ОБНОВЛЕННЫЕ ЧИСЛЕННЫЕ ЭФЕМЕРИДЫ ГАЛИЛЕЕВЫХ СПУТНИКОВ ЮПИТЕРА

© 2019 г. Г. А. Космодамианский^{*}

Институт прикладной астрономии РАН, Санкт-Петербург, Россия Поступила в редакцию 25.07.2019 г.; после доработки 04.09.2019 г.; принята к публикации 16.09.2019 г.

Представлены новые версии эфемерид галилеевых спутников Юпитера — Ио, Европы, Ганимеда и Каллисто, построенные с использованием численного интегрирования уравнений движения спутников. Модель движения спутников учитывает несферичность Юпитера, взаимные возмущения спутников и возмущения от Солнца и больших планет. Начальные значения параметров движения спутников уточнены по всем доступным рядам наземных оптических наблюдений, покрывающих интервал 1891—2017 гг., наблюдениям космических аппаратов и радарным наблюдениям. В результате получены коэффициенты разложения координат и скоростей спутников в ряды по полиномам Чебышева на интервале 1891—2025 гг. Приведены среднеквадратические ошибки наблюдений и графики сравнения построенных эфемерид, как с наблюдениями, так и с численными эфемеридами Лэнея. Построенные эфемериды размещены в открытом доступе.

Ключевые слова: Солнечная система, эфемериды спутников.

DOI: 10.1134/S0320010819110044

ВВЕДЕНИЕ

Эфемериды спутников больших планет необходимы при планировании наблюдений, а также планировании полетов космических аппаратов к этим спутникам. Кроме того, наличие нескольких независимых эфемерид позволяет проводить их взаимный контроль.

В настоящее время наиболее точные эфемериды спутников, основанные на численном интегрировании уравнений движения, разрабатываются в Лаборатории реактивного движения (JPL, США) (Джейкобсон, 2001) и Институте небесной механики в Париже (Лэней, 2004а, 2004б).

Начиная с 2007 г. в ИПА РАН разрабатываются собственные численные теории движения естественных спутников планет с целью включения эфемерид этих объектов в приложения к "Астрономическому ежегоднику", а также для уточнения орбит планет и самих спутников. Создание собственных независимых эфемерид позволяет своевременно проводить их уточнение с появлением новых наблюдений.

Предыдущие версии эфемерид галиллевых спутников (Порошина и др., 2012; Космодамианский, Порошина, 2014), были использованы при создании эфемерид EPM2011 (Питьева, 2013) и EPM2015 (Питьева, 2017) для уточнения эфемериды Юпитера. Предполагается, что новая версия эфемерид, описанная в настоящей работе, так же будет использована для этой цели.

В настоящей работе представлена последняя версия численных эфемерид галилеевых спутников Юпитера — Ио, Европы, Ганимеда и Каллисто, построенных на интервале 1891—2025 гг. и уточненных по всем доступным рядам наземных астрометрических наблюдений, проведенных на интервале 1891—2017 гг. Построение эфемерид проводилось при помощи программного пакета ЭРА-7 (Эфемеридные расчеты в астрономии) (Красинский, Васильев, 1997), разработанного сотрудниками ИПА РАН для решения различных задач динамической и эфемеридной астрономии. ЭРА-7 позволяет, как использовать уже готовые эфемериды планет и спутников, так и самостоятельно строить численные теории движения небесных тел.

ЧИСЛЕННАЯ МОДЕЛЬ

Теории движения спутников были построены методом дифференциального уточнения параметров по нескольким последовательным итерациям, на каждой из которых проводилось численное интегрирование дифференциальных уравнений движения спутников методом Эверхарта 19-го порядка. Улучшенные методом наименьших квадратов по

^{*}Электронный адрес: ga.kosmodamianskiy@iaaras.ru

Координаты	Ио	Европа	Ганимед	Каллисто	
R_x , км	304914.251	35946.405	-1021142.663	1850494.265	
R_y , км	-264691.134	-607550.736	292563.013	249215.808	
R_z , км	-121318.030	-293415.847	123479.391	141608.863	
V_x , км/с	12.027	13.622	-3.226	-1.215	
V_x , км/с	11.206	0.617	-9.388	7.373	
V_x , км/с	5.529	0.591	-4.478	3.491	

Таблица 1. Уточненные начальные планетоцентрические координаты (R) и скорости (V) спутников на 2436204.5(TDB), на эпоху J2000.0

результатам сравнения с наблюдениями начальные координаты и скорости служили начальными данными при новом интегрировании в следующей итерации. В результате интегрирования были получены коэффициенты разложения координат и скоростей спутников в ряды по полиномам Чебышева на период 1891—2025 гг. Уравнения движения и методика улучшения параметров подробно описаны в работе (Космодамианский, 2009).

