О РАСПРЕДЕЛЕНИИ ПЕРЕМЕННЫХ ТИПА RR Lyr ШАРОВОГО СКОПЛЕНИЯ МЗ ПО ПЕРИОДУ

© 2019 г. Ю. А. Фадеев^{1*}

¹Институт астрономии РАН, Москва, Россия

Поступила в редакцию 14.03.2019 г.; после доработки 01.04.2019 г.; принята к публикации 01.04.2019 г.

Проведены расчеты эволюции звезд населения II с химическим составом шарового скопления МЗ при различных предположениях относительно начальной массы звезды ($0.809~M_{\odot} \le M_{ZAMS} \le 0.83~M_{\odot}$) и параметра, определяющего скорость потери массы в формуле Раймерса ($0.45 \le \eta_{\rm R} \le 0.55$). В общей сложности рассчитано 30 эволюционных треков звезд горизонтальной ветви. Отдельные модели эволюционных последовательностей использовались в качестве начальных условий при решении уравнений гидродинамики, описывающих радиальные звездные пульсации. Рассмотрены гидродинамические модели звезд типа RR Lyr, которые находятся как на стадии стационарного горения гелия в ядре, так и на предшествующей стадии pre-ZAHB. Получены аналитические выражения, определяющие эффективную температуру границ полосы нестабильности в зависимости от светимости звезды. Впервые на основе согласованных расчетов звездной эволюции и нелинейных звездных пульсаций с помощью метода Монте-Карло построены гистограммы распределения переменных RR Lyr по периоду. Удовлетворительное согласие с наблюдениями (т.е. большее число переменных типа RRab, пульсирующих в фундаментальной моде) получено для эволюционной последовательности M_{ZAMS} = $= 0.811 M_{\odot}, \eta_{\rm R} = 0.55$ при относительной численности звезд, пульсирующих в фундаментальной моде $\approx 75\%$. Вместе с тем среднее значение периода пульсаций в фундаментальной моде $\langle \Pi \rangle_0 = 0.79$ сут значительно превосходит наблюдательную оценку $\langle \Pi \rangle_{ab}$.

Ключевые слова: звезды — переменные и пекулярные.

DOI: 10.1134/S0320010819060020

ВВЕДЕНИЕ

Пульсирующие переменные типа RR Lyr, наблюдаемые в составе шаровых звездных скоплений, представляют собой маломассивные ($M \approx$ $pprox 0.6~M_{\odot}$) звезды населения II, находящиеся на эволюционной стадии стационарного термоядерного горения гелия в ядре (Ибен, 1974; Капуто, 1998). На диаграмме Герцшпрунга-Рессела (ГР) переменные типа RR Lyr располагаются на горизонтальной ветви в пределах полосы пульсационной нестабильности с характерными эффективными температурами 6000 K $\lesssim T_{\rm eff} \lesssim 7600$ K (Стеллингверф, 1984; Боно, Стеллингверф, 1994). Подавляющее большинство звезд типа RR Lyr пульсирует в фундаментальной моде или первом обертоне (переменные типа RRab и RRc соответственно).

Согласно Оостерхоффу (1939), все галактические шаровые скопления разделяются на две группы в зависимости от среднего значения периода и соотношения численности переменных RRab и

403

RRc. К скоплениям первой группы относят те, в которых средние значения периода переменных типа RRab и RRc удовлетворяют условиям $\langle \Pi
angle_{
m RRab} < 0.6$ сут и $\langle \Pi
angle_{
m RRc} < 0.35$ сут, а численность переменных RRc не превосходит $\approx 30\%$ от общего числа переменных типа RR Lyr (Ван ден Берг, 1957). Соответственно, в скоплениях второй группы средние значения периода удовлетворяют условиям $\langle \Pi \rangle_{RRab} > 0.6$ сут и $\langle \Pi \rangle_{RRc} > 0.35$ сут при численности переменных типа RRc более 30%. По всей видимости, дихотомия Оостерхоффа связана с различиями в условиях внутри звезды, при которых в ходе эволюции происходит переключение колебаний между фундаментальной модой и первым обертоном (ван Альбада, Бейкер, 1973), однако причины разделения шаровых скоплений на две группы остаются неясными.

