РАДИАЛЬНЫЕ ПУЛЬСАЦИИ ЗВЕЗД НА СТАДИИ ФИНАЛЬНОЙ ГЕЛИЕВОЙ ВСПЫШКИ

© 2019 г. Ю. А. Фадеев^{1*}

¹Институт астрономии РАН, Москва, Россия

Поступила в редакцию 12.08.2019 г.; после доработки 13.08.2019 г.; принята к публикации 13.08.2019 г.

Проведены расчеты эволюции звезд населения I с массой на главной последовательности $1\dot{M}_{\odot} \leq M_0 \leq 1.5 M_{\odot}$ до стадии остывающего белого карлика. Показано, что при значении параметра овершутинга f = 0.016 финальная гелиевая вспышка LTP на стадии post-AGB возникает в звездах с начальной массой $1.3M_{\odot} \leq M_0 \leq 1.32M_{\odot}$. В случае более эффективного овершутинга (f = 0.018) финальная гелиевая вспышка происходит при начальной массе звезды $1.28 M_{\odot} \leq M_0 \leq 1.3_{\odot}$. Пятикратные изменения параметра скорости потери массы на стадии post-AGB не влияют на возникновение финальной гелиевой вспышки, однако приводят к заметным изменениям времени эволюции. Отдельные модели двух эволюционных последовательностей с начальной массой $M_0=1.3M_{\odot}$ и значениями параметра овершутинга f = 0.016 и f = 0.018 были использованы как начальные условия при решении уравнений гидродинамики, описывающих радиальные пульсации звезд с эффективной температурой $T_{\rm eff} < 10^4$ К. Максимальное значение периода пульсаций $\Pi = 117$ сут, определенное для эволюционной последовательности $M_0 = 1.3 M_{\odot}, f = 0.016$, находится в хорошем согласии с последними наблюдательными оценками периода FG Sge. Масса, радиус и эффективная температура звезды составляют $M=0.565 M_{\odot},\,R=126 R_{\odot}$ и $T_{\rm eff}=4445$ К соответственно. Вместе с тем среднее значение скорости изменения периода FG Sge в интервале с 1960 г. по 1990 г. приблизительно в три раза превосходит теоретическую оценку этой величины.

Ключевые слова: звездная эволюция; post-AGB звезды; звезды — переменные и пекулярные.

DOI: 10.1134/S0320010819100036

ВВЕДЕНИЕ

Завершение эволюционной стадии асимптотической ветви гигантов (АGB) звездами с начальной массой $M_0 \lesssim 9 M_\odot$ связано с потерей массы вследствие интенсивного звездного ветра. Уменьшение массы водородной оболочки до значения $M_{
m env} \sim$ $\sim 10^{-2} M$ приводит к быстрому сжатию звезды и перемещению на диаграмме Герцшпрунга-Рессела (ГР) в высокотемпературную область с характерной эффективной температурой $T_{
m eff} \sim$ $\sim 10^5$ К (Пачинский, 1971). Продолжительность стадии post-AGB невелика и сокращается с увеличением начальной массы звезды от $\approx 3.4 \times$ $imes 10^4$ лет при $M_0 = 1 M_\odot$ до pprox 600 лет при $M_0 =$ = 4 M_☉ (Миллер Бертолами, 2016). Источником светимости post-AGB звезд являются реакции термоядерного горения водорода в слое, а масса водородной оболочки продолжает убывать. В большинстве случаев прекращение реакций в водородном слоевом источнике сопровождается превращением звезды в остывающий белый карлик.

Предположение о финальной гелиевой вспышке позволяет объяснить фотометрические и спектральные изменения, наблюдаемые у некоторых звезд, являющихся ядрами планетарных туманностей: FG Sge (Шонбернер, 1983; Ибен, 1984), V4334 Sgr (Дюрбек, Бенетти, 1996) и V605 Aql (Клейтон, Де Марко, 1997). Теоретические оценки шкалы времени таких изменений, полученные из вычислений звездной эволюции, находятся в удо-

Однако существует вероятность того, что прежде чем термоядерные источники энергии полностью иссякнут, может произойти еще одна (финальная) тепловая вспышка гелиевого слоевого источника (Шонбернер, 1979, 1983; Ибен и др., 1983). Финальная гелиевая вспышка может произойти как на стадии термоядерного горения водорода в слоевом источнике (LTP), так и после прекращения горения водорода (VLTP) на начальной стадии остывания белого карлика (Блокер, 2001). В результате гелиевой вспышки эволюционный трек звезды описывает на диаграмме ГР петлю, которая простирается в сторону красных гигантов до эффективных температур ≈4000 К (Альтхаус и др., 2005; Миллер Бертолами и др., 2006).

