных максимума при $P \approx 200$ и $P \approx 550$ лет. Вычислены эфемеридные относительные положения и их ошибки на ближайшие три года.

Ключевые слова: двойные и кратные звезды, орбиты.

DOI: 10.1134/S0320010819010030

ВВЕДЕНИЕ

Исследования визуально-двойных звезд могут служить важным источником информации как о формировании звезд, так и о дальнейшей эволюции звездных систем. Ориентация плоскости орбиты должна сохранять момент количества движения исходного газо-пылевого облака при условии, что в дальнейшем не было значимого взаимодействия двойной системы с другими объектами. К примеру, высказывалось подозрение, что орбиты именно широких пар могут быть круто наклонены к плоскости галактики (Киселев, Романенко, 2004). Также следствием динамической эволюции двойных систем могут быть определенные тенденции в распределениях орбит по эксцентриситетам и периодам обращения.

Несмотря на то что задача определения орбит визуально-двойных звезд является традиционной для астрономии, и наблюдения этих звезд проводятся уже более двух веков, для большинства таких звезд орбиты не определены. Это связано с тем, что периоды обращения могут достигать десятков тысяч лет (Киселев, Романенко, Калиниченко, 2009). Так, в Вашингтонском каталоге двойных звезд (Мэйсон и др., 2018) на настоящий момент представлены данные о более чем 142 тысяч пар, число же звезд с орбитами составляет меньше трех тысяч. В то же время считается, что орбиты звезд с большими периодами определены ненадежно. Также, в связи с открытием планет в рассматриваемых системах, представляют большой интерес исследования, посвященные динамической эволюции орбитальных параметров таких планет (Мельников, 2016).

НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Из отобранной для данной работы 451 пары звезд 321 пара уже имела орбиты, а для 130 пар орбиты планировалось определить впервые. В основном это пары, имеющие на текущий момент значительное угловое расстояние в картинной плоскости между компонентами. Двумя ориентировочными критериями при отборе пар были, во-первых, условие, чтобы максимум расстояния между компонентами за период наблюдений был больше 0.8 угл. сек, и, во-вторых, чтобы движение по позиционному углу было больше 8 град. Также, в случае наличия, определялись орбиты внутренних подсистем, имеющих угловое расстояние примерно до 0.04 угл. сек. Наибольшим угловым расстоянием в 34 сек в этой выборке обладает известная близкая двойная система WDS 00184+4401=Грумбридж 34. Среднемедианное расстояние выборки составляет 1.6 угл. сек. Первоначально при составлении выборки тригонометрический параллакс не учитывался. В каталоге Gaia DR2 (Браун и др., 2018) присутствуют и соответственно имеют точные параллаксы 386 систем. Среднемедианный параллакс составляет примерно 19 миллисекунд дуги (мсд). Как известно, метод параметров видимого движения (ПВД), разработанный А.А. Киселевым, для определения орбит требует привлечения данных о тригонометрических параллаксах и лучевых скоростях компонент (Киселев, Кияева, 1980). Поскольку для определения этих параметров требуется наблюдать звезды по отдельности, большое угловое расстояние между компонентами позволяет надеяться, что они либо уже известны, либо будут определены позднее. В дальнейшем применение метода ПВД позволит значительно уменьшить неопределенность в элементах орбит

^{*}Электронный адрес: i_izmailov@mail.ru

по сравнению с данной работой именно за счет привлечения дополнительной информации.

Основной объем наблюдательного материала представляет собой выборку из базы данных визуально-двойных звезд, поддерживаемой в Военно-Морской обсерватории США, и был любезно предоставлен Б. Мэйсоном по нашему запросу. Данные для каждой звезды представлены рядами позиционных углов и расстояний между компонентами (θ, ρ). Выборка была дополнена результатами наблюдений, выполненными на пулковском 26-дюймовым рефракторе (Киселев, Кияева и др., 2014; Измайлов, Ховричева и др., 2010; Измайлов, Рощина, 2016). Поэтому были исключены данные об этих наблюдениях, попавшие в базу данных ранее. Также были использованы данные о позиционных углах и расстояниях между компонентами из каталога Gaia DR1 (Прасти и др., 2016), вычисленные на основе экваториальных координат, если эта информация присутствовала в каталоге для обеих компонент пары. Всего было использовано 59824 наблюдения, первое из них было выполнено В. Гершелем в 1779 г. (Гершель, 1782), впрочем, к XVIII в. относятся только пять наблюдений, к XIX в. – чуть больше 10 тысяч и остальные соответственно к XX и XXI вв. Поправка к позиционному углу за прецессию вычислялась по известной формуле

 $\Delta \theta = 0.00556 \sin \alpha \sec \delta (2000 - t),$

где α, δ — экваториальные координаты звезды, t — момент наблюдения в годах.