Шаровое звездное скопление M3 (NGC 5272) принадлежит к наиболее изученным скоплениям, благодаря малому расстоянию и незначительным эффектам межзвездного покраснения. Современные оценки расстояния до скопления M3 составляют от 4.44 кпк (Ваткинс, ван дер Марел, 2017) до 10.05 кпк (Маркони и др., 2003) при межзвездном

^{*}Электронный адрес: fadeyev@inasan.ru

покраснении E = (B - V) = 0.013 (ВанденБерг и др., 2016). По сравнению с другими шаровыми скоплениями M3 выделяется большим числом пульсирующих переменных типа RR Lyr. В настоящее время известно 274 переменных типа RR Lyr, которые наблюдаются в скоплении M3 (Бакос и др., 2000). Наблюдательная гистограмма распределения переменных RR Lyr по периоду (Корвин, Карней, 2001) указывает на принадлежность M3 к скоплениям первой группы по классификации Оостерхоффа.

Исследования звезд горизонтальной ветви шаровых скоплений основываются на методе популяционного синтеза, в основе которого лежат расчеты звездной эволюции, а сравнение результатов моделирования с наблюдениями проводится с привлечением наблюдательных данных о переменных типа RR Lyr. Необходимые в этом случае соотношения, связывающие период пульсаций П с фундаментальными параметрами звезды (масса M, светимость L, эффективная температура T_{eff}, содержание тяжелых элементов Z), основываются на приближенных формулах, полученных из расчетов обширных сеток гидродинамических моделей пульсирующих переменных типа RR Lyr (Капуто и др., 1998; Маркони и др., 2003; 2015). Вместе с тем попытки воспроизвести наблюдаемое распределение переменных типа RR Lyr в шаровом скоплении МЗ до сих пор не увенчались успехом (Кателан, 2004).

Цель данной работы состоит в рассмотрении теоретического распределения числа переменных типа RR Lyr шарового скопления M3 по периоду на основе согласованных расчетов звездной эволюции и нелинейных звездных пульсаций. В ходе расчетов используются различные предположения относительно начальной массы звезды и скорости потери массы. Решение поставленной задачи предполагает расчеты эволюционных последовательностей, отдельные модели которых используются в качестве начальных условий при решении уравнений радиационной гидродинамики и нестационарной турбулентной конвекции, описывающих радиальные звездные пульсации. Согласованные расчеты звездной эволюции и нелинейных звездных пульсаций позволяют определить возраст звезды, соответствующий пересечению полосы нестабильности и переключению моды колебаний. В итоге для каждой эволюционной последовательности рассчитывается теоретическая гистограмма распределения переменных типа RR Lyr по периоду, которая сравнивается с гистограммой, построенной по наблюдательным данным.

ЭВОЛЮЦИОННЫЕ ТРЕКИ ЗВЕЗД ГОРИЗОНТАЛЬНОЙ ВЕТВИ

Как и в предшествующей работе автора (Фадеев, 2018), расчеты эволюционных последовательностей звезд горизонтальной ветви проводились от начальной главной последовательности до исчерпания гелия в центре звезды. Сетка ядерных реакций представлена 29 химическими элементами от водорода ¹Н до алюминия ²⁷Al, которые связаны между собой 51 реакцией. Скорости термоядерных реакций рассчитывались с использованием данных JINA Reaclib (Сайбурт и др., 2010). Предполагалось, что начальное относительное содержание гелия по массе составляет $Y_0 = 0.25$ (Саларис и др., 2004) при начальном массовом содержании более тяжелых элементов $Z_0 = 0.001$ (Кателан, 2004).