При интегрировании уравнений движения спутников были учтены следующие факторы: взаимные возмущения спутников, возмущения от Солнца, Сатурна, Урана и Нептуна, а также несферичность Юпитера (J2, J4, J6). При вычислении возмущений от Солнца и планет использовалась численная теория EPM-2011, разработанная в ИПА РАН (Питьева, 2013). Для того чтобы минимизировать численные ошибки, интегрирование велось "вперед" и "назад" от даты 1 января 1958 г., близкой к середине интервала интегрирования. Начальные значения координат и скоростей спутников были вычислены на эту дату по эфемериде Лиске (1977). В табл. 1 приведены начальные значения координат и скоростей спутников, полученные в данной работе после уточнения по наблюдениям.

В табл. 2 приведены гравитационные характеристики Юпитера и спутников, которые были использованы в данной работе. Обозначения в таблице: Gm — гравитационные массы объектов, R — экваториальный радиус Юпитера, J_2 , J_4 , J_6 — вторая, четвертая и шестая зональные гармоники разложения потенциала Юпитера. Значения параметров взяты на сайте JPL (https://ssd.jpl.nasa.gov/?sat_phys_par, https://ssd.jpl.nasa.gov/?gravity_fields_op).

При вычислении гравитационного потенциала Юпитера использовались экваториальные угловые координаты северного полюса Юпитера на эпоху JD2451545.0, которые были взяты из последнего отчета Рабочей группы по картографическим координатам и элементам вращения (Арчинал и др., 2018) и записаны в следующем виде:

$$\alpha_0 = 268.056595 - 0.006499T + 0.000117 \sin Ja + 0.000938 \sin Jb + 0.001432 \sin Jc + 0.000030 \sin Jd + 0.002150 \cos Je,$$

$$\begin{split} \delta_0 &= 64.495303 + 0.002413T + 0.000050\cos Ja + 0.000404\cos Jb + \\ &+ 0.000617\cos Jc - 0.000013\cos Jd + 0.000926\cos Je, \end{split}$$

W = 284.95 + 870.5360000d.

 $Ja = 99^{\circ}.360714 + 4850^{\circ}.4046T, \quad Jb = 175^{\circ}.895369 + 1191^{\circ}.9605T,$

 $Jc = 300^{\circ}.323162 + 262^{\circ}.5475T, \quad Jd = 114^{\circ}.012305 + 6070^{\circ}.2476T,$

 $Je = 49^{\circ}.511251 + 64^{\circ}.3000T,$

где d — интервал в днях от стандартной эпохи, T — интервал в Юлианских столетиях (36 525 дней) от стандартной эпохи.

НАБЛЮДЕНИЯ

При уточнении параметров движения спутников были использованы все опубликованные на данный момент наземные фотографические и ПЗС-наблюдения спутников. Всего было использовано 17 647 астрометрических наблюдений разных типов, полученных в период 1891–2017 гг. Информация об использованных наблюдениях, краткое описание которых будет приведено ниже, дана в табл. 3–4, где для каждого спутника и обсерватории приведены период, количество (числа в соответствующей колонке, соединенные знаком "+", обозначают количество наблюдений для каждого спутника) и тип наблюдений (абс. —

Таблица 2. Гравитационные параметры системы Юпитера

Параметр	Значение			
Gm_{system} , км $^3/{ m c}^2$	126712764.1 ± 2.7			
$Gm_{Jupiter}$, км $^3/{ m c}^2$	126686536.1 ± 2.7			
R, км	71492			
$J_2 \times 10^{-6}$	14695.62 ± 0.29			
$J_4 \times 10^{-6}$	-591.31 ± 2.06			
$J_6 \times 10^{-6}$	20.78 ± 4.87			
Gm_{Io} , км $^3/{ m c}^2$	5959.916 ± 0.012			
Gm_{Europa} , км $^3/{ m c}^2$	3202.739 ± 0.009			
$Gm_{Ganymede},{ m Km}^3/{ m c}^2$	9887.834 ± 0.017			
$Gm_{Callisto}$, км $^3/{ m c}^2$	7179.289 ± 0.013			