ОПРЕДЕЛЕНИЕ ОРБИТ

Для определения орбит использовался метод Тиле—Иннеса (хорошее описание метода см. в книге Субботина, 1968). В соответствии с данным методом, на первом этапе определялись три динамических элемента: эксцентриситет, период и время прохождения периастра (e, P, T). Далее с помощью метода наименьших квадратов (МНК) вычислялись константы A, B, F, G из системы

$$x_i = AX_i + FY_i,$$

$$y_i = BX_i + GY_i,$$

где

$$X_i = \cos E_i - e; \quad Y_i = \sqrt{1 - e^2} \sin E_i,$$

$$x_i = \rho_i \cos \theta_i, \quad y_i = \rho_i \sin \theta_i, \quad i = 1, 2..., N,$$

N — число наблюдений.

Поскольку вычисления для одного набора динамических элементов на современных компьютерах занимают незначительное время, для улучшения результатов испытывалось несколько сотен таких наборов, и из них отбирались десять, обеспечивающих наименьшее среднеквадратическое отклонение (СКО) от наблюдаемых данных. После этого для каждого из десяти наборов выполнялось улучшение орбиты посредством нелинейного МНК:

$$\sum_{j} \frac{\partial x_c}{\partial p_j} \Delta p_j = x_{oi} - x_{ci},$$
$$\sum_{j} \frac{\partial y_c}{\partial p_j} \Delta p_j = y_{oi} - y_{ci},$$

где p_j — один из динамических элементов (e, P, T), Δp_j — поправки к элементу p_j , x_{oi} , y_{oi} — наблюденное положение, x_{ci} , y_{ci} — эфемериды. Нелинейный МНК предполагает вычисления по итерационной схеме, когда на каждом шаге к текущему значению p_j добавляется Δp_j , пока поправки не становятся незначительными. Как правило, требовалось несколько сотен итераций. Параметры A, B, F и G вычислялись на каждом шаге после изменения динамических элементов. После окончания итераций из десяти полученных вариантов отбирался наиболее соответствующий наблюдениям, т.е. обеспечивающий минимальное СКО. И, наконец, по значениям параметров A, B, F, G вычислялись остальные элементы орбиты: a, i, Ω, ω .

Поскольку исходные данные, полученные из наблюдений, не являются абсолютно точными и содержат ошибки измерений, указанные ошибки переходят в ошибки элементов. Точнее, для одного элемента возникает интервал, в котором с заданной вероятностью содержится значение элемента, а для всех семи элементов это соответственно будет область в 7-мерном пространстве. Из-за того что большинство рассматриваемых звезд имеют период обращения много больший, чем интервал времени, охваченный наблюдениями, сравнительно небольшие ошибки измерений приводят, вопервых, к существенным ошибкам в элементах орбит и, во-вторых, к возможному наличию больших нелинейных корреляций между элементами. Как следствие, область в 7-мерном пространстве, занимаемая возможными значениями элементов, в общем случае будет совершенно произвольной формы.

Отметим, что обычно применяемый подход, когда публикуются элементы с указанием величин ошибок, причем без представления ковариационной матрицы, обладает явными недостатками:

1) предполагается, что область, занятая элементами, обладает эллипсоидальной формой, при этом оси эллипсоида ориентированы по осям системы координат;

2) невозможно посчитать реалистичные ошибки производных от элементов величин, к примеру,

ошибки эфемеридных положений на будущие эпохи. При попытке сделать это, допустим, по формуле распространения ошибок, ошибки положений получатся нереалистично большими.