Учет конвективного перемешивания звездного вещества проводился по стандартной теории Бём-Витензе (1958) при отношении длины пути конвективного перемешивания к шкале высот по давлению $\alpha_{\rm MLT} = \Lambda/H_{\rm P} = 2.0$. В общей сложности было рассчитано 30 эволюционных последовательностей звезд с начальными массами 0.809 $M_{\odot} \leq M_{\rm ZAMS} \leq 0.83~M_{\odot}$ при значениях параметра скорости потери массы в формуле Раймерса (1975) $0.45 \leq \eta_{\rm R} \leq 0.55$. Все эволюционные вычисления проводились с помощью программы MESA версии 10398 (Пакстон и др., 2018).

Основные трудности, возникающие при расчете эволюции звезд горизонтальной ветви на стадии стационарного горения гелия, связаны со скачком содержания гелия на внешней границе конвективного ядра. Из-за конечно-разностного представления эволюционной модели звезды попадание очередной порции вещества из внешних слоев с высоким содержанием гелия в конвективное ядро приводит к значительному увеличению скорости энерговыделения в реакциях тройного альфапроцесса, в результате чего эволюционный трек описывает на диаграмме ГР петлю. Этот эффект приводит к существенному искажению результатов расчетов, поскольку время эволюции на горизонтальной ветви может возрасти в полтора-два раза (Константино и др., 2015, 2016). Чтобы избежать возникновения ложных петель на диаграмме ГР, в данной работе использовался метод, основанный на ограничении потока массы на внешней границе конвективного ядра (Спруит, 2015; Константино и др., 2017).

Отдельные модели эволюционных последовательностей, которые на диаграмме ГР находятся в окрестности полосы пульсационной неустойчивости, использовались как начальные условия при решении уравнений радиационной гидродинамики, описывающих радиальные звездные пульсации. Основные уравнения и используемые значения параметров теории нестационарной конвекции (Куфюс, 1986) приводятся в предшествующих статьях автора (Фадеев, 2013, 2015). В данной работе решение транспортных уравнений турбулентной конвекции проводилось при значении параметра $\alpha_{\mu} = 0.3$, который входит в выражение для турбулентной вязкости

$$\mu = \alpha_{\mu} \rho \Lambda E_{\rm trb}^{1/2},\tag{1}$$

где ρ — плотность газа, Λ — длина пробега турбулентного элемента (длина пути перемешивания), $E_{\rm trb}$ — средняя кинетическая энергия турбулентных элементов. Параметр α_{μ} определяет эффективность взаимодействия между турбулентными элементами и газодинамическим потоком. Для пульсирующих звезд величина этого параметра находится в пределах $0.1 < \alpha_{\mu} < 0.5$, а период пульсаций гидродинамической модели не зависит от α_{μ} (Вюхтерль, Фойхтингер, 1998; Оливье, Вуд, 2005; Смолец, Москалик, 2008).

Для каждого пересечения полосы нестабильности эволюционным треком рассчитывалось от десяти до пятнадцати гидродинамических моделей. Граница полосы нестабильности определялась по двум смежным моделям, в одной из которых кинетическая энергия пульсаций убывает со временем t, а в другой — увеличивается. Темпы роста (затухания) колебаний определяются величиной $\eta =$ $=\Pi^{-1}d\ln E_{\mathrm{K,max}}/dt$, где Π — период радиальных пульсаций звезды, $E_{\text{K,max}}$ — максимальное значение кинетической энергии пульсационных движений. В течение одного периода колебаний кинетическая энергия дважды достигает максимального значения. Время эволюции t_{ev} (возраст звезды), соответствующее границе неустойчивости ($\eta = 0$), определялось посредством линейного интерполирования зависимости $\eta(t_{\rm ev})$.