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 11 2019

абсолютные позиционные наблюдения, отн. -относительные наблюдения), а также полученные после улучшения эфемерид среднеквадратическое ошибки (СКО) по прямому восхождению и склонению. В случае, если спутник не наблюдался, в колонках для прямых восхождений и склонений стоит прочерк. Значительная часть использованных наблюдений опубликована на эпоху и равноденствие В1950.0. Была проведена редукция этих наблюдений к эпохе и равноденствию J2000.0 по формулам, приведенным в работе Аоки и др. (1983). Большая часть наблюдений была получена благодаря сайту Центра данных естественных спутников планет (NSDC, http://nsdb.imcce.fr/obspos/obsindhe.htm) (Арло, Емельянов, 2009).

Наблюдения, проведенные в 1891-1936 гг. на обсерваториях в Гельсингфорсе, Пулково, Гринвиче, Дзо-Се (Китай), Париже, Бухаресте и Мысе Доброй Надежды, а так же наблюдения, проведенные в 1961–1978 гг. на обсерваториях в Бордо, Ла Силле, Рио-де-Жанейро, в обсерватории Мак-Кормика, на Йеркской обсерватории и Королевской обсерватории Бельгии в Уккле были взяты из каталога позиционных наблюдений спутников планет 1891-1978 гг., опубликованном Арло (1982). Всего в каталоге представлено 1138 наблюдений, каждое из которых дает положение на один момент времени сразу нескольких спутников относительно центра фотопластинки. Таким образом, всего представлено 3916 положений спутников. Точности этих наблюдений, в зависимости от обсерватории и периода наблюдений, лежат в пределах 0.05"-0.6" Из-за сложностей с определением положения центра фотопластинки наблюдения были преобразованы таким образом, что в каждом наблюдении (которое дает положение нескольких спутников на один момент времени) был выбран опорный спутник, относительно которого были получены дифференциальные координаты остальных спутников. В результате были получены 3189 отдельных наблюдений дифференциального типа, которые и были использованы при улучшении теорий движения.

Обсерватория	Тип	Интервал наблюдений	Количество	Ио СКО, угл. сек		Европа СКО, угл. сек	
		паолюдении паолюдении -		$\Delta \alpha \cos \delta$	$\Delta\delta$	$\Delta \alpha \cos \delta$	$\Delta\delta$
Washington	абс.	1967-1998	1210 + 1248	0.12	0.11	0.11	0.11
Flagstaff	абс.	1998-2015	504 + 638	0.11	0.12	0.12	0.12
Nikolaev	абс.	1979-2014	303 + 330	0.18	0.18	0.17	0.16
Pulkovo	абс.	1974-1994	136 + 161	0.32	0.25	0.29	0.27
Pulkovo	абс.	2009-2017	260 + 302	0.08	0.09	0.08	0.08
Pulkovo	ОТН.	1976-2005	172 + 190	0.15	0.16	0.14	0.19
Pulkovo	ОТН.	1984-1986	37 + 50	0.13	0.21	0.10	0.20
Pulkovo	отн.	1974-1994	255 + 250	0.23	0.50	0.19	0.61
Pulkovo	отн.	1986-2005	9 + 61	0.04	0.07	0.08	0.11
Pulkovo	отн.	2013-2017	403 + 336	0.07	0.08	0.06	0.10
Itajuba	отн.	1995	122 + 122	0.09	0.03	0.17	0.05
Yunnan	OTH.	2002-2010	435 + 20	0.03	0.03	0.04	0.02
HIPPARCOS	абс.	1990-1992	64	_	_	0.11	0.08
Hubble ST	отн.	1994-1997	32 + 4	0.07	0.07	0.04	0.08
PHEMU	OTH.	1973-2015	779 + 625	0.05	0.07	0.04	0.06
Bourdeaux	отн.	1967-1974	142 + 144	0.35	0.34	0.34	0.34
Bucarest	отн.	1934	65 + 66	0.24	0.28	0.24	0.32
Cape	OTH.	1924	84 + 86	0.09	0.14	0.11	0.16
Greenwich	OTH.	1918-1919	91 + 92	0.08	0.17	0.08	0.24
Helsingfors	OTH.	1891-1897	208 + 200	0.20	0.15	0.17	0.13
La Silla	OTH.	1978	57 + 45	0.23	0.24	0.19	0.19
McCormick	отн.	1977-1978	162 + 179	0.22	0.11	0.17	0.14
Paris	отн.	1936	29 + 20	0.32	0.33	0.23	0.39
Pulkovo	OTH.	1895-1910	332 + 319	0.16	0.16	0.15	0.15
Rio de Janeiro	OTH.	1977	8 + 16	0.47	0.40	0.38	0.33
Uccle	OTH.	1977-1978	35 + 37	0.34	0.43	0.35	0.39
Yerkes	OTH.	1961-1963	30 + 33	0.32	0.39	0.28	0.29
Zo-Se	ОТН.	1917-1918	8 + 18	0.25	0.32	0.33	0.29