Для того чтобы описать данную область, занимаемую элементами, использовалась следующая схема:

a) по полученной орбите на все моменты наблюдений вычислялись эфемеридные положения;

б) к эфемеридным положениям добавлялся модельный случайный шум с СКО, полученным при определении основной орбиты;

в) по модельному ряду определялась орбита в соответствии с вышеописанным алгоритмом;

г) пункты б) и в) повторялись 200 раз.

Таким образом, для каждой пары звезд получается набор орбит, описывающий область возможных орбитальных решений.

ОПРЕДЕЛЕНИЕ ОРБИТ С ВЕСАМИ

Наблюдения визуально-двойных звезд выполняются разными методами, с использованием очень разной регистрирующей аппаратуры, и соответственно можно ожидать, что данные наблюдения имеют разную точность. Учесть это обстоятельство при вычислении орбит можно введением весов, служащих характеристикой качества наблюдений. При этом левую и правую часть уравнений в МНК необходимо умножить на величину веса. Был реализован следующий алгоритм:

 На первом шаге все веса задавались равными единице.

2. Вычислялись все орбиты с весами. Веса для каждой звезды назначались на основании СКО для отдельной публикации и так, чтобы средний вес был равен единице.

3. По всем парам звезд для каждой публикации вычислялось СКО. Также вычислялось среднее СКО по всем наблюдениям.

4. Вычисления повторялись с п. 2.

СКО по всем наблюдениям стабилизировалось на девятом проходе алгоритма на уровне 54 мсд. Впрочем, основное улучшение произошло уже после первого прохода: с 85 мсд до 56 мсд.

РЕЗУЛЬТАТЫ

В табл. 1 (решение без весов) и 2 (с весами) даны элементы полученных орбит, а также ПВД, соответствующие данным орбитам. Все таблицы можно загрузить из страсбургского центра данных или в системе астрометрических баз данных Пулковской обсерватории *http://izmccd.puldb.ru/vds.htm*. По последнему адресу также доступна программа для определения орбит визуально-двойных звезд, разработанная в рамках данной работы.

Для всех орбит, в сравнении с орбитами из работ других авторов, СКО оказалась меньше, т.е. все наши орбиты на использованном наблюдательном материале лучше совпадают с наблюдениями. Среднемедианная относительная разность

$$\sigma_d = \frac{\sigma_p - \sigma_t}{\sigma_t} 100\%$$

(σ_p — СКО орбиты из литературы, σ_t — СКО нашей орбиты) составляет 5.48%. Если рассортировать относительные разности по возрастанию, то граница в 10% от всех разностей будет на уровне 1.04%, а граница в 90% разностей — 32.27%. Таким образом, присутствуют как орбиты, для которых улучшение оказалось незначительным, так и орбиты, существенно лучше представляющие наблюдения.

Наборы возможных орбит приведены в табл. 3 и 4 таким же образом, как и для единичных орбит с весами и без весов. Данные наборы позволяют определить как сами эфемеридные положения, так и ошибки этих положений. Для всех звезд были вычислены эфемеридные положения на эпохи 2019.0, 2020.0 и 2021.0 (см. табл. 5 и 6). Среднемедианное всех ошибок положений для решения без весов оказалось 22.14 мсд, для решения с весами существенно лучше: 12.50 мсд. Следует отметить, что наблюдения начала XIX в. получили значительно меньшие веса, чем наблюдения конца XX и начала XXI в., поэтому решения с весами, как правило, плохо описывают первые, ранние наблюдения. Для полноты картины мы публикуем оба решения.

На рис. 1 и 2 приведена гистограмма распределения орбит по эксцентриситетам, по наборам возможных орбит и по отдельным орбитам соответственно, т.е. в первом случае каждая пара звезд представлена 200 точками, а во втором — одной средней точкой. Вертикальный размер закрашенных прямоугольников на этих и всех следующих гистограммах соответствует интервалу ошибок. Ошибки рассчитывались методом Монте-Карло. Были получены 1000 гистограмм, при этом для каждого набора эксцентриситетов, для каждой гистограммы была сгенерирована новая выборка с функцией распределения вероятностей такой же,

Таблица 1. (фрагмент)	Элементы о	рбит, решение (без весов
-----------------------	------------	-----------------	-----------