Для 30 рассчитанных в данной работе эволюционных последовательностей эффективные температуры голубой $T_{\rm eff,b}$ и красной $T_{\rm eff,r}$ границ полосы неустойчивости могут быть приближенно представлены выражениями

$$\lg T_{\rm eff,b} = 4.0561 - 0.1040 \lg (L/L_{\odot}), \qquad (2)$$

$$\lg T_{\rm eff,r} = 3.9847 - 0.1096 \lg (L/L_{\odot}). \tag{3}$$

Постоянные коэффициенты этих зависимостей были определены методом наименьших квадратов в интервале значений болометрической светимости $1.638 < \lg L/L_{\odot} < 1.883$ по 58 и 84 пересечениям голубой и красной границ полосы неустойчивости эволюционными треками звезд. Большее число пересечений красной границы полосы нестабильности связано с затухающими колебаниями энерговыделения в реакциях тройного альфа-процесса

после гелиевой вспышки на вершине ветви красных гигантов. Соотношения (2) и (3) определяют эффективную температуру на границе полосы неустойчивости при среднем квадратическом отклонении $\sigma(\lg T_{\rm eff,b}) \approx 10^{-3}$ и $\sigma(\lg T_{\rm eff,r}) \approx 1.2 \times 10^{-3}$. Основной причиной разброса положения точек $\eta = 0$ относительно линий регрессии являются погрешности линейного интерполирования. Среднее значение ширины полосы нестабильности составляет $\Delta \lg T_{\rm eff} = 0.081$.

Положение эволюционного трека на диаграмме ГР относительно полосы нестабильности определяется начальной массой звезды $M_{\rm ZAMS}$ и величиной потери массы на предшествующей стадии красного гиганта, т.е. параметром $\eta_{\rm R}$. Зависимость от начальной массы иллюстрируется на рис. 1, где показаны треки эволюционных последовательностей $M_{\rm ZAMS} = 0.81~M_{\odot}$ и $M_{\rm ZAMS} = 0.83~M_{\odot}$ при $\eta_{\rm R} = 0.5$. Роль потери массы иллюстрируется на рис. 2 на примере эволюционных последовательностей $M_{\rm ZAMS} = 0.82~M_{\odot}$, рассчитанных при $\eta_{\rm R} = 0.45, 0.5$ и 0.55.

Сплошными линиями на рис. 1 и 2 показаны участки эволюционного трека, соответствующие стадии стационарного термоядерного горения гелия в конвективном ядре звезды. Для рассмотренных эволюционных последовательностей время стационарного горения гелия в пределах нескольких процентов составляет $t_{\rm HB} \approx 10^8$ лет. Пред-шествующая стадия эволюции, в течение которой звезда покидает вершину ветви красных гигантов и приближается к горизонтальной ветви, значительно короче. Например, интервал времени между максимумом энерговыделения в момент гелиевой вспышки и началом стационарного горения гелия составляет $\approx 1.4 \times 10^6$ лет. На рис. 1 и 2 эта стадия эволюции показана пунктирными линиями, а ее продолжительность в непосредственной близости от красной границы полосы нестабильности $t_{\rm pre-ZAHB} \lesssim 10^6$ лет. Граница между сплошной и пунктирной линиями приведенных эволюционных треков соответствует горизонтальной ветви нулевого возраста (ZAHB).

ПЕРИОДЫ РАДИАЛЬНЫХ ПУЛЬСАЦИЙ

Расчеты каждой гидродинамической модели проводились на отрезке времени t, охватывающем несколько сотен пульсационных циклов, и завершались определением значений периода пульсаций в фундаментальной моде Π_0 и первом обертоне Π_1 . Для этого использовалось дискретное преобразование Фурье кинетической энергии пульсационных движений оболочки звезды. Значения Π_0 и Π_1 остаются неизменными на всем отрезке интегрирования уравнений гидродинамики, поскольку

Рис. 1. Эволюционные треки звезд горизонтальной ветви с начальной массой $M_{ZAMS} = 0.81 M_{\odot}$ и $M_{ZAMS} = 0.83 M_{\odot}$ при значении параметра скорости потери массы $\eta_R = 0.5$. Сплошные и пунктирные линии соответствуют стадии стационарного горения гелия и предшествующей стадии pre-ZAHB. Штриховыми линиями показаны границы полосы нестабильности, определяемые соотношениями (2) и (3).