^{*}Электронный адрес: fadeyev@inasan.ru

влетворительном согласии с наблюдениями (Блокер, Шонбернер, 1997; Лолор, МакДональд, 2003; Миллер Бертолами и др., 2006; Миллер Бертолами, Альтхаус, 2007).

Среди наблюдаемых объектов, претерпевающих в настоящее время финальную гелиевую вспышку, наибольший интерес представляет переменная FG Sge — ядро планетарной туманности Не 1-5 (Хенайз, 1961). История наблюдений этой звезды насчитывает около 130 лет. в течение которых было отмечено монотонное уменьшение эффективной температуры от $T_{\mathrm{eff}} \approx 4.5 imes 10^4$ К в 1880 г. до $T_{\rm eff} \approx 4500$ К в 1992 г. (Хербиг, Боярчук, 1968; ван Гендерен, Готши, 1995; Джеффри, Шонбернер, 2006). Более того, в течение ≈ 60 лет наблюдалось возрастание периода радиальных пульсаций FG Sge от $\Pi \approx 5$ сут в 1930 г. (ван Гендерен, Готши, 1995) до П≈115 сут в 1986-1989 гг. (Архипова, 1996). Увеличение периода изменения блеска FG Sge прекратилось после 1990 г. (Архипова и др., 1998, 2009).

Период пульсаций П и скорость его изменения П являются наиболее надежными индикаторами структурных изменений, происходящих в эволюционирующей звезде, поэтому для более строгого сопоставления выводов теории звездной эволюции с наблюдениями необходимо использовать методы теории звездных пульсаций. Применительно к звездам, находящимся на стадии финальной гелиевой вспышки, подобные исследования никем не проводились. Основу настоящей работы составляют согласованные расчеты звездной эволюции и нелинейных пульсаций звезд. В рамках применяемого подхода отдельные модели эволюционных последовательностей используются как начальные условия при решении уравнений радиационной гидродинамики и нестационарной конвекции, описывающих радиальные звездные пульсации. Полученные из вычислений зависимости изменения периода в функции времени эволюции $\Pi(t_{\text{tev}})$ сравниваются с наблюдениями пульсирующей переменной FG Sge.

РЕЗУЛЬТАТЫ РАСЧЕТОВ ЗВЕЗДНОЙ ЭВОЛЮЦИИ

Расчеты звездной эволюции проводились с использованием программы MESA версии 10398 (Пакстон и др., 2018) при начальных относительных массовых содержаниях водорода и гелия $X_0 = 0.7$ и $Y_0 = 0.28$ соответственно. Начальные содержания элементов тяжелее гелия определялись согласно Гревессе и Соваль (1998). Скорость энерговыделения в ядерных реакциях и изменения содержаний химических элементов в результате нуклеосинтеза определялись

посредством решения уравнений кинетики для 29 изотопов от водорода ¹Н до алюминия ²⁷Al, связанных между собой 51 реакцией. Для этой цели использовалась сетка реакций программы MESA 'sagb_NeNa_MgAl.net'. Вычисление скоростей термоядерных реакций проводилось с использованием базы данных JINA Reaclib (Сайбурт и др., 2010).

Конвекция рассматривалась в рамках стандартной теории длины пути перемешивания (Бём-Витензе, 1958) при отношении длины пути перемешивания к шкале высот по давлению $\alpha_{\rm MLT} =$ $= \ell/H_{\rm P} = 1.8$. Дополнительное перемешивание звездного вещества за пределами конвективной зоны вследствие эффекта овершутинга рассчитывалось согласно Хервигу (2000):

$$D_{\rm ov}(z) = D_0 \exp\left(-\frac{2z}{fH_{\rm P}}\right),\tag{1}$$

где D_0 — коэффициент конвективной диффузии (Лангер и др., 1985) в слое внутри конвективной зоны, отстоящем от ее границы на расстоянии 0.004 H_P , z — радиальное расстояние от границы конвективной зоны, f — параметр овершутинга. Чтобы оценить роль овершутинга в возникновении финальной гелиевой вспышки для каждого значения начальной массы M_0 , рассматривались два варианта эволюционных последовательностей при различных значениях f. В первом случае эволюционные расчеты проводились с использованием общепринятого значения f = 0.016 (Хервиг, 2000), тогда как во втором случае — в предположении более эффективного дополнительного перемешивания при f = 0.018.