WDS+disc	$P($ годы $)$ σ_P	$a('') \sigma_a$	$i(^{o}) \sigma_{i}$	$\Omega(^o) \ \sigma_\Omega$	$T($ годы $)$ σ_{T}	$e \sigma_e$	$\omega(^{o}) \ \sigma_{\omega}$	
00006–5306HJ 5437	1058.6861	3.84385	62.261	179.041	2051.2033	0.88681	262.866	
	520.5167	1.74007	13.226	73.803	54.5278	0.22744	19.050	
00014+3937HLD 60	250.2839	0.92649	127.560	141.097	1903.2555	0.68076	144.820	
	19.3618	0.03649	1.733	3.297	0.8046	0.01682	2.315	
00015+3044HO 208	619.2200	1.72521	105.653	0.667	2063.3129	0.65044	255.079	
	293.7397	0.78363	11.757	11.517	28.2256	0.29765	25.783	
00021-6817I 699	405.7301	4.14289	65.696	98.764	1901.0603	0.81613	250.734	
	184.5030	1.63936	7.514	14.613	3.0746	0.12062	16.181	
00028+0208BU 281	820.9595	2.86234	112.692	53.220	1838.9809	0.82787	103.793	
	405.6594	1.51454	10.404	12.402	20.2950	0.12441	10.661	
00057+4549STT 547	370.7257	5.84783	58.654	23.388	2095.0319	0.47556	282.312	
	174.6387	0.86696	4.733	12.970	24.9967	0.27917	26.151	
00059+1805STF3060	3804.2824	12.48656	78.895	70.947	1339.1860	0.82967	289.172	
	1874.5757	6.33210	8.043	38.097	963.4660	0.14080	31.722	
00063+5826STF3062	106.7699	1.44025	45.397	41.221	1943.2985	0.45080	97.805	
	0.1736	0.00984	0.573	0.768	0.1457	0.00428	0.556	
00076-0433STF3063	756.4106	1.73346	108.258	39.335	2135.1314	0.12449	307.113	
	371.0582	0.53048	5.936	8.333	192.9791	0.45305	62.598	
00093+7943STF 2	531.4546	1.01052	109.329	170.888	1886.8510	0.71991	331.561	
	105.5469	0.14256	1.182	0.677	0.6908	0.04349	1.667	

как у исходного набора. Кроме этого учитывалось, что среднемедианные наборы также имеют ошибку. Из рисунков видно, что во втором случае есть недостаток двойных с большими эксцентриситетами. Так как выборка звезд одна и та же, в данном случае этот недостаток происходит просто из-за свойств операции усреднения и из-за того факта, что эксцентриситет не может быть больше едини-

ОРБИТЫ 451 ШИРОКОЙ ВИЗУАЛЬНО-ДВОЙНОЙ ЗВЕЗДЫ

Габлица 2. (фрагмент) Элементы орбит,	решение с весами
----------------------	-------------------	------------------

WDS+disc	$P($ годы $)$ σ_P	$a('') \sigma_a$	$i(^{o}) \sigma_{i}$	$egin{array}{c} \Omega(^o) \ \sigma_\Omega \end{array}$	$T($ годы $)$ σ_{T}	$e \sigma_e$	$\omega(^{o}) \ \sigma_{\omega}$	
00006-5306HJ 5437	904.0236	2.80380	49.893	5.860	2063.3249	0.81172	79.676	
	362.8075	1.04206	14.260	30.497	16.3824	0.14686	10.079	
00014+3937HLD 60	217.2694	0.87865	128.050	147.353	1903.2511	0.63041	148.186	
	16.5701	0.01750	4.231	2.957	1.6226	0.01456	5.431	
00015+3044HO 208	649.6410	2.20987	103.903	175.491	2054.9367	0.77651	76.124	
	319.4783	1.67551	8.166	5.153	19.0547	0.18187	12.674	
00021-6817I 699	346.5618	3.68528	63.077	98.298	1901.0748	0.82266	244.858	
	148.1081	1.41833	9.324	14.865	3.2307	0.13352	19.454	
00028+0208BU 281	732.2152	1.76503	129.156	37.566	1825.5114	0.55093	102.275	
	379.5378	0.54475	14.788	97.949	82.0983	0.26005	25.991	
00057+4549STT 547	516.2600	6.16805	54.254	11.716	2119.2594	0.18530	267.708	
	121.7374	0.65063	3.368	6.764	42.8848	0.11855	36.565	
00063+5826STF3062	106.8442	1.41601	44.498	42.212	1943.3112	0.45317	96.807	
	0.2299	0.00917	0.530	0.789	0.0971	0.00424	0.487	
00076-0433STF3063	687.9954	2.33846	99.936	46.192	1781.1507	0.49847	97.779	
	339.4448	0.95313	5.263	4.837	56.2815	0.23849	45.289	
00093+7943STF 2	599.6600	1.08897	108.224	170.323	1885.3970	0.75280	329.647	
	169.6130	0.19898	0.876	2.533	1.9525	0.05069	3.402	
00094-2759BU 391	575.6506	1.61369	98.715	76.733	2087.6590	0.50220	272.711	
	247.6280	0.48515	3.851	6.525	104.9476	0.31475	42.552	