эффекты нелинейных искажений пренебрежимо малы даже после достижения предельной амплитуды пульсаций. Благодаря этой особенности, спектр мощности кинетической энергии вычислялся для всего отрезка времени *t*, на котором проводилось решение уравнений гидродинамики, что позволило значительно повысить точность определения периода. По мере приближения к предельному циклу амплитуда одной из мод в спектре мощности убывает, тогда как другая мода становится основной.

За время пересечения полосы нестабильности на стадии стационарного горения гелия и на стадии pre-ZAHB звезда успевает совершить $\sim 10^9$ и $\sim 10^7$ колебаний соответственно. Поэтому с большой уверенностью можно предполагать, что переключение колебаний из одной моды в другую происходит мгновенно. В данной работе возраст звезды $t_{\rm ev}$, соответствующий переключению моды, определялся как среднее значение возрастов двух смежных гидродинамических моделей, пульсирующих в различных модах.

Зависимость периода пульсаций как функции

времени эволюции $\Pi(t_{\rm ev})$ определялась с помощью интерполяционных кубических сплайнов. Результаты приближения иллюстрируются на рис. 3 и 4 для эволюционных последовательностей, треки которых на диаграмме ГР приведены на рис. 1 и 2 соответственно. Для удобства графического представления время эволюции $t_{\rm ev}$ отсчитывается от начала стационарного горения гелия (ZAHB),

Таблица 1. Характерные времена звезд типа RR Lyr

$M_{ m ZAHB}/M_{\odot}$	$t_{ m RR}/t_{ m HB}$	$t_{ m RR, pre-ZAHB}/t_{ m RR}$
0.58	0.003	0.42
0.59	0.004	0.10
0.60	0.01	0.12
0.61	0.07	0.04

Рис. 2. То же, что на рис. 1, но для эволюционных последовательностей $M_{\text{ZAMS}} = 0.82 M_{\odot}$, рассчитанных при значениях параметра скорости потери массы $\eta_{\text{R}} = 0.45$, 0.5 и 0.55.

Рис. 3. Период пульсаций П как функция возраста звезды $t_{\rm ev}$ для эволюционных последовательностей с начальной массой $M_{\rm ZAMS} = 0.81~M_{\odot}$ (штриховые линии) и $M_{\rm ZAMS} = 0.83~M_{\odot}$ (сплошные линии), рассчитанных при $\eta_{\rm R} = 0.5$. Возраст звезды $t_{\rm ev}$ отсчитывается от начала стационарного горения гелия (ZAHB).

Рис. 4. То же, что на рис. 3, но для эволюционных последовательностей $M_{ZAMS} = 0.82 M_{\odot}$ при значениях параметра скорости потери массы $\eta_{\rm R} = 0.45$ (пунктирные линии), 0.5 (штриховые линии) и 0.55 (сплошные линии).

причем шкала времени, соответствующая $t_{\rm ev} < 0$, приблизительно на два порядка величины короче по сравнению со шкалой времени при $t_{\rm ev} > 0$. Каждая зависимость на рис. З и 4 показывает изменение периода колебаний в пределах полосы нестабильности, а скачкообразное изменение периода соответствует переключению моды колебаний.

На рис. З и 4 хорошо видно, что с уменьшением массы звезды на горизонтальной ветви (т.е. с уменьшением M_{ZAMS} или с увеличением η_R) заметно сокращается время пребывания звезды в пределах полосы нестабильности t_{RR} . Приближенные оценки этой величины, выраженные в единицах времени стационарного термоядерного горения гелия t_{HB} , приведены во втором столбце табл. 1 для нескольких значений массы звезды горизонтальной ветви нулевого возраста M_{ZAHB} . На стадии pre-ZAHB время пребывания в пределах полосы нестабильности $t_{RR,pre-ZAHB}$ почти не зависит от массы звезды, поэтому с уменьшением M_{ZAHB} доля таких звезд среди всех переменных типа RR Lyr быстро увеличивается (см. третий столбец табл. 1).