Для определения скорости потери массы *М* на стадии, предшествующей AGB, использовалась формула Раймерса (1975)

$$\dot{M}_{\rm R} = 4 \times$$
 (2)
 $\times 10^{-13} \eta_{\rm R} (L/L_{\odot}) (R/R_{\odot}) (M/M_{\odot})^{-1},$

а на стадии AGB — формула Блокера (1995)

 \times

$$\dot{M}_{\rm B} = 4.83 \times$$
 (3)
 $10^{-9} \eta_{\rm B} \dot{M}_{\rm R} (L/L_{\odot})^{2.7} (M/M_{\odot})^{-2.1}.$

Расчеты всех эволюционных последовательностей проводились при значениях параметров $\eta_{\rm R} = 0.5$ и $\eta_{\rm B} = 0.05$. Надежных формул для определения скорости потери массы post-AGB звездами не существует, поэтому для вычисления \dot{M} на этой стадии эволюции использовалась формула Блокера (3). Параметр, соответствующий стадии post-AGB, обозначим через $\eta_{\rm B}^*$. Чтобы оценить влияние неопределенностей в скорости потери массы на эволюцию post-AGB звезд, расчеты этой стадии

Рис. 1. Эволюционные треки звезд с начальной массой $M_0 = 1M_{\odot}$ (пунктирная линия), $1.3M_{\odot}$ (сплошная линия) и $1.5M_{\odot}$ (штриховая линия), рассчитанные при значениях параметров f = 0.016 и $\eta_{\rm B}^* = 0.05$. Заполненный кружок на эволюционном треке $1.3M_{\odot}$ соответствует максимуму энерговыделения в слое термоядерного горения гелия. Овалом в правой верхней части рисунка показано предполагаемое местоположение FG Sge на диаграмме ГР.

эволюции проводились при нескольких значениях этого параметра в пределах $0.02 \le \eta_{\rm B}^* \le 0.1$. Следуя Миллеру Бертолами (2016), в качестве критерия стадии post-AGB использовалось условие $M_{\rm env}/M \le 0.01$, где $M_{\rm env}$ — масса водородной оболочки, M — полная масса звезды.

В настоящей работе вычисления звездной эволюции проводились для звезд с начальной массой $1M_{\odot} \leq M_0 \leq 1.5 M_{\odot}$ от главной последовательности до стадии остывающего белого карлика со светимостью $L \sim 10^{-3} L_{\odot}$. Эволюционные треки отстоят друг от друга по начальной массе на величину $\Delta M_0 = 0.02 M_{\odot}$. Результаты расчетов иллюстрируются на рис. 1, где показаны эволюционные треки звезд с начальной массой $M_0 = 1 M_{\odot}, 1.3 M_{\odot}$ и $1.5 M_{\odot}$ при значениях параметров f=0.016 и $\eta^*_{
m B}=0.05.$ Петля на эволюционном треке $M_0=$ $=1.3M_{\odot}$ на стадии post-AGB связана с финальной гелиевой вспышкой. Максимум энерговыделения гелиевого слоевого источника отмечен на эволюционном треке заполненным кружком. Предполагаемое местоположение FG Sge на диаграмме ГР показано овалом.

Изменения полной светимости звезды L и скоростей энерговыделения водородного L_H и гелиевого L_{He} слоевых источников в окрестности гелиевой вспышки эволюционной последовательности $M_0 = 1.3 M_{\odot}, \; f = 0.016, \; \eta_{
m B}^* = 0.05$ показаны на рис. 2, где время эволюции t_{ev} отсчитывается от максимума L_{He}. Как следует из рисунка, ядерный синтез в слое термоядерного горения водорода прекращается вследствие резкого возрастания энерговыделения в гелиевом слоевом источнике. Дальнейшая эволюция звезды связана с постепенным уменьшением энерговыделения в реакциях горения гелия и в конечном счете образованием остывающего белого карлика. Таким образом, рассматриваемый случай представляет собой финальную гелиевую вспышку LTP.