цы. Таким образом, необходимо сделать вывод, что более корректным является использование набора орбит. Интересно, что для тех же самых звезд распределение эксцентриситета для орбит из каталога (Мэйсон и др. 2018) не показывает увеличение доли двойных с ростом эксцентриситета после 0.5. Одно из возможных объяснений — авторы избегают публиковать орбиты со "слишком большими" экс-

ИЗМАЙЛОВ

WDS+disc	P(годы)	a('')	$i(^{o})$	$\Omega(^{o})$	T(годы)	e	$\omega(^{o})$	
00006-5306HJ 5437	872.8502	4.34146	67.541	5.127	2049.7395	0.92528	84.414	
00006–5306HJ 5437	1206.8418	2.28961	28.683	163.619	2110.5626	0.60863	264.714	
00006–5306HJ 5437	427.7678	2.58055	70.729	87.489	2153.8015	0.80449	69.832	
00014+3937HLD 60	265.3454	0.96963	127.756	135.032	1903.6691	0.69855	140.902	
00014+3937HLD 60	243.3539	0.92799	126.506	140.375	1902.8771	0.68646	141.981	
00014+3937HLD 60	248.3433	0.89492	127.978	143.271	1903.2360	0.67539	147.193	
00015+3044HO 208	612.6401	1.44328	109.338	4.106	2074.9048	0.50285	254.326	
00015+3044HO 208	920.9974	2.18016	111.298	70.132	1864.7101	0.85390	102.832	
00015+3044HO 208	534.1068	0.90417	132.232	19.505	1776.7347	0.22647	27.610	

Таблица 3. (фрагмент) Наборы элементов орбит, решение без весов

Таблица 4. (фрагмент) Наборы элементов орбит, решение с весами

WDS+disc	P(годы)	a('')	$i(^{o})$	$\Omega(^{o})$	T(годы)	e	$\omega(^{o})$	
00006-5306HJ 5437	549.6651	7.99314	80.035	33.927	2056.7827	0.98598	85.595	
00006-5306HJ 5437	504.2507	3.34558	66.600	20.256	2050.7522	0.93257	85.899	
00006–5306HJ 5437	1075.9786	2.64573	42.578	162.805	2070.3988	0.69554	265.877	
00014+3937HLD 60	218.8158	0.89693	126.317	145.205	1902.5817	0.64063	144.729	
00014+3937HLD 60	222.2718	0.86580	131.642	148.803	1903.9715	0.60383	154.013	
00014+3937HLD 60	217.8920	0.86966	126.941	150.115	1902.5017	0.62126	150.765	
00015+3044HO 208	889.1138	1.80922	110.602	3.110	2067.5236	0.56042	238.691	
00015+3044HO 208	419.6280	2.36644	104.580	95.509	1857.9418	0.93620	94.129	
00015+3044HO 208	598.5595	1.44416	112.139	173.034	2086.6492	0.58178	78.062	