РАСПРЕДЕЛЕНИЕ ПО ПЕРИОДУ

Теоретические гистограммы распределения переменных типа RR Lyr по периоду были построены для всех рассмотренных в данной работе эволюционных последовательностей. Вычисления методом Монте-Карло проводились при числе испытаний $n = 10^7$ в предположении равномерного распределения звезд горизонтальной ветви по возрасту в

пределах интервала $[t_{\rm pre-ZAHB}, t_{\rm HB}]$, где $t_{\rm pre-ZAHB} = -10^6$ лет.

Прежде всего заметим, что гистограммы эволюционных последовательностей, которые были рассчитаны при $\eta_R \leq 0.5$, должны быть исключены из рассмотрения вследствие несомненного противоречия с наблюдениями, так как во всех таких случаях распределение показывает значительный избыток звезд, пульсирующих в первом обертоне. Более того, как следует из рис. 2, максимальная эффективная температура, достигаемая звездой горизонтальной ветви, оказывается недостаточно высокой по сравнению с наблюдательными оценками этой величины (Кателан и др., 2001; Качьяри и др., 2005).

На рис. 5 показаны нормализованные гистограммы, построенные по результатам эволюционных и гидродинамических расчетов трех эволюционных последовательностей с начальной массой $M_{\rm ZAMS} = 0.81~M_{\odot}$, 0.818 M_{\odot} и 0.828 при значении параметра $\eta_{\rm R} = 0.55$. Масса переменных типа RR Lyr в этом случае составляет $M = 0.578~M_{\odot}$, 0.589 M_{\odot} и 0.603 M_{\odot} соответственно. Избежать противоречия с наблюдениями и получить избыток переменных, пульсирующих в фундаментальной моде, можно лишь в случае эволюционной последовательности $M_{\rm ZAMS} = 0.81~M_{\odot}$.

Для более детального сравнения с наблюдениями на рис. 6 показаны нормализованные гистограммы, построенные для четырех эволюционных последовательностей с начальными массами в пределах 0.809 $M_{\odot} \leq M_{ZAMS} \leq 0.812 \ M_{\odot}$. Около каждой гистограммы приведено относительное

Рис. 5. Нормализованные гистограммы распределения переменных типа RR Lyr по периоду, рассчитанные при значении параметра скорости потери массы $\eta_{\rm R} = 0.55$ для эволюционных последовательностей $M_{\rm ZAMS} = 0.81~M_{\odot}$ (a), $M_{\rm ZAMS} = 0.818~M_{\odot}$ (b) и $M_{\rm ZAMS} = 0.828~M_{\odot}$ (b).

Рис. 6. То же, что на рис. 5, но для эволюционных последовательностей $M_{ZAMS} = 0.809 \ M_{\odot}$ (a), $M_{ZAMS} = 0.810 \ M_{\odot}$ (б), $M_{ZAMS} = 0.811 \ M_{\odot}$ (в) и $M_{ZAMS} = 0.812 \ M_{\odot}$ (г); f_0 — доля пульсирующих переменных в фундаментальной моде среди всех переменных типа RR Lyr.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 6 2019

Рис. 7. Периоды пульсаций П фундаментальной моды (заполненные кружки) и первого обертона (заполненные треугольники) в точке переключения моды колебаний на стадии стационарного горения гелия как функция начальной массы звезды $M_{\rm ZAMS}$ при $\eta_{\rm R} = 0.55$.

число переменных, пульсирующих в фундаментальной моде f_0 . Из этих рисунков видно, что лучшее согласие с наблюдениями обнаруживается в случае эволюционных последовательностей $M_{\rm ZAMS} = 0.810~M_{\odot}$ и $M_{\rm ZAMS} = 0.811~M_{\odot}$, т.е. для звезд с массой 0.578 $M_{\odot} \leq M \leq 0.580~M_{\odot}$. Доля звезд, пульсирующих в фундаментальной моде, составляет 71% и 75% соответственно, что близко к значению 78%, наблюдаемому у переменных типа RR Lyr шарового скопления M3 (Кателан, 2004). Вместе с тем следует заметить, что теоретические оценки среднего значения периода пульсаций в фундаментальной моде $\langle \Pi \rangle_0 = 0.79$ сут заметно превосходят наблюдательную оценку среднего периода переменных типа RRab $\langle \Pi \rangle_{\rm ab} = 0.56$ сут.