Роль овершутинга в возникновении финальной гелиевой вспышки иллюстрируется на рис. 3, где показаны два эволюционных трека post-AGB звезд с начальной массой $M_0 = 1.3 M_{\odot}$ при значениях параметра f = 0.016 и f = 0.018. Скорость потери массы на стадии post-AGB рассчитывалась в обоих случаях при $\eta_{\rm B}^* = 0.05$. Вертикальной чертой на

Рис. 2. Светимость звезды L (сплошная линия) и скорости энерговыделения водородного $L_{\rm H}$ (штриховая линия) и гелиевого $L_{\rm He}$ (пунктирная линия) слоевых источников в зависимости от времени эволюции $t_{\rm ev}$ для эволюционной последовательности $M_0 = 1.3 M_{\odot}$, f = 0.016, $\eta_{\rm B}^* = 0.05$.

Рис. 3. Эволюционные треки post-AGB звезд с начальной массой $M_0 = 1.3 M_{\odot}$, рассчитанные при значениях параметра овершутинга f = 0.016 (сплошная линия) и f = 0.018 (штриховая линия). Параметр скорости потери массы $\eta_B^* = 0.05$. Вертикальной чертой и заполненным кружком на каждом треке отмечены начало стадии post-AGB и максимум энерговыделения гелиевого слоевого источника. Числа около треков указывают время эволюции в годах, которое отсчитывается от максимума $L_{\rm He}$.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 10 2019

Рис. 4. Изменение радиуса звезды R при эффективных температурах $T_{\rm eff} < 10^4$ К. (а) — Эволюционные последовательности, рассчитанные при значениях параметра овершутинга f = 0.016 (сплошные линии) и f = 0.018 (штриховые линии). Числами около кривых указаны значения начальной массы M_0 . Параметр скорости потери массы $\eta_{\rm B}^* = 0.05$. (б) — Эволюционные последовательности $M_0 = 1.3 M_{\odot}$, $\eta = 0.016$ при значениях параметра скорости потери массы $\eta_{\rm B}^* = 0.02, 0.05$ и 0.1.

треках отмечен момент времени, соответствующий отношению массы водородной оболочки к массе звезды $M_{\rm env}/M = 0.01$. Как следует из рисунка, увеличение параметра f приводит к более позднему максимуму $L_{\rm He}$. Например, при f = 0.016 промежуток времени между началом стадии post-AGB и максимумом $L_{\rm He}$ составляет 1350 лет, тогда как при f = 0.018 этот интервал увеличивается до 4640 лет. Тем не менее финальная гелиевая вспышка также является LTP. Более того, несмотря на заметные вначале различия в положении треков на диаграмме ГР эволюция после максимума $L_{\rm He}$ протекает приблизительно в той же шкале времени, а при $t_{\rm ev} \geq 500$ лет оба трека приблизи-

тельно совпадают. Резюмируя роль овершутинга, необходимо заметить, что при f = 0.016 финальная гелиевая вспышка возникает в интервале значений начальной массы $1.30 M_{\odot} \leq M \leq 1.32 M_{\odot}$, тогда как при f = 0.018 этот интервал смещается в сторону меньших значений начальной массы: $1.28 M_{\odot} \leq M \leq 1.30 M_{\odot}$.

Период радиальных пульсаций и радиус звезды связаны между собой как $\Pi \propto R^{3/2}$, поэтому рассмотрение изменения радиуса R в окрестности низкотемпературного участка петли эволюционного трека позволяет оценить степень влияния начальной массы M_0 и параметров f и $\eta_{\rm B}^*$ на скорость изменения периода $\Pi(t_{\rm ev})$, не прибегая

M_0/M_{\odot}	f	$\eta^*_{ m B}$	$t_{ m ev}$, лет	M/M_{\odot}	$\lg R/R_{\odot}$	$\lg L/L_{\odot}$	$T_{ m eff},{ m K}$
1.30	0.016	0.02	269	0.5667	2.267	3.857	3910
		0.05	143	0.5647	2.099	3.744	4445
		0.10	103	0.5645	2.039	3.696	4638
1.32		0.02	136	0.5662	2.029	3.783	4933
		0.05	81	0.5661	1.948	3.726	5239
		0.10	51	0.5661	1.865	3.689	5638
1.28	0.018	0.02	195	0.5633	2.109	3.796	4532
		0.05	128	0.5631	2.044	3.729	4696
		0.10	96	0.5630	1.999	3.688	4832
1.30		0.02	176	0.5651	2.088	3.794	4638
		0.05	114	0.5650	2.024	3.730	4812
		0.10	84	0.5649	1.974	3.690	4980