WDS+disc	$ ho_{2019.0}('')$	$\sigma_ ho$	$\theta_{2019.0}(^{o})$	$\sigma_{ heta}$	$ \rho_{2020.0}('') $	$\sigma_ ho$	$\theta_{2020.0}(^{o})$	
00006-5306HJ 5437	1.3582	0.0771	336.874	1.816	1.3443	0.0821	337.476	
00014+3937HLD 60	1.3460	0.0261	167.162	0.515	1.3506	0.0273	166.860	
00015+3044HO 208	1.0308	0.0418	187.455	1.032	1.0260	0.0452	187.116	
00021-6817I 699	4.2628	0.0800	130.510	0.490	4.2611	0.0840	130.710	
00028+0208BU 281	1.6006	0.0395	159.251	0.979	1.6023	0.0410	158.949	
00057+4549STT 547	5.9507	0.0266	189.728	0.063	5.9369	0.0302	190.159	
00059+1805STF3060	3.3730	0.0194	135.305	0.238	3.3716	0.0198	135.445	
00063+5826STF3062	1.5499	0.0081	4.059	0.413	1.5461	0.0082	5.883	
00076-0433STF3063	0.9481	0.0682	191.695	1.996	0.9363	0.0715	191.186	
00093+7943STF 2	0.9303	0.0126	14.319	0.723	0.9374	0.0130	14.137	

Таблица 5. (фрагмент) Эфемериды, решение без весов

Таблица 6. (фрагмент) Эфемериды, решение с весами

WDS+disc $\rho_{2019.0}('') = \sigma_{\rho} = \theta_{2019.0}(^{o}) = \sigma_{\theta} = \rho_{2020.0}('') = \sigma_{\rho} = \theta_{2019.0}(^{o}) = \sigma_{\theta} = 0$	$\theta_{2020.0}(^{o})$	
00006-5306HJ 5437 1.3657 0.0257 338.848 0.563 1.3518 0.0283	339.487	
00014+3937HLD 60 1.3224 0.0140 165.770 0.286 1.3244 0.0151	165.421	
00015+3044HO 208 1.0280 0.0403 186.213 0.817 1.0210 0.0452	185.824	
00021-68171699 4.2610 0.0745 130.722 0.466 4.2581 0.0784	130.922	
00028+0208BU 281 1.5598 0.0216 158.896 0.494 1.5594 0.0232	158.565	
00057+4549STT 547 5.9751 0.0153 189.739 0.034 5.9642 0.0175	190.167	
00063+5826STF3062 1.5262 0.0078 3.378 0.334 1.5219 0.0081	5.227	
00076-0433STF3063 0.9720 0.0434 192.752 1.436 0.9617 0.0457	192.288	
00093+7943STF 2 0.9137 0.0091 14.943 0.284 0.9208 0.0095	14.769	
00094-2759BU 391 1.3341 0.0353 258.032 0.297 1.3276 0.0386	257.911	

Рис. 1. Гистограмма распределения наборов орбит по эксцентриситетам.

Рис. 2. Гистограмма распределения единичных орбит по эксцентриситетам.

центриситетами, поскольку в Солнечной системе и в парах звезд с небольшими периодами мы привыкли к почти круговым орбитам. Распределение на рис. 1 близко к так называемому "тепловому" и описывается формулой f = 2e (Маркс и др., 2011). В работе Токовинина и Кияевой (2016), также для широких пар звезд, было получено близкое распределение f = 1.2e + 0.4. Как следует из рис. 7 последней работы, распределение перейдет в "тепловое", если ликвидировать недостаток двойных с эксцентриситетом больше 0.8.

Рисунок 3 представляет распределение орбит звезд по периодам. Обращают внимание на себя два выраженных максимума при периодах 200 и 550 лет. Одна из гипотез о причине возникновения этих максимумов — возможное наличие двух механизмов образования двойных звезд, например, как в работе Оффнер и др. (2010). Другое возможное объяснение состоит в том, что присутствует доста-

2019

Рис. 3. Гистограмма распределения наборов орбит по периодам.

Рис. 4. Гистограмма распределения наборов орбит по суммам масс компонент.

точно сложное влияние интервалов наблюдений на распределение получаемых периодов обращения.