Существование узкого интервала значений $M_{\rm ZAMS}$, для которого теоретические гистограммы показывают удовлетворительное согласие с наблюдениями, связано с зависимостью точки переключения моды колебаний от массы звезды. Эта зависимость иллюстрируется на рис. 7, где в функции M_{ZAMS} показаны периоды фундаментальной моды и первого обертона в точке переключения моды колебаний. Приведенные графики соответствуют заключительной стадии стационарного горения гелия, т.е. переходу пульсаций из первого обертона в фундаментальную моду. Из рисунка видно, что в рассмотренном интервале значений начальной массы $(0.809 \le M_{
m ZAMS} \le 0.812 ~M_{\odot})$ период каждой из мод в точке переключения изменяется в пределах $\approx 15\%$. Это является главной

причиной различного вида гистограмм, показанных на рис. 6.

ЗАКЛЮЧЕНИЕ

В представленной работе проведены согласованные расчеты звездной эволюции и нелинейных звездных пульсаций для 30 эволюционных последовательностей. Рассмотренный интервал значений начальной массы соответствует возрасту звезд типа RR Lyr от 1.195×10^{10} лет при $M_{7AMS} =$ $= 0.83~M_{\odot}$ до $1.309 imes 10^{10}$ лет при $M_{
m ZAMS} =$ $= 0.809 \ M_{\odot}$. Почти во всех случаях теоретические гистограммы показывают избыток короткопериодических переменных типа RRc, что противоречит наблюдениям шарового скопления МЗ. Удовлетворительное согласие с наблюдениями удалось получить лишь для двух эволюционных последовательностей $M_{\rm ZAMS} = 0.810 \ M_{\odot}$ и $0.811 \ M_{\odot}$ при относительной численности переменных, пульсирующих в фундаментальной моде 71 и 75%, что незначительно отличается от наблюдаемой численности переменных типа RRab, составляющей 78%.

Рассчитанные в данной работе эволюционные последовательности послужат отправной точкой для дальнейшего улучшения теоретической оценки среднего значения периода переменных типа RR Lyr, пульсирующих в фундаментальной моде. Принимая во внимание зависимость точки переключения моды колебаний от массы звезды для поиска лучшего согласия с наблюдениями, необходимо будет исследовать эволюционные последовательности в окрестности значений $M_{\rm ZAMS} = 0.811 \ M_{\odot}, \ \eta_{\rm R} = 0.55$ и $Y_0 = 0.25$ посредством малых вариаций этих величин.

Решение поставленной задачи осложняется необходимостью проведения более тщательных расчетов звездной эволюции. Пересечение полосы нестабильности на стадии стационарного горения гелия происходит при относительном массовом содержании гелия в конвективном ядре Y < 0.1, когда значительно усиливаются эффекты, связанные с неравномерным потоком массы на внешней границе конвективного ядра и которые в конечном свете могут приводить к искажению результатов эволюционных расчетов. Из представленных результатов следует, что устранение таких искажений необходимо для корректного определения точки переключения моды колебаний и лучшего согласия выводов теории с наблюдениями.