Таблица 1. Характеристики эволюционных моделей при максимальном радиусе звезды на эволюционной стадии LTP

к гидродинамическим расчетам. На рис. 4а приведены графики изменения $R(t_{
m ev})$ при значении параметра скорости потери массы $\eta^*_{
m B} = 0.05$ и различных предположениях относительно начальной массы звезды M_0 и параметра овершутинга f. Для удобства графического представления время эволюции tev отсчитывается от момента времени, когда на стадии расширения звезды эффективная температура уменьшается до значения $T_{
m eff} = 10^4$ K. Как видно на рисунке, увеличение начальной массы от $M_0=1.3M_\odot$ до $M_0=1.32M_\odot$ при f=0.016сопровождается почти двухкратным сокращением шкалы времени, связанной с увеличением радиуса до максимального значения. Однако при более эффективном овершутинге (f = 0.018) зависимость скорости изменения радиуса от начальной массы сокращается в несколько раз.

На рис. 46 приведены графики изменения радиуса для эволюционных последовательностей $M_0 =$ = $1.3 M_{\odot}$, f = 0.016 при трех различных предположениях относительно скорости потери массы на стадии post-AGB: $\eta_{\rm B}^* = 0.02$, 0.05 и 0.1. Из приведенных зависимостей следует, что уменьшение скорости потери массы сопровождается замедлением эволюции в окрестности максимального радиуса звезды, в то время как на начальной стадии увеличения радиуса различия между графиками $\eta_{\rm B}^* =$ = 0.05 и $\eta_{\rm B}^* = 0.1$ незначительны.

Основные характеристики эволюционных моделей при максимальном радиусе звезды на стадии LTP перечислены в табл. 1. В первых трех столбцах даны параметры эволюционных последовательностей: начальная масса M_0 , параметр овершутинга f и параметр скорости потери массы $\eta_{\rm B}^*$. В четвертом приведено значение времени эволюции $t_{\rm ev}$, которое отсчитывается от момента, когда убывающая эффективная температура достигла значения $T_{\rm eff} = 10^4$ K. В следующих столбцах даны значения массы M, радиуса R, светимости L и эффективной температуры $T_{\rm eff}$.

РЕЗУЛЬТАТЫ РАСЧЕТОВ ЗВЕЗДНЫХ ПУЛЬСАЦИЙ

В данной работе гидродинамические расчеты радиальных звездных пульсаций были проведены для звезд на стадии LTP с эффективными температурами $T_{\rm eff} < 10^4$ К. В качестве начальных условий использовались отдельные модели двух эволюционных последовательностей с начальной массой $M_0 = 1.3 M_{\odot}$ и параметром скорости потери массы $\eta_{\rm B}^* = 0.05$ при значениях параметра овершутинга: f = 0.016 и f = 0.018. Уравнения радиационной гидродинамики и нестационарной конвекции, описывающие радиальные звездные пульсации, обсуждаются в более ранних статьях автора (Фадеев, 2013, 2015).

Решение задачи Коши для уравнений гидродинамики описывает самовозбуждающиеся колебания, которые развиваются из состояния гид-

Рис. 5. Показатель адиабаты Γ_1 как функция массовой координаты в начальных условиях решения уравнений гидродинамики для модели эволюционной последовательности $M_0 = 1.3 M_{\odot}$, f = 0.016, $\eta_{\rm B}^* = 0.05$ с радиусом $R = 125.4 R_{\odot}$ и эффективной температурой $T_{\rm eff} = 4445$ К.