Таблица 3. Позиционные наблюдения Ио и Европы

Обсерватория	Тип	Интервал	Количество	Ганимед СКО, угл. сек		Каллисто СКО, угл. сек	
		наолюдении	наолюдении	$\Delta \alpha \cos \delta$	$\Delta\delta$	$\Delta \alpha \cos \delta$	$\Delta\delta$
Washington	абс.	1967-1998	1324	0.13	0.12	_	_
Flagstaff	абс.	1998-2015	721 + 756	0.13	0.13	0.10	0.11
Nikolaev	абс.	1979-2014	339 + 339	0.17	0.15	0.14	0.14
La Palma	абс.	1992-1997	218 + 440	0.19	0.21	0.19	0.19
Pulkovo	абс.	1974-1994	161 + 155	0.28	0.28	0.22	0.27
Pulkovo	абс.	2009-2017	305 + 353	0.09	0.10	0.08	0.08
Pulkovo	OTH.	1976-2005	187 + 162	0.15	0.20	0.16	0.25
Pulkovo	отн.	1984-1986	48 + 50	0.11	0.32	0.15	0.47
Pulkovo	отн.	1974-1994	216 + 252	0.24	0.63	0.27	0.86
Pulkovo	отн.	1986-2005	97 + 89	0.08	0.11	0.09	0.14
Pulkovo	отн.	2013-2017	207 + 35	0.06	0.09	0.09	0.10
Itajuba	отн.	1995	85 + 35	0.13	0.05	0.09	0.07
Yunnan	OTH.	2002-2010	71	0.01	0.02	_	_
HIPPARCOS	абс.	1990-1992	16 + 13	0.11	0.04	0.09	0.06
Hubble ST	отн.	1994-1997	1 + 10	0.07	0.09	0.03	0.02
PHEMU	OTH.	1973-2015	501 + 191	0.05	0.07	0.04	0.07
Bourdeaux	OTH.	1967-1974	50 + 26	0.34	0.41	0.33	0.41
Bucarest	OTH.	1934	17 + 39	0.24	0.26	0.31	0.34
Cape	OTH.	1924	13 + 31	0.08	0.13	0.11	0.17
Greenwich	OTH.	1918-1919	15 + 23	0.07	0.28	0.10	0.22
Helsingfors	OTH.	1891-1897	43 + 56	0.19	0.17	0.14	0.15
La Silla	OTH.	1978	15 + 9	0.24	0.24	0.22	0.20
McCormick	OTH.	1977-1978	35 + 90	0.18	0.09	0.20	0.11
Paris	OTH.	1936	5 + 5	0.23	0.34	0.28	0.52
Pulkovo	OTH.	1895-1910	73 + 90	0.16	0.18	0.17	0.19
Rio de Janeiro	OTH.	1977	5 + 2	0.32	0.54	0.21	0.42
Uccle	OTH.	1977-1978	8 + 14	0.33	0.29	0.28	0.34
Yerkes	OTH.	1961-1963	7 + 7	0.48	0.38	0.33	0.42
Zo-Se	отн.	1917-1918	2 + 3	0.08	0.10	0.09	0.30

Таблица 4. Позиционные наблюдения Ганимеда и Каллисто

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 11 2019

Спутник	Дата	Время	au, c	<i>О</i> – <i>С</i> , мс (ЕЗ)	O-C, мс
Ганимед	1992 02 20	05 57	4413.296899	0.849 ± 0.048	-0.169
Ганимед	1992 03 09	04 37	4417.270238	-0.729 ± 0.021	-0.023
Каллисто	1992 03 03	0505	4394.993673	1.413 ± 0.087	0.747
Каллисто	1992 03 07	04 46	4402.260207	-1.386 ± 0.090	-1.189

Таблица 5. Радарные наблюдения

3782 наблюдения получены на Военно-Морской обсерватории США в Вашингтоне в 1967–1998 гг. при помощи длиннофокусного рефрактора. Точность этих наблюдений составляет 0.1" (Арло и др., 2016).