Автор выражает свою признательность Л.Р. Юнгельсону за полезное обсуждение рукописи статьи и ряд высказанных им критических замечаний.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бакос и др. (G.A. Bakos, J.M. Benko, and J. Jurcsik), 2000, Acta Astron. **50**, 221 (2000).
- Бём-Витензе (E.Böhm-Vitense), Zeitschrift für Astrophys. 46, 108 (1958).
- 3. Боно, Стеллингверф (G. Bono and R.F. Stellingwerf), Astrophys. J. Suppl. Ser. 93, 233 (1994).
- 4. Ван ден Берг (S. van den Bergh), Astron. J. **62**, 334 (1957).
- 5. Ван ден Берг и др. (D.A. VandenBerg, P.A. Denissenkov, and M. Catelan), Astrophys. J. **827**, 2 (2016).
- 6. ван Альбада, Бейкер (T.S. van Albada and N. Baker), Astrophys. J. **185**, 477 1973.
- 7. Ваткинс, ван дер Марел (L.L. Watkins and R.P. van der Marel), Astrophys. J. **839**, 89 (2017).
- Вюхтерль, Фойхтингер (G. Wuchterl and M.U. Feuchtinger), Astron. Astrophys. 340, 419 (1998).
- 9. Ибен (I. Iben), Ann. Rev. Astron. Astrophys. **12**, 215 (1974).
- 10. Капуто (F. Caputo), Astron. Astrohys. Rev. 9, 33 (1998).
- 11. Капуто и др. (F. Caputo, P. Santolamazza, and M. Marconi), MNRAS **293**, 364 (1998).
- 12. Кателан (M. Catelan), Astrophys. J. 600, 409 (2004).
- 13. Кателан и др. (M. Catelan, F.R. Ferraro, and R.T. Rood), Astrophys. J. **560**, 970 (2001).
- 14. Качьяри и др. (С. Cacciari, Т.М. Corwin, and B.W. Carney), Astron. J. **129**, 267 (2005).
- 15. Константино и др. (T. Constantino, S.W. Campbell, J. Christensen–Dalsgaard, J.C. Lattanzio, and D. Stello), MNRAS **452**, 123 (2015)
- Константино и др. (Т. Constantino, S.W. Campbell, W. Simon, J.C. Lattanzio, and A. van Duijneveldt), MNRAS, 456, 3866 (2016).
- 17. Константино и др. (T. Constantino, S.W. Campbell, and J.C. Lattanzio), MNRAS **472**, 4900 (2017).
- 18. Корвин, Карней (Т.М. Corwin and B.W. Carney), Astron. J. **122**, 3183 (2001).

- 19. Куфюс (R. Kuhfuß), Astron. Astrophys. 160, 116 (1986).
- 20. Маркони и др. (M. Marconi, F. Caputo, M. Di Criscienzo, and M. Castellani), Astrophys. J. **596**, 299 (2003).
- 21. Маркони и др. (М. Marconi, G. Coppola, G. Bono, V. Braga, A. Pietrinferni, R. Buonanno, M. Castellani, I. Musella, V. Ripepi, and R.F. Stellingwerf), Astrophys. J. **808**, 50 (2015).
- 22. Оливье, Вуд (E.A. Olivier and P.R. Wood), MNRAS **362**, 1396 (2005).
- 23. Оостерхофф (Р.Т. Oosterhoff), Observatory **62**, 104 (1939).
- 24. Пакстон и др. (B. Paxton, J. Schwab, E.B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J.A. Goldberg, et al.), Astropys. J. Suppl. Ser. 234, 34 (2018).
- 25. Раймерс (D. Reimers), *Problems in stellar atmospheres and envelopes* (Ed. B. Baschek, W.H. Kegel, G. Traving, New York: Springer-Verlag, 1975), p. 229.
- 26. Сайбурт и др. (R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.K. Thielemann, and M. Wiescher), Astrophys. J. Suppl. Ser. **189**, 240 (2010).
- 27. Саларис и др. (M. Salaris, M. Riello, S. Cassisi, and G. Piotto), Astron. Astrophys. **420**, 911 (2004).
- 28. Смолец, Москалик (R. Smolec and P. Moskalik), Acta Astron. **58**, 193 (2008).
- 29. Спруит (H.C. Spruit), Astron. Astrophys. **582**, L2 (2015).
- 30. Стеллингверф (R.F. Stellingwerf), Astrophys. J. **277**, 322 (1984).
- Фадеев Ю.А., Письма в Астрон. журн. 39, 342 (2013) [Yu.A. Fadeyev, Astron. Lett. 39, 306 (2013)].
- 32. Фадеев (Yu.A. Fadeyev), MNRAS 449, 1011 (2015).
- Фадеев Ю.А., Письма в Астрон. журн. 44, 673 (2018) [Yu.A. Fadeyev, Astron. Lett. 44, 616 (2018)].