ростатического равновесия. Все гидродинамические модели звезд на стадии LTP характеризуются большими темпами роста кинетической энергии пульсационных движений: $\eta = \Pi d \ln E_{\rm K}/dt \sim 1$, что связано с особенностями строения звезды на этой стадии эволюции. В качестве примера рассмотрим модель эволюционной последовательности $M_0 =$ $= 1.3 M_{\odot}, f = 0.016, \eta_{
m B}^* = 0.05$ с эффективной температурой $T_{\rm eff} = 4445$ К. Радиус и температура газа на внутренней границе гидродинамической модели составляют $r = 5.5 \times 10^{-3} R$ и $T = 10^{6}$ К соответственно. На рис. 5 для этой модели показан показатель адиабаты $\Gamma_1 = (\partial \ln P / \partial \ln \rho)_S$ как функция массовой координаты $q = 1 - M_r/M$, которая отсчитывается от поверхности звезды и где M_r — лагранжева координата, имеющая смысл массы вещества заключенного внутри сферы радиуса r. Причиной сильной неустойчивости относительно радиальных пульсаций является значительная протяженность зон ионизации водорода и гелия, в пределах которых значение показателя адиабаты опускается ниже критического значения: $\Gamma_1 < 4/3$. Вследствие сильной пульсационной неустойчивости колебания достигают большой амплитуды ($\delta r/r \sim 1$), а возникающая нелинейность колебаний приводит к отсутствию строгой повторяемости пульсационных движений.

Как и в предшествующей работе автора, посвященной исследованию пульсаций post-AGB звезд (Фадеев, 2019), определение периода радиальных колебаний П проводилось с помощью дискретного преобразования Фурье кинетической энергии $E_{\rm K}$, которая вычислялась на каждом шаге интегрирования уравнений гидродинамики. Результаты проведенных гидродинамических расчетов иллюстрируются на рис. 6, где в функции времени эволюции $t_{\rm ev}$ показано изменение периода радиальных пульсаций для двух эволюционных последовательностей $M_0 = 1.3 M_{\odot}$, $\eta_{\rm B}^* = 0.05$ при значениях параметра овершутинга f = 0.016 и f = 0.018. Максимальные значения периода этих зависимостей составляют $\Pi = 117$ сут при f = 0.016 и $\Pi = 87$ сут при f = 0.018.

Для сравнения теоретических зависимостей $\Pi(t_{\rm ev})$ с наблюдениями на рис. 6 нами были использованы значения периода изменения блеска FG Sge, приведенные в работах (Архипова, Таранова, 1990; ван Гендерен, Готши, 1995; Архипова, 1996; Архипова и др., 1998; 2009; Юрчик, Монтесинос, 1999), которые охватывают

Рис. 6. Период радиальных пульсаций П как функция времени эволюции t_{ev} для эволюционных последовательностей $M_0 = 1.3M_{\odot}$, $\eta_{\rm B}^* = 0.05$ при значениях параметра овершутинга f = 0.016 (сплошная линия) и f = 0.018 (штриховая линия). Заполненными кружками отмечены значения периода отдельных гидродинамических моделей.

промежуток времени с 1960 г. по 2005 г. (см. рис. 7). Возрастание периода пульсаций FG Sge с 1960 г. по 1990 г. хорошо аппроксимируется квадратичной функцией

$$\Pi(t) = 19.87 + 4.439(t - 1960) - (4) - 3.475 \times 10^{-2}(t - 1960)^2,$$

где 1960 $\leq t \leq$ 1990. Как видно из рисунка, увеличение периода прекратилось около 1990 г., а максимальное значение периода, остающееся приблизительно неизменным в течение 15 лет, составляло П \approx 115 сут. К сожалению, определение среднего значения периода полуправильных изменений блеска долгопериодических переменных звезд, как правило, сопровождается значительными ошибками, поэтому сейчас невозможно отметить момент времени, соответствующий максимальному значению периода.

Сопоставление графиков на рис. 6 и рис. 7 позволяет заключить, что лучшее согласие с наблюдениями FG Sge показывает эволюционная последовательность $M_0 = 1.3 M_{\odot}$, $\eta_{\rm B}^* = 0.05$, f = 0.016. В частности, максимальное значение периода пульсаций в этой эволюционной последовательности $\Pi = 117$ сут оказывается достаточно близким к

наблюдательным оценкам периода FG Sge после 1990 г. Вместе с тем заслуживает внимания тот факт, что с 1960 г. по 1990 г. возрастание периода изменения блеска FG Sge происходило со средней скоростью $\langle \dot{\Pi} \rangle \approx 3.3$ сут/год, что приблизительно в три раза больше теоретической оценки средней скорости изменения периода $\langle \dot{\Pi} \rangle \approx 0.96$ сут/год.