2619 наблюдений были получены в 1998— 2015 гг. на автоматическом транзитном телескопе во Флагстаффе в рамках наблюдательной программы планет и спутников FASTT (Flagstaff Astrometric Scanning Transit Telescope). Точность этих наблюдений составляет 0.05"—0.1" (Стоун, Харрис, 2000; Стоун, 2000, 2001).

4939 наблюдений 1974–2017 гг. были взяты в базе наблюдений на сайте Пулковской обсерватории (http://puldb.ru/db2/sdb.php). Эти наблюдения были выполнены на различных иструментах: 26-дюймовом рефракторе, нормальном астрографе, лунно-планетном телескопе и двойном астрографе. Точность фотографических наблюдений, выполненных в период 1974–2005 гг., составляет 0.1"–0.5". Необходимо отметить высокую точность современных пулковских ПЗС-наблюдений спутников (Нарижная, 2015, 2016; Нарижная и др., 2018), которая составляет 0.08".

364 положения всех четырех спутников относительно Юпитера получены в Итаджубе (Бразилия) в 1995 г. (Вейга, Виэйра, 1996). Точность этих наблюдений составляет порядка 0.1".

Использовано 526 относительных положений спутников, полученных в Юннаньской Обсерватории в Китае в 2002–2010 гг. Эти наблюдения представляют собой наблюдения близких пар спутников и обладают высокой точностью — 0.03" по обеим координатам (Пенг и др., 2012).

В 1973 г. были начаты фотометрические наблюдения взаимных явлений и покрытий в системе спутников Юпитера, и с тех пор международные кампании по наблюдениям этих явлений (PHEMU) проводятся каждые шесть лет при участии обсерваторий по всему миру. Данные наблюдения являются источником очень точных астрометрических данных — 0.05", получаемых из обработки кривых блеска спутников. Астрометрическая обработка фотометрических наблюдений взаимных затмений и покрытий галилеевых спутников, полученных в 1973, 1979–1980, 1985, 1990–1992 гг., проведена в работах (Акснес и др., 1984; Франклин и др., 1991; Каас и др., 1999). Оригинальный метод обработки фотометрических наблюдений взаимных явлений с целью получения из них астрометрических данных разработан Н.В. Емельяновым (2003). Полученные по этому методу астрометрические данные из наблюдений, проведенных в 1997, 2002-2003, 2009 и 2014-2015 гг., приведены в работах (Емельянов, Вашковьяк, 2009; Емельянов, 2009; Арло и др., 2014; Сакет и др., 2018). В табл. 3 и 4 для этих наблюдений в колонке "Обсерватория" стоит обозначение РНЕМU.

Помимо наземных наблюдений, в работе также были использованы наблюдения, выполненные с борта космических аппаратов: 47 положений спутников относительно Юпитера, полученные при помощи космического телескопа им. Хаббла (Маллама и др., 2004), точность которых составляет 0.04" по обеим координатам, и 93 абсолютных положения спутников, выполненные космическим аппаратом Hipparcos (Хестроффер и др., 1998; Пэрриман, 1997), точность которых составляет 0.03"-0.2".

Кроме того, были использованы четыре радарных наблюдения Ганимеда и Каллисто, полученные в обсерватории Аресибо в 1992 г. (Хармон и др., 1994). Данные по этим наблюдениям приведены в табл. 5 и включают дату и время получения сигнала (в часах и минутах), время распространения сигнала между радаром и спутником τ , а также значения (O-C) с погрешностями, полученные авторами этих наблюдений в сравнении с эфемеридой ЕЗ, разработанной Лиске. В последнем столбце приведены значения (O-C) после улучшения, полученные в данной работе.

Рис. 1. Сравнение с наблюдениями и эфемеридой V. Lainey-V.2.0/V1.1 для Ио.

Рис. 2. Сравнение с наблюдениями и эфемеридой V. Lainey-V.2.0/V1.1 для Европы.

Рис. 3. Сравнение с наблюдениями и эфемеридой V. Lainey-V.2.0|V1.1 для Ганимеда.