Для вычисления сумм масс компонент были использованы параллаксы из Gaia DR2. Распределения по суммам масс для пар звезд (рис. 4), видимо, в основном объясняется эффектами наблюдательной селекции, поскольку от массы звезды сильно зависит как абсолютная, так и видимая звездная величина, а следовательно, и условия, и возможность наблюдений. Максимум достигается при значении масс ≈1.5-2.0 массы Солнца. Интересно, что положение максимума совпадает для орбит тех же звезд, вычисленных другими авторами (рис. 5). Из сравнения рис. 4 и 5 можно сделать вывод, что в первом случае ошибки, по-видимому, меньше, и орбиты, представленные в этой работе, меньше уклоняются от реального положения дел. Вопросы, насколько статистически значима полученная

Рис. 5. Гистограмма распределения орбит, из каталога WDS, по суммам масс компонент.

зависимость для распределения эксцентриситетов и насколько значимы пики в распределении периодов, не являются ли данные результаты следствием применяемых методов либо следствием селекции рассматриваемых объектов, автор в будущем планирует рассмотреть в отдельной работе.

Исследование выполнено с использованием Вашингтонского каталога двойных звезд (WDS, Мэйсон и др. 2018), созданного в Военно-морской обсерватории США. Автор выражает глубокую благодарность его создателям, а также всем наблюдателям визуально-двойных звезд во всем мире, чья работа позволяет получать значимые научные результаты.

СПИСОК ЛИТЕРАТУРЫ

- 1. Браун и др. (A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, C.A.L. Bailer-Jones, M. Biermann, D.W. Evans, et al.), Astron. Astrophys. **616**, A1 (2018).
- 2. Гершель (W. Herschel), Phil. Trans. R. Soc. **72**, 112 (1782).
- Измайлов И.С., Ховричева М.Л., Ховричев М.Ю., Кияева О.В., Хруцкая Е.В., Романенко Л.Г., Грошева Е.А., Масленников К.Л., Калиниченко О.А., Письма в астрон. журн. 36, 365 (2010) [I.S. Izmailov et al., Astron. Lett. 36, 349 (2010)].
- Измайлов, Рощина (I.S. Izmailov and E.A. Roshchina), Astrophys. Bull. 71, 225 (2016); http://izmccd.puldb.ru/vds.htm.
- 5. Киселев А.А., Кияева О.В., Измайлов И.С., Романенко Л.Г., Калиниченко О.А., Василькова О.О.,

Васильева Т.А., Шахт Н.А., Горшанов Д.Л., Рощина Е.А., Астрон. журн. **91**, 130 (2014) [А.А. Kiselev et al., Astron. Rep **58**, 78 (2014)].

- Киселев А.А., Кияева О.В., Астрон. журн. 57, 1227 (1980).
- Киселев, Романенко (А.А. Kisselev and L.G. Romanenko), Astron. Soc. Pacific 316, 250 (2004).
- Киселев А.А., Романенко Л.Г., Калиниченко О.А., Астрон. журн. 86, 148 (2009) [А.А. Kisselev, L.G. Romanenko, and O.A. Kalinichenko, Astron. Rep. 53, 126 (2009)].
- 9. Маркс и др. (M. Marks, P. Kroupa, and S. Oh), MNRAS **417**, 1684 (2011).
- Мельников А.В., Письма в астрон. журн. 42, 136 (2016) [A.V. Melnikov, Astron. Lett. 42, 115 (2016)].
- Мэйсон и др. (B.D. Mason, G.L. Wycoff, W.I. Hartkopf, et al.), *The Washington* visual double star catalog, version 2018; http://ad.usno.navi.mil/wds/(2018).
- 12. Оффнер и др. (S.S.R. Offner, K.M. Kratter, C.D. Matzner, M.R. Krumholz, and R.I. Kleinastro), astro-ph/1010.3702(2010).
- 13. Прасти и др. (Т. Prusti, J.H.J. de Bruijne, A.G.A. Brown, A. Vallenari, C. Babusiaux, C.A.L. Bailer-Jones, U. Bastian, and M. Biermann), Astron. Astrophys. **595**, A1–A7, A133 (2016).
- Субботин М.Ф., Введение в теоретическую астрономию (М.: Наука, Глав. ред. физ.-мат. лит., 1968).
- Токовинин, Кияева (А. Tokovinin and O. Kiyaeva), MNRAS 456, 2070 (2016).