ЗАКЛЮЧЕНИЕ

Проведенные расчеты звездной эволюции позволили установить, что в звездах населения I с начальной массой $1M_{\odot} \leq M_0 \leq 1.5M_{\odot}$ финальная гелиевая вспышка LTP происходит в узком интервале значений Мо. При параметрах потери массы $\eta_{\rm R} = 0.5, \eta_{\rm B} = 0.05$ и параметре овершутинга f = 0.016 этот интервал ограничен значениями $1.3M_{\odot} \leq M_0 \leq 1.32M_{\odot}$. При более эффективном овершутинге (f = 0.018) соответствующий интервал смещается к $1.28 M_{\odot} \le M_0 \le 1.3 M_{\odot}$. Пятикратные вариации скорости потери массы на стадии post-AGB не играют роли в возникновении гелиевой вспышки, однако оказывают заметное влияние на скорость изменения периода звездных пульсаций на стадии LTP. В частности, с увеличением параметра $\eta^*_{\rm B}$ сокращается время эволюции

Рис. 7. Период изменения блеска FG Sge по данным (1) Архипова, Таранова (1990); (2) ван Гендерен, Готши (1995); (3) Архипова (1996); (4) Архипова и др. (1998); (5) Юрчик, Монтесинос (1999); (6) Архипова и др. (2009). Сплошной линией показано приближение периода квадратичной функцией (4) на стадии его возрастания.

вдоль петли эволюционного трека, а поворот трека происходит при меньших значениях радиуса и периода колебаний звезды.

Результаты согласованных расчетов звездной эволюции и нелинейных звездных пульсаций для эволюционной последовательности $M_0 = 1.3 M_{\odot}$, $f=0.016,\ \eta_{
m B}^{*}=0.05$ показывают, что максимальное значение периода радиальных пульсаций на стадии LTP составляет $\Pi = 117$ сут. Это значение находится в хорошем согласии с наблюдательными оценками периода изменения блеска FG Sge с 1990 г. по 2005 г., когда период оставался приблизительно постоянным в пределах $115\,{
m cyr} < \Pi <$ ≤ 120 сут (Архипова, 1996; Архипова и др., 1998, 2009). Если допустить, что в настоящее время звезда FG Sge находится в состоянии около максимального радиуса, то ее масса, радиус и эффективная температура составляют $M = 0.565 M_{\odot}$, $R = 126 R_{\odot}$ и $T_{\rm eff} = 4445$ К соответственно. Впрочем, как видно из графика f = 0.016 на рис. 6, изменение периода пульсаций в пределах 10% в окрестности максимального значения происходит в шкале времени ≈100 лет. Следовательно, только надежные наблюдательные свидетельства в пользу уменьшения периода FG Sge, полученные из наблюдений в ближайшие годы, могут подтвердить приведенные теоретические оценки массы и радиуса.

Определенная в результате проведенных расчетов средняя скорость изменения периода пульсаций $\langle \Pi \rangle = 0.96$ сут/год оказалась приблизительно втрое меньше средней скорости наблюдаемых изменений периода FG Sge: $\langle \Pi \rangle = 3.32$ сут/год. Принимая во внимание быстрое возрастание скорости эволюции post-AGB звезд с увеличением их массы (Миллер Бертолами, 2016; Фадеев, 2019), естественно предположить, что лучшее согласие теории и наблюдений может быть получено посредством незначительного увеличения массы звезды на начальной стадии post-AGB. Одним из возможных решений этой проблемы представляется рассмотрение более обширных сеток эволюционных треков, рассчитанных при различных предположениях относительно скорости потери массы как на стадии красного гиганта предшествующей стадии AGB. так и на эволюционной стадии AGB.

СПИСОК ЛИТЕРАТУРЫ

 Альтхаус и др. (L.G. Althaus, M.M. Miller Bertolami, A.H. Córsico, E. García-Berro, and P. Gil-Pons), Astron. Astrophys. 440, L1 (2005).