Рис. 4. Сравнение с наблюдениями и эфемеридой V. Lainey-V.2.0/V1.1 для Каллисто.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 11 2019

ОЦЕНКИ ТОЧНОСТИ

В табл. З и 4 для каждого спутника и обсерватории представлены среднеквадратические ошибки представления наблюдений. В целом видно, что для всех наблюдений полученные среднеквадратические ошибки соответствуют точностям, которые даются авторами наблюдений, и приведенным в разделе с описанием наблюдений. В частности, как и следовало ожидать, наилучшим образом представлены наблюдения взаимных явлений, наблюдения, выполненные в рамках программы FASTT, современные пулковские наблюдения.

На рис. 1–4 приведены значения (*O*–*C*) после улучшения (серые точки) по прямому восхождению и склонению для каждого спутника. Кроме того, на этих же рисунках приведены графики сравнения построенных эфемерид с численными эфемеридами Лэнея и др. (2004а, 2004б) (черные линии). Сравнение проводилось на интервале 1891–2025 гг. по прямому восхождению и склонению для каждого спутника. Эфемериды Лэнея, а также эфемериды других авторов, доступны благодаря серверу MULTY-SAT (Емельянов, Арло, 2008) на сайте Службы естественных спутников планет ГАИШ МГУ (http://www.sai.msu.ru/neb/nss/nssephmr.htm).

На рисунках видно, что расхождение между эфемеридами для Ио, Европы и Ганимеда на всем интервале не превосходит 0.1", а для Каллисто — 0.15".

ЗАКЛЮЧЕНИЕ

Благодаря использованию всех доступных на данный момент наземных наблюдений галилеевых спутников Юпитера, покрывающих период 1891-2017 гг., построены численные эфемериды этих спутников на интервале 1891-2025 гг. Сравнение показало хорошее согласие как с наблюдениями, так и с эфемеридами других авторов. Построенные теории галилеевых спутников используются для вычисления эфемеридных таблиц, ежегодно публикуемых на сайте ИПА РАН в приложении к "Астрономическому ежегоднику" (http://iaaras.ru/about/issues/yearbook/), а также доступны для пользователей на сайте ИПА РАН благодаря Интерактивной службе расчета эфемерид, разработанной в ИПА РАН и предоставляющей доступ к различным эфемеридам с возможностью получения эфемеридных таблиц в различных единицах измерения и системах координат (http://iaaras.ru/dept/ephemeris/online/).