- Архипова В.П., Письма в Астрон. журн. 22, 828 (1996) [V. P. Arkhipova, Astron. Lett. 22, 743 (1996)].
- Архипова В.П., Таранова О.Г., Письма в Астрон. журн. 16, 808 (1990) [V.P. Arkhipova and O.G. Taranova, Astron. Lett. 16, 347 (1990)].
- Архипова В.П., Есипов В.Ф., Сокол Г.В., Письма в Астрон. журн. 24, 431 (1998) [V.P. Arkhipova, V.F. Esipov and G.V. Sokol, Astron. Lett. 24, 365 (1998)].
- Архипова В.П., Есипов В.Ф., Иконникова Н.П., Комиссарова Г.В., Шугаров С.Ю., Письма в Астрон. журн. **35**, 592 (2009) [V.P. Arkhipova, V.F. Esipov, N.P. Ikonnikova, G.V. Komissarova, and S.Yu. Shugarov, Astron. Lett. **35**, 534 (2009)].
- 6. Бём-Витензе (E. Böhm-Vitense), Zeitschrift für Astrophys. 46, 108 (1958).
- 7. Блокер (Т. Blöcker), Astron. Astrophys. **297**, 727 (1995).
- 8. Блокер (Т. Blöcker), Astrophys. Space Sci. **275**, 1 (2001).
- Блокер, Шонбернер (Т. Blöcker and D. Schönberner), Astron. Astrophys. 324, 991 (1997).
- 10. ван Гендерен, Готши (А.М. van Genderen and A. Gautschy), Astron. Astrophys. **294**, 453 (1995).
- 11. Гревессе, Соваль (N. Grevesse and A.J. Sauval), Space Sci. Rev. **85**, 161 (1998).
- Джеффри, Шонбернер (C.S. Jeffery and D. Schönberner), Astron. Astrophys. 459, 885 (2006).
- Дюрбек, Бенетти (H.W. Duerbeck and S. Benetti), Astrophys. J. 468, L111 (1996).
- 14. Ибен (I. Iben), Astrophys. J. 277, 333 (1984).
- 15. Ибен и др. (I. Iben, J.B. Kaler, J.W. Truran, J.W. and A. Renzini), Astrophys. J. **264**, 605 (1983).
- 16. Клейтон, Де Марко (G.C. Clayton and O. De Marco), Astron. J. **114**, 2679 (1997).
- 17. Лангер и др. (N. Langer, M. El Eid and K.J. Fricke), Astron. Astrophys. **145**, 179 (1985).
- 18. Лолор, МакДональд (Т.М. Lawlor and J. MacDonald), Astrophys. J. **583**, 913 (2003).
- 19. Миллер Бертолами (М.М. Miller Bertolami), Astron. Astrophys. **588**, A25 (2016).

- 20. Миллер Бертолами и др. (М.М. Miller Bertolami, L.G. Althaus, A.M. Serenelli and J.A. Panei), Astron. Astrophys. **449**, 313 (2006).
- 21. Миллер Бертолами, Альтхаус (М.М. Miller Bertolami and L.G. Althaus), 2007, MNRAS **380**, 763 (2007).
- 22. Пакстон и др. (B. Paxton, J. Schwab, E.B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J.A. Goldberg, P. Marchant, E. Sorokina, A. Thoul, R.H.D. Townsend, and F.X. Timmes), Astropys. J. Suppl. Ser. **234**, 34 (2018).
- 23. Пачинский (B. Paczyński), Acta Astron. 21, 417 (1971).
- 24. Раймерс (D. Reimers), *Problems in stellar atmospheres and envelopes* (Ed. B. Baschek, W.H. Kegel, G. Traving, New York: Springer-Verlag, 1975), p. 229.
- 25. Сайбурт и др. (R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.K. Thielemann, and M. Wiescher), Astrophys. J. Suppl. Ser. **189**, 240 (2010).
- 26. Фадеев Ю.А., Письма в Астрон. журн. **39**, 342 (2013) [Yu.A. Fadeyev, Astron. Lett. 39, 306 (2013)].
- 27. Фадеев (Yu.A. Fadeyev), MNRAS 449, 1011 (2015).
- 28. Фадеев Ю.А., Письма в Астрон. журн. 45, в печати (2019) [Yu.A. Fadeyev, Astron. Lett. 45, in press (2019)].
- 29. Хенайз (К. G. Henize), Publ. Astron. Soc. Pacific **73**, 159 (1961).
- 30. Хербиг, Боярчук (G.H. Herbig and A.A. Boyarchuk), Astrophys. J. **153**, 397 (1968).
- 31. Хервиг (F. Herwig), Astron. Astrophys. **360**, 952 (2000).
- 32. Шонбернер (D. Schönberner), Astron. Astrophys. **79**, 108 (1979).
- 33. Шонбернер (D. Schönberner), Astron. Astrophys. **272**, 708 (1983).
- 34. Юрчик, Монтесинос (J. Jurcsik and B. Montesinos), New Astron. Rev. **43**, 415 (1999).