СПИСОК ЛИТЕРАТУРЫ

- 1. Аоки и др. (S. Aoki, M. Soma, H. Kanoshita, K. Inoue), Astron. Astrophys. **128**, 263 (1983).
- 2. Акснес и др. (K. Aksnes, F. Franklin, R. Mills, P. Birch, C. Blanco, S. Catalano, J. Piironen), Astron. J. **89**, 280 (1984).
- Арло (J.-E. Arlot), Amelioration des ephemerides des satellites galileens de Jupiter par l'analyse des observations. These de Doctorat d'etat (Obs. de Paris, 1982).
- 4. Арло, Емельянов (J.-E. Arlot and N.V. Emelyanov), Astron. Astrophys. **503**, 631 (2009).
- 5. Арло и др. (J.-E. Arlot, N. Emelyanov, M.I. Varfolomeev, A. Amosse, C. Arena, M, Assafin, L. Barbieri, S. Bolzoni, et al.), Astron. Astrophys. 572, A120 (2014).
- 6. Арло и др. (J.-E. Arlot, N. Cooper, N. Emelyanov, V. Lainey, L.E. Meunier, C. Murray, J. Oberst, D. Pascu, et al.), Not. Sci. Tech. Inst. Mecan. Celest. **105** (2016)
- 7. Арчинал и др. (В.А. Archinal, С.Н. Acton, M.F. A'Hearn, A. Conrad, G.J. Consolmagno, T. Duxbury, D. Hestroffer, J.L. Hilton, et al.), Celest. Mech. Dyn. Astron. **130**, 22 (2018).
- Вейга, Виэйра (С.Н. Veiga, M.R. Vieira), Rev. Mex. 4, 118 (1996).
- 9. Джейкобсон (R.A. Jacobson), Bull. Am. Astron. Soc. 33, 1039 (2001).
- 10. Емельянов Н.В. Астрон. вест. **37**, 344 (2003) [N.V. Emelyanov, Solar System Res. **37**, 314 (2003)].
- Емельянов Н.В., Вашковьяк С.Н. Астрон. вест. 43, 251 (2009) [N.V. Emelyanov, S.N. Vashkovyak, Solar System Res. 43, 240 (2009)].
- 12. Емельянов (N.V. Emelyanov), MNRAS, **394**, 1037 (2009).
- 13. Емельянов, Арло (N.V. Emelyanov, J.-E. Arlot), Astron. Astrophys. **487**, 759 (2008).
- 14. Kaac и др. (A.A. Kaas, K. Aksness, F. Franklin and Jay Lieske), Astron. J. **117**, 1933 (1999).
- 15. Красинский, Васильев (G.A. Krasinsky and M.V. Vasilyev), *Proc. of IAU Coll.* (Ed. I.M. Wytrzyszczak, J.H. Lieske, R.A. Feldman, Dordrecht, Kluwer, 1997), p. 239.
- Космодамианский Г.А. Астрон. вестн. 43, № 6, 483 (2009) [G.А. Kosmodamianskii, Solar System Res. 43, № 6, 483 (2009)].
- Космодамианский Г.А., Порошина А.Л. Тр. ИПА 31, 39 (2014)
- 18. Лиске (J.H. Lieske), Astron. Astrophys. 56, 333 (1977)
- 19. Лэней и др. (V. Lainey, L. Duriez, A. Vienne), Astron. Astrophys. **420**, 1171 (2004а).
- 20. Лэней и др. (V. Lainey, J.E. Arlot, A. Vienne), Astron. Astrophys. **427**, 371 (20046).
- 21. Маллама и др. (А. Mallama, М. Aelion, C.A. Mallama), Icarus **167**, 320 (2004)
- 22. Нарижная Н.В. Астрон. вестн. **49**, 420 (2015) [N.V. Narizhnaya, Solar System Res. **49**, 383 (2015)].
- 23. Нарижная Н.В. Астрон. вестн. **50**, 364 (2016) [N.V. Narizhnaya, Solar System Res. **50**, 344 (2016)].

- Нарижная Н.В., Ховричев М.Ю., Апетян А.А., Бикулова Д.А., Ершова А.П., Беляев И.А., Куликова А.М., Оськина К.И. и др., Астрон. вестн. 52, 316 (2018) [N.V. Narizhnaya, М.Y. Khovrichev, A.A. Apetyan, D.A. Bikulova, A.P. Ershova, I.A. Balyaev, A.M. Kulikova, K.I. Os'kina, et al., Solar System Res. 52, 312 (2018)].
- 25. Пенг и др. (Q.Y. Peng, H.F. He, V. Lainey, and A. Vienne), MNRAS **419**, 1977 (2012).
- 26. Питьева Е.В., Астрон. вестн. 47, 419 (2013) [E.V. Pitjeva, Solar System Res. 47, 386 (2013)].
- 27. Питьева Е.В., Тр. ИПА 43, 42 (2017).
- 28. Пэрриман (M.A.C. Perryman), The Hipparcos and Tycho Catalogues. Vol. 1: Introduction and Guide to the Data (Noordwijk, ESA Publications Division, 1997).
- 29. Порошина и др. (A. Poroshina, M. Zamarashkina, G. Kosmodamianskiy), Тр. ИПА **26**, 75 (2012).

- 30. Сакет и др. (E. Saquet, N. Emelyanov, V. Robert, J.-E. Arlot, P. Anbazhagan, K. Bailli, J. Bardecker, A.A. Berezhnoy, et al.), MNRAS **474**, 4730 (2018).
- 31. Стоун, Харрис (R.C. Stone and F.H. Harris), Astron. J. **119**, 1985 (2000).
- 32. Стоун (R.C. Stone), Astron. J. 120, 2124 (2000).
- 33. Стоун (R.C. Stone), Astron. J. 122, 2723 (2001).
- 34. Франклин и др. (F. Franklin, J. Africano, W. Allen, K. Aksnes, P. Birch, C. Blanco, I. Coulson, J. Goguen, et al.), Astron. J. **102**, 806 (1991).
- 35. Хармон и др. (J.K. Harmon, S.J. Ostro, J.F. Chandler, and R.S. Hudson), Astron. J. 107, 1175 (1994).
- 36. Хэстроффер и др. (D. Hestroffer, B. Morando, E. Hog, J. Rjvalevsky, L. Lindegren, and F. Mignard), Astron. Astrophys. **334**, 325 (1998).